dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/concepts/graph.h

789 lines
25 KiB
C
Raw Normal View History

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
///\ingroup graph_concepts
///\file
///\brief The concept of undirected graphs.
#ifndef LEMON_CONCEPTS_GRAPH_H
#define LEMON_CONCEPTS_GRAPH_H
#include <lemon/concepts/graph_components.h>
#include <lemon/concepts/maps.h>
#include <lemon/concept_check.h>
#include <lemon/core.h>
namespace lemon {
namespace concepts {
/// \ingroup graph_concepts
///
/// \brief Class describing the concept of undirected graphs.
///
/// This class describes the common interface of all undirected
/// graphs.
///
/// Like all concept classes, it only provides an interface
/// without any sensible implementation. So any general algorithm for
/// undirected graphs should compile with this class, but it will not
/// run properly, of course.
/// An actual graph implementation like \ref ListGraph or
/// \ref SmartGraph may have additional functionality.
///
/// The undirected graphs also fulfill the concept of \ref Digraph
/// "directed graphs", since each edge can also be regarded as two
/// oppositely directed arcs.
/// Undirected graphs provide an Edge type for the undirected edges and
/// an Arc type for the directed arcs. The Arc type is convertible to
/// Edge or inherited from it, i.e. the corresponding edge can be
/// obtained from an arc.
/// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt
/// and ArcMap classes can be used for the arcs (just like in digraphs).
/// Both InArcIt and OutArcIt iterates on the same edges but with
/// opposite direction. IncEdgeIt also iterates on the same edges
/// as OutArcIt and InArcIt, but it is not convertible to Arc,
/// only to Edge.
///
/// In LEMON, each undirected edge has an inherent orientation.
/// Thus it can defined if an arc is forward or backward oriented in
/// an undirected graph with respect to this default oriantation of
/// the represented edge.
/// With the direction() and direct() functions the direction
/// of an arc can be obtained and set, respectively.
///
/// Only nodes and edges can be added to or removed from an undirected
/// graph and the corresponding arcs are added or removed automatically.
///
/// \sa Digraph
class Graph {
private:
/// Graphs are \e not copy constructible. Use GraphCopy instead.
Graph(const Graph&) {}
/// \brief Assignment of a graph to another one is \e not allowed.
/// Use GraphCopy instead.
void operator=(const Graph&) {}
public:
/// Default constructor.
Graph() {}
/// \brief Undirected graphs should be tagged with \c UndirectedTag.
///
/// Undirected graphs should be tagged with \c UndirectedTag.
///
/// This tag helps the \c enable_if technics to make compile time
/// specializations for undirected graphs.
typedef True UndirectedTag;
/// The node type of the graph
/// This class identifies a node of the graph. It also serves
/// as a base class of the node iterators,
/// thus they convert to this type.
class Node {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the object to an undefined value.
Node() { }
/// Copy constructor.
/// Copy constructor.
///
Node(const Node&) { }
/// %Invalid constructor \& conversion.
/// Initializes the object to be invalid.
/// \sa Invalid for more details.
Node(Invalid) { }
/// Equality operator
/// Equality operator.
///
/// Two iterators are equal if and only if they point to the
/// same object or both are \c INVALID.
bool operator==(Node) const { return true; }
/// Inequality operator
/// Inequality operator.
bool operator!=(Node) const { return true; }
/// Artificial ordering operator.
/// Artificial ordering operator.
///
/// \note This operator only has to define some strict ordering of
/// the items; this order has nothing to do with the iteration
/// ordering of the items.
bool operator<(Node) const { return false; }
};
/// Iterator class for the nodes.
/// This iterator goes through each node of the graph.
/// Its usage is quite simple, for example, you can count the number
/// of nodes in a graph \c g of type \c %Graph like this:
///\code
/// int count=0;
/// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
///\endcode
class NodeIt : public Node {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
NodeIt() { }
/// Copy constructor.
/// Copy constructor.
///
NodeIt(const NodeIt& n) : Node(n) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
NodeIt(Invalid) { }
/// Sets the iterator to the first node.
/// Sets the iterator to the first node of the given digraph.
///
explicit NodeIt(const Graph&) { }
/// Sets the iterator to the given node.
/// Sets the iterator to the given node of the given digraph.
///
NodeIt(const Graph&, const Node&) { }
/// Next node.
/// Assign the iterator to the next node.
///
NodeIt& operator++() { return *this; }
};
/// The edge type of the graph
/// This class identifies an edge of the graph. It also serves
/// as a base class of the edge iterators,
/// thus they will convert to this type.
class Edge {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the object to an undefined value.
Edge() { }
/// Copy constructor.
/// Copy constructor.
///
Edge(const Edge&) { }
/// %Invalid constructor \& conversion.
/// Initializes the object to be invalid.
/// \sa Invalid for more details.
Edge(Invalid) { }
/// Equality operator
/// Equality operator.
///
/// Two iterators are equal if and only if they point to the
/// same object or both are \c INVALID.
bool operator==(Edge) const { return true; }
/// Inequality operator
/// Inequality operator.
bool operator!=(Edge) const { return true; }
/// Artificial ordering operator.
/// Artificial ordering operator.
///
/// \note This operator only has to define some strict ordering of
/// the edges; this order has nothing to do with the iteration
/// ordering of the edges.
bool operator<(Edge) const { return false; }
};
/// Iterator class for the edges.
/// This iterator goes through each edge of the graph.
/// Its usage is quite simple, for example, you can count the number
/// of edges in a graph \c g of type \c %Graph as follows:
///\code
/// int count=0;
/// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
///\endcode
class EdgeIt : public Edge {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
EdgeIt() { }
/// Copy constructor.
/// Copy constructor.
///
EdgeIt(const EdgeIt& e) : Edge(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
EdgeIt(Invalid) { }
/// Sets the iterator to the first edge.
/// Sets the iterator to the first edge of the given graph.
///
explicit EdgeIt(const Graph&) { }
/// Sets the iterator to the given edge.
/// Sets the iterator to the given edge of the given graph.
///
EdgeIt(const Graph&, const Edge&) { }
/// Next edge
/// Assign the iterator to the next edge.
///
EdgeIt& operator++() { return *this; }
};
/// Iterator class for the incident edges of a node.
/// This iterator goes trough the incident undirected edges
/// of a certain node of a graph.
/// Its usage is quite simple, for example, you can compute the
/// degree (i.e. the number of incident edges) of a node \c n
/// in a graph \c g of type \c %Graph as follows.
///
///\code
/// int count=0;
/// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
///\endcode
///
/// \warning Loop edges will be iterated twice.
class IncEdgeIt : public Edge {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
IncEdgeIt() { }
/// Copy constructor.
/// Copy constructor.
///
IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
IncEdgeIt(Invalid) { }
/// Sets the iterator to the first incident edge.
/// Sets the iterator to the first incident edge of the given node.
///
IncEdgeIt(const Graph&, const Node&) { }
/// Sets the iterator to the given edge.
/// Sets the iterator to the given edge of the given graph.
///
IncEdgeIt(const Graph&, const Edge&) { }
/// Next incident edge
/// Assign the iterator to the next incident edge
/// of the corresponding node.
IncEdgeIt& operator++() { return *this; }
};
/// The arc type of the graph
/// This class identifies a directed arc of the graph. It also serves
/// as a base class of the arc iterators,
/// thus they will convert to this type.
class Arc {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the object to an undefined value.
Arc() { }
/// Copy constructor.
/// Copy constructor.
///
Arc(const Arc&) { }
/// %Invalid constructor \& conversion.
/// Initializes the object to be invalid.
/// \sa Invalid for more details.
Arc(Invalid) { }
/// Equality operator
/// Equality operator.
///
/// Two iterators are equal if and only if they point to the
/// same object or both are \c INVALID.
bool operator==(Arc) const { return true; }
/// Inequality operator
/// Inequality operator.
bool operator!=(Arc) const { return true; }
/// Artificial ordering operator.
/// Artificial ordering operator.
///
/// \note This operator only has to define some strict ordering of
/// the arcs; this order has nothing to do with the iteration
/// ordering of the arcs.
bool operator<(Arc) const { return false; }
/// Converison to \c Edge
/// Converison to \c Edge.
///
operator Edge() const { return Edge(); }
};
/// Iterator class for the arcs.
/// This iterator goes through each directed arc of the graph.
/// Its usage is quite simple, for example, you can count the number
/// of arcs in a graph \c g of type \c %Graph as follows:
///\code
/// int count=0;
/// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count;
///\endcode
class ArcIt : public Arc {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
ArcIt() { }
/// Copy constructor.
/// Copy constructor.
///
ArcIt(const ArcIt& e) : Arc(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
ArcIt(Invalid) { }
/// Sets the iterator to the first arc.
/// Sets the iterator to the first arc of the given graph.
///
explicit ArcIt(const Graph &g) {
::lemon::ignore_unused_variable_warning(g);
}
/// Sets the iterator to the given arc.
/// Sets the iterator to the given arc of the given graph.
///
ArcIt(const Graph&, const Arc&) { }
/// Next arc
/// Assign the iterator to the next arc.
///
ArcIt& operator++() { return *this; }
};
/// Iterator class for the outgoing arcs of a node.
/// This iterator goes trough the \e outgoing directed arcs of a
/// certain node of a graph.
/// Its usage is quite simple, for example, you can count the number
/// of outgoing arcs of a node \c n
/// in a graph \c g of type \c %Graph as follows.
///\code
/// int count=0;
/// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
///\endcode
class OutArcIt : public Arc {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
OutArcIt() { }
/// Copy constructor.
/// Copy constructor.
///
OutArcIt(const OutArcIt& e) : Arc(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
OutArcIt(Invalid) { }
/// Sets the iterator to the first outgoing arc.
/// Sets the iterator to the first outgoing arc of the given node.
///
OutArcIt(const Graph& n, const Node& g) {
::lemon::ignore_unused_variable_warning(n);
::lemon::ignore_unused_variable_warning(g);
}
/// Sets the iterator to the given arc.
/// Sets the iterator to the given arc of the given graph.
///
OutArcIt(const Graph&, const Arc&) { }
/// Next outgoing arc
/// Assign the iterator to the next
/// outgoing arc of the corresponding node.
OutArcIt& operator++() { return *this; }
};
/// Iterator class for the incoming arcs of a node.
/// This iterator goes trough the \e incoming directed arcs of a
/// certain node of a graph.
/// Its usage is quite simple, for example, you can count the number
/// of incoming arcs of a node \c n
/// in a graph \c g of type \c %Graph as follows.
///\code
/// int count=0;
/// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
///\endcode
class InArcIt : public Arc {
public:
/// Default constructor
/// Default constructor.
/// \warning It sets the iterator to an undefined value.
InArcIt() { }
/// Copy constructor.
/// Copy constructor.
///
InArcIt(const InArcIt& e) : Arc(e) { }
/// %Invalid constructor \& conversion.
/// Initializes the iterator to be invalid.
/// \sa Invalid for more details.
InArcIt(Invalid) { }
/// Sets the iterator to the first incoming arc.
/// Sets the iterator to the first incoming arc of the given node.
///
InArcIt(const Graph& g, const Node& n) {
::lemon::ignore_unused_variable_warning(n);
::lemon::ignore_unused_variable_warning(g);
}
/// Sets the iterator to the given arc.
/// Sets the iterator to the given arc of the given graph.
///
InArcIt(const Graph&, const Arc&) { }
/// Next incoming arc
/// Assign the iterator to the next
/// incoming arc of the corresponding node.
InArcIt& operator++() { return *this; }
};
/// \brief Standard graph map type for the nodes.
///
/// Standard graph map type for the nodes.
/// It conforms to the ReferenceMap concept.
template<class T>
class NodeMap : public ReferenceMap<Node, T, T&, const T&>
{
public:
/// Constructor
explicit NodeMap(const Graph&) { }
/// Constructor with given initial value
NodeMap(const Graph&, T) { }
private:
///Copy constructor
NodeMap(const NodeMap& nm) :
ReferenceMap<Node, T, T&, const T&>(nm) { }
///Assignment operator
template <typename CMap>
NodeMap& operator=(const CMap&) {
checkConcept<ReadMap<Node, T>, CMap>();
return *this;
}
};
/// \brief Standard graph map type for the arcs.
///
/// Standard graph map type for the arcs.
/// It conforms to the ReferenceMap concept.
template<class T>
class ArcMap : public ReferenceMap<Arc, T, T&, const T&>
{
public:
/// Constructor
explicit ArcMap(const Graph&) { }
/// Constructor with given initial value
ArcMap(const Graph&, T) { }
private:
///Copy constructor
ArcMap(const ArcMap& em) :
ReferenceMap<Arc, T, T&, const T&>(em) { }
///Assignment operator
template <typename CMap>
ArcMap& operator=(const CMap&) {
checkConcept<ReadMap<Arc, T>, CMap>();
return *this;
}
};
/// \brief Standard graph map type for the edges.
///
/// Standard graph map type for the edges.
/// It conforms to the ReferenceMap concept.
template<class T>
class EdgeMap : public ReferenceMap<Edge, T, T&, const T&>
{
public:
/// Constructor
explicit EdgeMap(const Graph&) { }
/// Constructor with given initial value
EdgeMap(const Graph&, T) { }
private:
///Copy constructor
EdgeMap(const EdgeMap& em) :
ReferenceMap<Edge, T, T&, const T&>(em) {}
///Assignment operator
template <typename CMap>
EdgeMap& operator=(const CMap&) {
checkConcept<ReadMap<Edge, T>, CMap>();
return *this;
}
};
/// \brief The first node of the edge.
///
/// Returns the first node of the given edge.
///
/// Edges don't have source and target nodes, however, methods
/// u() and v() are used to query the two end-nodes of an edge.
/// The orientation of an edge that arises this way is called
/// the inherent direction, it is used to define the default
/// direction for the corresponding arcs.
/// \sa v()
/// \sa direction()
Node u(Edge) const { return INVALID; }
/// \brief The second node of the edge.
///
/// Returns the second node of the given edge.
///
/// Edges don't have source and target nodes, however, methods
/// u() and v() are used to query the two end-nodes of an edge.
/// The orientation of an edge that arises this way is called
/// the inherent direction, it is used to define the default
/// direction for the corresponding arcs.
/// \sa u()
/// \sa direction()
Node v(Edge) const { return INVALID; }
/// \brief The source node of the arc.
///
/// Returns the source node of the given arc.
Node source(Arc) const { return INVALID; }
/// \brief The target node of the arc.
///
/// Returns the target node of the given arc.
Node target(Arc) const { return INVALID; }
/// \brief The ID of the node.
///
/// Returns the ID of the given node.
int id(Node) const { return -1; }
/// \brief The ID of the edge.
///
/// Returns the ID of the given edge.
int id(Edge) const { return -1; }
/// \brief The ID of the arc.
///
/// Returns the ID of the given arc.
int id(Arc) const { return -1; }
/// \brief The node with the given ID.
///
/// Returns the node with the given ID.
/// \pre The argument should be a valid node ID in the graph.
Node nodeFromId(int) const { return INVALID; }
/// \brief The edge with the given ID.
///
/// Returns the edge with the given ID.
/// \pre The argument should be a valid edge ID in the graph.
Edge edgeFromId(int) const { return INVALID; }
/// \brief The arc with the given ID.
///
/// Returns the arc with the given ID.
/// \pre The argument should be a valid arc ID in the graph.
Arc arcFromId(int) const { return INVALID; }
/// \brief An upper bound on the node IDs.
///
/// Returns an upper bound on the node IDs.
int maxNodeId() const { return -1; }
/// \brief An upper bound on the edge IDs.
///
/// Returns an upper bound on the edge IDs.
int maxEdgeId() const { return -1; }
/// \brief An upper bound on the arc IDs.
///
/// Returns an upper bound on the arc IDs.
int maxArcId() const { return -1; }
/// \brief The direction of the arc.
///
/// Returns \c true if the direction of the given arc is the same as
/// the inherent orientation of the represented edge.
bool direction(Arc) const { return true; }
/// \brief Direct the edge.
///
/// Direct the given edge. The returned arc
/// represents the given edge and its direction comes
/// from the bool parameter. If it is \c true, then the direction
/// of the arc is the same as the inherent orientation of the edge.
Arc direct(Edge, bool) const {
return INVALID;
}
/// \brief Direct the edge.
///
/// Direct the given edge. The returned arc represents the given
/// edge and its source node is the given node.
Arc direct(Edge, Node) const {
return INVALID;
}
/// \brief The oppositely directed arc.
///
/// Returns the oppositely directed arc representing the same edge.
Arc oppositeArc(Arc) const { return INVALID; }
/// \brief The opposite node on the edge.
///
/// Returns the opposite node on the given edge.
Node oppositeNode(Node, Edge) const { return INVALID; }
void first(Node&) const {}
void next(Node&) const {}
void first(Edge&) const {}
void next(Edge&) const {}
void first(Arc&) const {}
void next(Arc&) const {}
void firstOut(Arc&, Node) const {}
void nextOut(Arc&) const {}
void firstIn(Arc&, Node) const {}
void nextIn(Arc&) const {}
void firstInc(Edge &, bool &, const Node &) const {}
void nextInc(Edge &, bool &) const {}
// The second parameter is dummy.
Node fromId(int, Node) const { return INVALID; }
// The second parameter is dummy.
Edge fromId(int, Edge) const { return INVALID; }
// The second parameter is dummy.
Arc fromId(int, Arc) const { return INVALID; }
// Dummy parameter.
int maxId(Node) const { return -1; }
// Dummy parameter.
int maxId(Edge) const { return -1; }
// Dummy parameter.
int maxId(Arc) const { return -1; }
/// \brief The base node of the iterator.
///
/// Returns the base node of the given incident edge iterator.
Node baseNode(IncEdgeIt) const { return INVALID; }
/// \brief The running node of the iterator.
///
/// Returns the running node of the given incident edge iterator.
Node runningNode(IncEdgeIt) const { return INVALID; }
/// \brief The base node of the iterator.
///
/// Returns the base node of the given outgoing arc iterator
/// (i.e. the source node of the corresponding arc).
Node baseNode(OutArcIt) const { return INVALID; }
/// \brief The running node of the iterator.
///
/// Returns the running node of the given outgoing arc iterator
/// (i.e. the target node of the corresponding arc).
Node runningNode(OutArcIt) const { return INVALID; }
/// \brief The base node of the iterator.
///
/// Returns the base node of the given incoming arc iterator
/// (i.e. the target node of the corresponding arc).
Node baseNode(InArcIt) const { return INVALID; }
/// \brief The running node of the iterator.
///
/// Returns the running node of the given incoming arc iterator
/// (i.e. the source node of the corresponding arc).
Node runningNode(InArcIt) const { return INVALID; }
template <typename _Graph>
struct Constraints {
void constraints() {
checkConcept<BaseGraphComponent, _Graph>();
checkConcept<IterableGraphComponent<>, _Graph>();
checkConcept<IDableGraphComponent<>, _Graph>();
checkConcept<MappableGraphComponent<>, _Graph>();
}
};
};
}
}
#endif