dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/test/bellman_ford_test.cc

290 lines
7.3 KiB
C++
Raw Normal View History

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#include <lemon/concepts/digraph.h>
#include <lemon/smart_graph.h>
#include <lemon/list_graph.h>
#include <lemon/lgf_reader.h>
#include <lemon/bellman_ford.h>
#include <lemon/path.h>
#include "graph_test.h"
#include "test_tools.h"
using namespace lemon;
char test_lgf[] =
"@nodes\n"
"label\n"
"0\n"
"1\n"
"2\n"
"3\n"
"4\n"
"@arcs\n"
" length\n"
"0 1 3\n"
"1 2 -3\n"
"1 2 -5\n"
"1 3 -2\n"
"0 2 -1\n"
"1 2 -4\n"
"0 3 2\n"
"4 2 -5\n"
"2 3 1\n"
"@attributes\n"
"source 0\n"
"target 3\n";
void checkBellmanFordCompile()
{
typedef int Value;
typedef concepts::Digraph Digraph;
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap;
typedef BellmanFord<Digraph, LengthMap> BF;
typedef Digraph::Node Node;
typedef Digraph::Arc Arc;
Digraph gr;
Node s, t, n;
Arc e;
Value l;
::lemon::ignore_unused_variable_warning(l);
int k=3;
bool b;
::lemon::ignore_unused_variable_warning(b);
BF::DistMap d(gr);
BF::PredMap p(gr);
LengthMap length;
concepts::Path<Digraph> pp;
{
BF bf_test(gr,length);
const BF& const_bf_test = bf_test;
bf_test.run(s);
bf_test.run(s,k);
bf_test.init();
bf_test.addSource(s);
bf_test.addSource(s, 1);
b = bf_test.processNextRound();
b = bf_test.processNextWeakRound();
bf_test.start();
bf_test.checkedStart();
bf_test.limitedStart(k);
l = const_bf_test.dist(t);
e = const_bf_test.predArc(t);
s = const_bf_test.predNode(t);
b = const_bf_test.reached(t);
d = const_bf_test.distMap();
p = const_bf_test.predMap();
pp = const_bf_test.path(t);
pp = const_bf_test.negativeCycle();
for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {}
}
{
BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> >
::SetDistMap<concepts::ReadWriteMap<Node,Value> >
::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> >
::Create bf_test(gr,length);
LengthMap length_map;
concepts::ReadWriteMap<Node,Arc> pred_map;
concepts::ReadWriteMap<Node,Value> dist_map;
bf_test
.lengthMap(length_map)
.predMap(pred_map)
.distMap(dist_map);
bf_test.run(s);
bf_test.run(s,k);
bf_test.init();
bf_test.addSource(s);
bf_test.addSource(s, 1);
b = bf_test.processNextRound();
b = bf_test.processNextWeakRound();
bf_test.start();
bf_test.checkedStart();
bf_test.limitedStart(k);
l = bf_test.dist(t);
e = bf_test.predArc(t);
s = bf_test.predNode(t);
b = bf_test.reached(t);
pp = bf_test.path(t);
pp = bf_test.negativeCycle();
}
}
void checkBellmanFordFunctionCompile()
{
typedef int Value;
typedef concepts::Digraph Digraph;
typedef Digraph::Arc Arc;
typedef Digraph::Node Node;
typedef concepts::ReadMap<Digraph::Arc,Value> LengthMap;
Digraph g;
bool b;
::lemon::ignore_unused_variable_warning(b);
bellmanFord(g,LengthMap()).run(Node());
b = bellmanFord(g,LengthMap()).run(Node(),Node());
bellmanFord(g,LengthMap())
.predMap(concepts::ReadWriteMap<Node,Arc>())
.distMap(concepts::ReadWriteMap<Node,Value>())
.run(Node());
b=bellmanFord(g,LengthMap())
.predMap(concepts::ReadWriteMap<Node,Arc>())
.distMap(concepts::ReadWriteMap<Node,Value>())
.path(concepts::Path<Digraph>())
.dist(Value())
.run(Node(),Node());
}
template <typename Digraph, typename Value>
void checkBellmanFord() {
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
typedef typename Digraph::template ArcMap<Value> LengthMap;
Digraph gr;
Node s, t;
LengthMap length(gr);
std::istringstream input(test_lgf);
digraphReader(gr, input).
arcMap("length", length).
node("source", s).
node("target", t).
run();
BellmanFord<Digraph, LengthMap>
bf(gr, length);
bf.run(s);
Path<Digraph> p = bf.path(t);
check(bf.reached(t) && bf.dist(t) == -1, "Bellman-Ford found a wrong path.");
check(p.length() == 3, "path() found a wrong path.");
check(checkPath(gr, p), "path() found a wrong path.");
check(pathSource(gr, p) == s, "path() found a wrong path.");
check(pathTarget(gr, p) == t, "path() found a wrong path.");
ListPath<Digraph> path;
Value dist = 0;
bool reached = bellmanFord(gr,length).path(path).dist(dist).run(s,t);
check(reached && dist == -1, "Bellman-Ford found a wrong path.");
check(path.length() == 3, "path() found a wrong path.");
check(checkPath(gr, path), "path() found a wrong path.");
check(pathSource(gr, path) == s, "path() found a wrong path.");
check(pathTarget(gr, path) == t, "path() found a wrong path.");
for(ArcIt e(gr); e!=INVALID; ++e) {
Node u=gr.source(e);
Node v=gr.target(e);
check(!bf.reached(u) || (bf.dist(v) - bf.dist(u) <= length[e]),
"Wrong output. dist(target)-dist(source)-arc_length=" <<
bf.dist(v) - bf.dist(u) - length[e]);
}
for(NodeIt v(gr); v!=INVALID; ++v) {
if (bf.reached(v)) {
check(v==s || bf.predArc(v)!=INVALID, "Wrong tree.");
if (bf.predArc(v)!=INVALID ) {
Arc e=bf.predArc(v);
Node u=gr.source(e);
check(u==bf.predNode(v),"Wrong tree.");
check(bf.dist(v) - bf.dist(u) == length[e],
"Wrong distance! Difference: " <<
bf.dist(v) - bf.dist(u) - length[e]);
}
}
}
}
void checkBellmanFordNegativeCycle() {
DIGRAPH_TYPEDEFS(SmartDigraph);
SmartDigraph gr;
IntArcMap length(gr);
Node n1 = gr.addNode();
Node n2 = gr.addNode();
Node n3 = gr.addNode();
Node n4 = gr.addNode();
Arc a1 = gr.addArc(n1, n2);
Arc a2 = gr.addArc(n2, n2);
length[a1] = 2;
length[a2] = -1;
{
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
bf.run(n1);
StaticPath<SmartDigraph> p = bf.negativeCycle();
check(p.length() == 1 && p.front() == p.back() && p.front() == a2,
"Wrong negative cycle.");
}
length[a2] = 0;
{
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
bf.run(n1);
check(bf.negativeCycle().empty(),
"Negative cycle should not be found.");
}
length[gr.addArc(n1, n3)] = 5;
length[gr.addArc(n4, n3)] = 1;
length[gr.addArc(n2, n4)] = 2;
length[gr.addArc(n3, n2)] = -4;
{
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
bf.init();
bf.addSource(n1);
for (int i = 0; i < 4; ++i) {
check(bf.negativeCycle().empty(),
"Negative cycle should not be found.");
bf.processNextRound();
}
StaticPath<SmartDigraph> p = bf.negativeCycle();
check(p.length() == 3, "Wrong negative cycle.");
check(length[p.nth(0)] + length[p.nth(1)] + length[p.nth(2)] == -1,
"Wrong negative cycle.");
}
}
int main() {
checkBellmanFord<ListDigraph, int>();
checkBellmanFord<SmartDigraph, double>();
checkBellmanFordNegativeCycle();
return 0;
}