301 lines
9.8 KiB
C++
301 lines
9.8 KiB
C++
|
// Begin License:
|
||
|
// Copyright (C) 2006-2008 Tobias Sargeant (tobias.sargeant@gmail.com).
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// This file is part of the Carve CSG Library (http://carve-csg.com/)
|
||
|
//
|
||
|
// This file may be used under the terms of the GNU General Public
|
||
|
// License version 2.0 as published by the Free Software Foundation
|
||
|
// and appearing in the file LICENSE.GPL2 included in the packaging of
|
||
|
// this file.
|
||
|
//
|
||
|
// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
|
||
|
// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE.
|
||
|
// End:
|
||
|
|
||
|
|
||
|
#pragma once
|
||
|
|
||
|
#include <carve/carve.hpp>
|
||
|
#include <carve/geom.hpp>
|
||
|
|
||
|
#include <math.h>
|
||
|
#include <carve/math_constants.hpp>
|
||
|
|
||
|
#include <vector>
|
||
|
#include <list>
|
||
|
#include <map>
|
||
|
|
||
|
#if defined(CARVE_DEBUG)
|
||
|
# include <iostream>
|
||
|
#endif
|
||
|
|
||
|
namespace carve {
|
||
|
namespace geom3d {
|
||
|
|
||
|
typedef carve::geom::plane<3> Plane;
|
||
|
typedef carve::geom::ray<3> Ray;
|
||
|
typedef carve::geom::linesegment<3> LineSegment;
|
||
|
typedef carve::geom::vector<3> Vector;
|
||
|
|
||
|
template<typename iter_t, typename adapt_t>
|
||
|
bool fitPlane(iter_t begin, iter_t end, adapt_t adapt, Plane &plane) {
|
||
|
Vector centroid;
|
||
|
carve::geom::centroid(begin, end, adapt, centroid);
|
||
|
iter_t i;
|
||
|
|
||
|
Vector n = Vector::ZERO();
|
||
|
Vector v, z;
|
||
|
Vector p1, p2, p3, c1, c2;
|
||
|
if (begin == end) return false;
|
||
|
|
||
|
i = begin;
|
||
|
p1 = c1 = adapt(*i++); if (i == end) return false;
|
||
|
p2 = c2 = adapt(*i++); if (i == end) return false;
|
||
|
|
||
|
#if defined(CARVE_DEBUG)
|
||
|
size_t N = 2;
|
||
|
#endif
|
||
|
while (i != end) {
|
||
|
p3 = adapt(*i++);
|
||
|
v = cross(p3 - p2, p1 - p2);
|
||
|
if (v.v[largestAxis(v)]) v.negate();
|
||
|
n += v;
|
||
|
p1 = p2; p2 = p3;
|
||
|
#if defined(CARVE_DEBUG)
|
||
|
++N;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
p1 = p2; p2 = p3; p3 = c1;
|
||
|
v = cross(p3 - p2, p1 - p2);
|
||
|
if (v.v[largestAxis(v)]) v.negate();
|
||
|
n += v;
|
||
|
|
||
|
p1 = p2; p2 = p3; p3 = c2;
|
||
|
v = cross(p3 - p2, p1 - p2);
|
||
|
if (v.v[largestAxis(v)]) v.negate();
|
||
|
n += v;
|
||
|
|
||
|
n.normalize();
|
||
|
plane.N = n;
|
||
|
plane.d = -dot(n, centroid);
|
||
|
#if defined(CARVE_DEBUG)
|
||
|
if (N > 3) {
|
||
|
std::cerr << "N = " << N << " fitted distance:";
|
||
|
for (i = begin; i != end; ++i) {
|
||
|
Vector p = adapt(*i);
|
||
|
std::cerr << " {" << p << "} " << distance(plane, p);
|
||
|
}
|
||
|
std::cerr << std::endl;
|
||
|
}
|
||
|
#endif
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool planeIntersection(const Plane &a, const Plane &b, Ray &r);
|
||
|
|
||
|
IntersectionClass rayPlaneIntersection(const Plane &p,
|
||
|
const Vector &v1,
|
||
|
const Vector &v2,
|
||
|
Vector &v,
|
||
|
double &t);
|
||
|
|
||
|
IntersectionClass lineSegmentPlaneIntersection(const Plane &p,
|
||
|
const LineSegment &line,
|
||
|
Vector &v);
|
||
|
|
||
|
RayIntersectionClass rayRayIntersection(const Ray &r1,
|
||
|
const Ray &r2,
|
||
|
Vector &v1,
|
||
|
Vector &v2,
|
||
|
double &mu1,
|
||
|
double &mu2);
|
||
|
|
||
|
|
||
|
|
||
|
// test whether point d is above, below or on the plane formed by the triangle a,b,c.
|
||
|
// return: +ve = d is below a,b,c
|
||
|
// -ve = d is above a,b,c
|
||
|
// 0 = d is on a,b,c
|
||
|
static inline double orient3d(const carve::geom3d::Vector &a,
|
||
|
const carve::geom3d::Vector &b,
|
||
|
const carve::geom3d::Vector &c,
|
||
|
const carve::geom3d::Vector &d) {
|
||
|
return dotcross((a - d), (b - d), (c - d));
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
// Volume of a tetrahedron described by 4 points. Will be
|
||
|
// positive if the anticlockwise normal of a,b,c is oriented out
|
||
|
// of the tetrahedron.
|
||
|
//
|
||
|
// see: http://mathworld.wolfram.com/Tetrahedron.html
|
||
|
inline double tetrahedronVolume(const Vector &a,
|
||
|
const Vector &b,
|
||
|
const Vector &c,
|
||
|
const Vector &d) {
|
||
|
return dotcross((a - d), (b - d), (c - d)) / 6.0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* \brief Determine whether p is internal to the wedge defined by
|
||
|
* the area between the planes defined by a,b,c and a,b,d
|
||
|
* angle abc, where ab is the apex of the angle.
|
||
|
*
|
||
|
* @param[in] a
|
||
|
* @param[in] b
|
||
|
* @param[in] c
|
||
|
* @param[in] d
|
||
|
* @param[in] p
|
||
|
*
|
||
|
* @return true, if p is contained in the wedge defined by the
|
||
|
* area between the planes defined by a,b,c and
|
||
|
* a,b,d. If the wedge is reflex, p is considered to
|
||
|
* be contained if it lies on either plane. Acute
|
||
|
* wdges do not contain p if p lies on either
|
||
|
* plane. This is so that internalToWedge(a,b,c,d,p) =
|
||
|
* !internalToWedge(a,b,d,c,p)
|
||
|
*/
|
||
|
inline bool internalToWedge(const Vector &a,
|
||
|
const Vector &b,
|
||
|
const Vector &c,
|
||
|
const Vector &d,
|
||
|
const Vector &p) {
|
||
|
bool reflex = (c < d) ?
|
||
|
orient3d(a, b, c, d) >= 0.0 :
|
||
|
orient3d(a, b, d, c) < 0.0;
|
||
|
|
||
|
double d1 = orient3d(a, b, c, p);
|
||
|
double d2 = orient3d(a, b, d, p);
|
||
|
|
||
|
if (reflex) {
|
||
|
// above a,b,c or below a,b,d (or coplanar with either)
|
||
|
return d1 <= 0.0 || d2 >= 0.0;
|
||
|
} else {
|
||
|
// above a,b,c and below a,b,d
|
||
|
return d1 < 0.0 && d2 > 0.0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* \brief Determine the ordering relationship of a and b, when
|
||
|
* rotating around direction, starting from base.
|
||
|
*
|
||
|
* @param[in] adirection
|
||
|
* @param[in] base
|
||
|
* @param[in] a
|
||
|
* @param[in] b
|
||
|
*
|
||
|
* @return
|
||
|
* * -1, if a is ordered before b around, rotating about direction.
|
||
|
* * 0, if a and b are equal in angle.
|
||
|
* * +1, if a is ordered after b around, rotating about direction.
|
||
|
*/
|
||
|
inline int compareAngles(const Vector &direction, const Vector &base, const Vector &a, const Vector &b) {
|
||
|
double d1 = carve::geom3d::orient3d(carve::geom::VECTOR(0,0,0), direction, a, b);
|
||
|
double d2 = carve::geom3d::orient3d(carve::geom::VECTOR(0,0,0), direction, base, a);
|
||
|
double d3 = carve::geom3d::orient3d(carve::geom::VECTOR(0,0,0), direction, base, b);
|
||
|
|
||
|
// CASE: a and b are coplanar wrt. direction.
|
||
|
if (d1 == 0.0) {
|
||
|
// a and b point in the same direction.
|
||
|
if (dot(a, b) > 0.0) {
|
||
|
// Neither is less than the other.
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// a and b point in opposite directions.
|
||
|
double d2 = carve::geom3d::orient3d(carve::geom::VECTOR(0,0,0), direction, base, a);
|
||
|
// * if d2 < 0.0, a is above plane(direction, base) and is less
|
||
|
// than b.
|
||
|
// * if d2 == 0.0 a is coplanar with plane(direction, base) and is
|
||
|
// less than b if it points in the same direction as base.
|
||
|
// * if d2 > 0.0, a is below plane(direction, base) and is greater
|
||
|
// than b.
|
||
|
|
||
|
if (d2 == 0.0) { return dot(a, base) > 0.0 ? -1 : +1; }
|
||
|
if (d3 == 0.0) { return dot(b, base) > 0.0 ? +1 : -1; }
|
||
|
if (d2 < 0.0 && d3 > 0.0) return -1;
|
||
|
if (d2 > 0.0 && d3 < 0.0) return +1;
|
||
|
|
||
|
// both a and b are to one side of plane(direction, base) -
|
||
|
// rounding error (if a and b are truly coplanar with
|
||
|
// direction, one should be above, and one should be below any
|
||
|
// other plane that is not itself coplanar with
|
||
|
// plane(direction, a|b) - which would imply d2 and d3 == 0.0).
|
||
|
|
||
|
// If both are below plane(direction, base) then the one that
|
||
|
// points in the same direction as base is greater.
|
||
|
// If both are above plane(direction, base) then the one that
|
||
|
// points in the same direction as base is lesser.
|
||
|
if (d2 > 0.0) { return dot(a, base) > 0.0 ? +1 : -1; }
|
||
|
else { return dot(a, base) > 0.0 ? -1 : +1; }
|
||
|
}
|
||
|
|
||
|
// CASE: a and b are not coplanar wrt. direction
|
||
|
|
||
|
if (d2 < 0.0) {
|
||
|
// if a is above plane(direction,base), then a is less than b if
|
||
|
// b is below plane(direction,base) or b is above plane(direction,a)
|
||
|
return (d3 > 0.0 || d1 < 0.0) ? -1 : +1;
|
||
|
} else if (d2 == 0.0) {
|
||
|
// if a is on plane(direction,base) then a is less than b if a
|
||
|
// points in the same direction as base, or b is below
|
||
|
// plane(direction,base)
|
||
|
return (dot(a, base) > 0.0 || d3 > 0.0) ? -1 : +1;
|
||
|
} else {
|
||
|
// if a is below plane(direction,base), then a is less than b if b
|
||
|
// is below plane(direction,base) and b is above plane(direction,a)
|
||
|
return (d3 > 0.0 && d1 < 0.0) ? -1 : +1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The anticlockwise angle from vector "from" to vector "to", oriented around the vector "orient".
|
||
|
static inline double antiClockwiseAngle(const Vector &from, const Vector &to, const Vector &orient) {
|
||
|
double dp = dot(from, to);
|
||
|
Vector cp = cross(from, to);
|
||
|
if (cp.isZero()) {
|
||
|
if (dp < 0) {
|
||
|
return M_PI;
|
||
|
} else {
|
||
|
return 0.0;
|
||
|
}
|
||
|
} else {
|
||
|
if (dot(cp, orient) > 0.0) {
|
||
|
return acos(dp);
|
||
|
} else {
|
||
|
return M_TWOPI - acos(dp);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static inline double antiClockwiseOrdering(const Vector &from, const Vector &to, const Vector &orient) {
|
||
|
double dp = dot(from, to);
|
||
|
Vector cp = cross(from, to);
|
||
|
if (cp.isZero()) {
|
||
|
if (dp < 0) {
|
||
|
return 2.0;
|
||
|
} else {
|
||
|
return 0.0;
|
||
|
}
|
||
|
} else {
|
||
|
if (dot(cp, orient) > 0.0) {
|
||
|
// 1..-1 -> 0..2
|
||
|
return 1.0 - dp;
|
||
|
} else {
|
||
|
// -1..1 -> 2..4
|
||
|
return dp + 1.0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
}
|
||
|
}
|