278 lines
11 KiB
C
278 lines
11 KiB
C
|
// Copyright (c) 2007-09 INRIA Sophia-Antipolis (France).
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org).
|
||
|
//
|
||
|
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Point_set_processing_3/include/CGAL/jet_estimate_normals.h $
|
||
|
// $Id: jet_estimate_normals.h 93f1cd9 2020-07-16T09:53:31+02:00 Mael Rouxel-Labbé
|
||
|
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
|
||
|
//
|
||
|
// Author(s) : Pierre Alliez and Laurent Saboret and Marc Pouget and Frederic Cazals
|
||
|
|
||
|
#ifndef CGAL_JET_ESTIMATE_NORMALS_H
|
||
|
#define CGAL_JET_ESTIMATE_NORMALS_H
|
||
|
|
||
|
#include <CGAL/license/Point_set_processing_3.h>
|
||
|
|
||
|
#include <CGAL/disable_warnings.h>
|
||
|
|
||
|
#include <CGAL/IO/trace.h>
|
||
|
#include <CGAL/Point_set_processing_3/internal/Neighbor_query.h>
|
||
|
#include <CGAL/Point_set_processing_3/internal/Callback_wrapper.h>
|
||
|
#include <CGAL/for_each.h>
|
||
|
#include <CGAL/Monge_via_jet_fitting.h>
|
||
|
#include <CGAL/property_map.h>
|
||
|
#include <CGAL/point_set_processing_assertions.h>
|
||
|
#include <CGAL/Memory_sizer.h>
|
||
|
#include <functional>
|
||
|
|
||
|
#include <CGAL/boost/graph/Named_function_parameters.h>
|
||
|
#include <CGAL/boost/graph/named_params_helper.h>
|
||
|
|
||
|
#include <iterator>
|
||
|
#include <list>
|
||
|
|
||
|
namespace CGAL {
|
||
|
|
||
|
|
||
|
// ----------------------------------------------------------------------------
|
||
|
// Private section
|
||
|
// ----------------------------------------------------------------------------
|
||
|
/// \cond SKIP_IN_MANUAL
|
||
|
namespace internal {
|
||
|
|
||
|
|
||
|
/// Estimates normal direction using jet fitting
|
||
|
/// on the k nearest neighbors.
|
||
|
///
|
||
|
/// \pre `k >= 2`
|
||
|
///
|
||
|
/// @tparam Kernel Geometric traits class.
|
||
|
/// @tparam Tree KD-tree.
|
||
|
///
|
||
|
/// @return Computed normal. Orientation is random.
|
||
|
template <typename SvdTraits, typename NeighborQuery>
|
||
|
typename NeighborQuery::Kernel::Vector_3
|
||
|
jet_estimate_normal(const typename NeighborQuery::Point_3& query, ///< point to compute the normal at
|
||
|
const NeighborQuery& neighbor_query, ///< KD-tree
|
||
|
unsigned int k, ///< number of neighbors
|
||
|
typename NeighborQuery::FT neighbor_radius,
|
||
|
unsigned int degree_fitting)
|
||
|
{
|
||
|
// basic geometric types
|
||
|
typedef typename NeighborQuery::Kernel Kernel;
|
||
|
typedef typename Kernel::Point_3 Point;
|
||
|
|
||
|
// types for jet fitting
|
||
|
typedef Monge_via_jet_fitting< Kernel,
|
||
|
Simple_cartesian<double>,
|
||
|
SvdTraits> Monge_jet_fitting;
|
||
|
typedef typename Monge_jet_fitting::Monge_form Monge_form;
|
||
|
|
||
|
std::vector<Point> points;
|
||
|
|
||
|
// query using as fallback minimum requires nb points for jet fitting (d+1)*(d+2)/2
|
||
|
neighbor_query.get_points (query, k, neighbor_radius, std::back_inserter(points),
|
||
|
(degree_fitting + 1) * (degree_fitting + 2) / 2);
|
||
|
|
||
|
// performs jet fitting
|
||
|
Monge_jet_fitting monge_fit;
|
||
|
const unsigned int degree_monge = 1; // we seek for normal and not more.
|
||
|
Monge_form monge_form = monge_fit(points.begin(), points.end(),
|
||
|
degree_fitting, degree_monge);
|
||
|
|
||
|
// output normal vector (already normalized in monge form)
|
||
|
return monge_form.normal_direction();
|
||
|
}
|
||
|
|
||
|
} /* namespace internal */
|
||
|
/// \endcond
|
||
|
|
||
|
|
||
|
|
||
|
// ----------------------------------------------------------------------------
|
||
|
// Public section
|
||
|
// ----------------------------------------------------------------------------
|
||
|
|
||
|
/**
|
||
|
\ingroup PkgPointSetProcessing3Algorithms
|
||
|
Estimates normal directions of the range of `points`
|
||
|
using jet fitting on the nearest neighbors.
|
||
|
The output normals are randomly oriented.
|
||
|
|
||
|
\pre `k >= 2`
|
||
|
|
||
|
\tparam ConcurrencyTag enables sequential versus parallel algorithm. Possible values are `Sequential_tag`,
|
||
|
`Parallel_tag`, and `Parallel_if_available_tag`.
|
||
|
\tparam PointRange is a model of `Range`. The value type of
|
||
|
its iterator is the key type of the named parameter `point_map`.
|
||
|
|
||
|
\param points input point range.
|
||
|
\param k number of neighbors
|
||
|
\param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
|
||
|
|
||
|
\cgalNamedParamsBegin
|
||
|
\cgalParamNBegin{point_map}
|
||
|
\cgalParamDescription{a property map associating points to the elements of the point set `points`}
|
||
|
\cgalParamType{a model of `ReadablePropertyMap` whose key type is the value type
|
||
|
of the iterator of `PointRange` and whose value type is `geom_traits::Point_3`}
|
||
|
\cgalParamDefault{`CGAL::Identity_property_map<geom_traits::Point_3>`}
|
||
|
\cgalParamNEnd
|
||
|
|
||
|
\cgalParamNBegin{normal_map}
|
||
|
\cgalParamDescription{a property map associating normals to the elements of the point set `points`}
|
||
|
\cgalParamType{a model of `WritablePropertyMap` whose key type is the value type
|
||
|
of the iterator of `PointRange` and whose value type is `geom_traits::Vector_3`}
|
||
|
\cgalParamNEnd
|
||
|
|
||
|
\cgalParamNBegin{neighbor_radius}
|
||
|
\cgalParamDescription{the spherical neighborhood radius}
|
||
|
\cgalParamType{floating scalar value}
|
||
|
\cgalParamDefault{`0` (no limit)}
|
||
|
\cgalParamExtra{If provided, the neighborhood of a query point is computed with a fixed spherical
|
||
|
radius instead of a fixed number of neighbors. In that case, the parameter
|
||
|
`k` is used as a limit on the number of points returned by each spherical
|
||
|
query (to avoid overly large number of points in high density areas).}
|
||
|
\cgalParamNEnd
|
||
|
|
||
|
\cgalParamNBegin{degree_fitting}
|
||
|
\cgalParamDescription{the degree of fitting}
|
||
|
\cgalParamType{unsigned int}
|
||
|
\cgalParamDefault{`2`}
|
||
|
\cgalParamExtra{see `CGAL::Monge_via_jet_fitting`}
|
||
|
\cgalParamNEnd
|
||
|
|
||
|
\cgalParamNBegin{svd_traits}
|
||
|
\cgalParamDescription{the linear algebra algorithm used in the class `CGAL::Monge_via_jet_fitting`}
|
||
|
\cgalParamType{a class fitting the requirements of `CGAL::Monge_via_jet_fitting`}
|
||
|
\cgalParamDefault{If \ref thirdpartyEigen "Eigen" 3.2 (or greater) is available
|
||
|
and `CGAL_EIGEN3_ENABLED` is defined, then `CGAL::Eigen_svd` is used.}
|
||
|
\cgalParamNEnd
|
||
|
|
||
|
\cgalParamNBegin{callback}
|
||
|
\cgalParamDescription{a mechanism to get feedback on the advancement of the algorithm
|
||
|
while it's running and to interrupt it if needed}
|
||
|
\cgalParamType{an instance of `std::function<bool(double)>`.}
|
||
|
\cgalParamDefault{unused}
|
||
|
\cgalParamExtra{It is called regularly when the
|
||
|
algorithm is running: the current advancement (between 0. and
|
||
|
1.) is passed as parameter. If it returns `true`, then the
|
||
|
algorithm continues its execution normally; if it returns
|
||
|
`false`, the algorithm is stopped and the remaining normals are left unchanged.}
|
||
|
\cgalParamExtra{The callback will be copied and therefore needs to be lightweight.}
|
||
|
\cgalParamExtra{When `CGAL::Parallel_tag` is used, the `callback` mechanism is called asynchronously
|
||
|
on a separate thread and shouldn't access or modify the variables that are parameters of the algorithm.}
|
||
|
\cgalParamNEnd
|
||
|
|
||
|
\cgalParamNBegin{geom_traits}
|
||
|
\cgalParamDescription{an instance of a geometric traits class}
|
||
|
\cgalParamType{a model of `Kernel`}
|
||
|
\cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
|
||
|
\cgalParamNEnd
|
||
|
\cgalNamedParamsEnd
|
||
|
*/
|
||
|
template <typename ConcurrencyTag,
|
||
|
typename PointRange,
|
||
|
typename NamedParameters
|
||
|
>
|
||
|
void
|
||
|
jet_estimate_normals(
|
||
|
PointRange& points,
|
||
|
unsigned int k,
|
||
|
const NamedParameters& np)
|
||
|
{
|
||
|
using parameters::choose_parameter;
|
||
|
using parameters::get_parameter;
|
||
|
|
||
|
CGAL_TRACE("Calls jet_estimate_normals()\n");
|
||
|
|
||
|
// basic geometric types
|
||
|
typedef typename PointRange::iterator iterator;
|
||
|
typedef typename iterator::value_type value_type;
|
||
|
typedef typename CGAL::GetPointMap<PointRange, NamedParameters>::type PointMap;
|
||
|
typedef typename Point_set_processing_3::GetNormalMap<PointRange, NamedParameters>::type NormalMap;
|
||
|
typedef typename Point_set_processing_3::GetK<PointRange, NamedParameters>::Kernel Kernel;
|
||
|
typedef typename Kernel::FT FT;
|
||
|
typedef typename GetSvdTraits<NamedParameters>::type SvdTraits;
|
||
|
|
||
|
CGAL_static_assertion_msg(!(boost::is_same<NormalMap,
|
||
|
typename Point_set_processing_3::GetNormalMap<PointRange, NamedParameters>::NoMap>::value),
|
||
|
"Error: no normal map");
|
||
|
CGAL_static_assertion_msg(!(boost::is_same<SvdTraits,
|
||
|
typename GetSvdTraits<NamedParameters>::NoTraits>::value),
|
||
|
"Error: no SVD traits");
|
||
|
|
||
|
PointMap point_map = choose_parameter<PointMap>(get_parameter(np, internal_np::point_map));
|
||
|
NormalMap normal_map = choose_parameter<NormalMap>(get_parameter(np, internal_np::normal_map));
|
||
|
unsigned int degree_fitting = choose_parameter(get_parameter(np, internal_np::degree_fitting), 2);
|
||
|
FT neighbor_radius = choose_parameter(get_parameter(np, internal_np::neighbor_radius), FT(0));
|
||
|
|
||
|
const std::function<bool(double)>& callback = choose_parameter(get_parameter(np, internal_np::callback),
|
||
|
std::function<bool(double)>());
|
||
|
|
||
|
// types for K nearest neighbors search structure
|
||
|
typedef Point_set_processing_3::internal::Neighbor_query<Kernel, PointRange&, PointMap> Neighbor_query;
|
||
|
|
||
|
// precondition: at least one element in the container.
|
||
|
// to fix: should have at least three distinct points
|
||
|
// but this is costly to check
|
||
|
CGAL_point_set_processing_precondition(points.begin() != points.end());
|
||
|
|
||
|
// precondition: at least 2 nearest neighbors
|
||
|
CGAL_point_set_processing_precondition(k >= 2 || neighbor_radius > FT(0));
|
||
|
|
||
|
std::size_t memory = CGAL::Memory_sizer().virtual_size(); CGAL_TRACE(" %ld Mb allocated\n", memory>>20);
|
||
|
CGAL_TRACE(" Creates KD-tree\n");
|
||
|
|
||
|
Neighbor_query neighbor_query (points, point_map);
|
||
|
|
||
|
memory = CGAL::Memory_sizer().virtual_size(); CGAL_TRACE(" %ld Mb allocated\n", memory>>20);
|
||
|
CGAL_TRACE(" Computes normals\n");
|
||
|
|
||
|
std::size_t nb_points = points.size();
|
||
|
|
||
|
Point_set_processing_3::internal::Callback_wrapper<ConcurrencyTag>
|
||
|
callback_wrapper (callback, nb_points);
|
||
|
|
||
|
CGAL::for_each<ConcurrencyTag>
|
||
|
(points,
|
||
|
[&](value_type& vt)
|
||
|
{
|
||
|
if (callback_wrapper.interrupted())
|
||
|
return false;
|
||
|
|
||
|
put (normal_map, vt,
|
||
|
CGAL::internal::jet_estimate_normal<SvdTraits>
|
||
|
(get(point_map, vt), neighbor_query, k, neighbor_radius, degree_fitting));
|
||
|
++ callback_wrapper.advancement();
|
||
|
|
||
|
return true;
|
||
|
});
|
||
|
|
||
|
callback_wrapper.join();
|
||
|
|
||
|
memory = CGAL::Memory_sizer().virtual_size(); CGAL_TRACE(" %ld Mb allocated\n", memory>>20);
|
||
|
CGAL_TRACE("End of jet_estimate_normals()\n");
|
||
|
}
|
||
|
|
||
|
|
||
|
/// \cond SKIP_IN_MANUAL
|
||
|
// variant with default NP
|
||
|
template <typename ConcurrencyTag,
|
||
|
typename PointRange>
|
||
|
void
|
||
|
jet_estimate_normals(
|
||
|
PointRange& points,
|
||
|
unsigned int k) ///< number of neighbors.
|
||
|
{
|
||
|
jet_estimate_normals<ConcurrencyTag>
|
||
|
(points, k, CGAL::Point_set_processing_3::parameters::all_default(points));
|
||
|
}
|
||
|
/// \endcond
|
||
|
|
||
|
} //namespace CGAL
|
||
|
|
||
|
#include <CGAL/enable_warnings.h>
|
||
|
|
||
|
#endif // CGAL_JET_ESTIMATE_NORMALS_H
|