dust3d/thirdparty/carve-1.4.0/lib/intersect.cpp

1544 lines
49 KiB
C++
Raw Normal View History

// Begin License:
// Copyright (C) 2006-2008 Tobias Sargeant (tobias.sargeant@gmail.com).
// All rights reserved.
//
// This file is part of the Carve CSG Library (http://carve-csg.com/)
//
// This file may be used under the terms of the GNU General Public
// License version 2.0 as published by the Free Software Foundation
// and appearing in the file LICENSE.GPL2 included in the packaging of
// this file.
//
// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE.
// End:
#if defined(HAVE_CONFIG_H)
# include <carve_config.h>
#endif
#include <carve/csg.hpp>
#include <carve/pointset.hpp>
#include <carve/polyline.hpp>
#include <list>
#include <set>
#include <iostream>
#include <algorithm>
#include "csg_detail.hpp"
#include "csg_data.hpp"
#include "intersect_debug.hpp"
#include "intersect_common.hpp"
#include "intersect_classify_common.hpp"
#include "csg_collector.hpp"
#include <carve/timing.hpp>
#include <carve/colour.hpp>
typedef carve::poly::Polyhedron poly_t;
carve::csg::VertexPool::VertexPool() {
}
carve::csg::VertexPool::~VertexPool() {
}
void carve::csg::VertexPool::reset() {
pool.clear();
}
poly_t::vertex_t *carve::csg::VertexPool::get(const carve::geom3d::Vector &v) {
if (!pool.size() || pool.back().size() == blocksize) {
pool.push_back(std::vector<poly_t::vertex_t>());
pool.back().reserve(blocksize);
}
pool.back().push_back(poly_t::vertex_t(v));
return &pool.back().back();
}
bool carve::csg::VertexPool::inPool(const poly_t::vertex_t *v) const {
for (pool_t::const_iterator i = pool.begin(); i != pool.end(); ++i) {
if (v >= &(i->front()) && v <= &(i->back())) return true;
}
return false;
}
#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
void writePLY(std::string &out_file, const carve::point::PointSet *points, bool ascii);
void writePLY(std::string &out_file, const carve::line::PolylineSet *lines, bool ascii);
void writePLY(std::string &out_file, const carve::poly::Polyhedron *poly, bool ascii);
static carve::poly::Polyhedron *faceLoopsToPolyhedron(const carve::csg::FaceLoopList &fl) {
std::vector<carve::poly::Polyhedron::face_t > faces;
faces.reserve(fl.size());
for (carve::csg::FaceLoop *f = fl.head; f; f = f->next) {
faces.push_back(carve::poly::Polyhedron::face_t());
faces.back().init(f->orig_face, f->vertices, false);
}
carve::poly::Polyhedron *poly = new carve::poly::Polyhedron(faces);
return poly;
}
#endif
namespace {
/**
* \brief Sort a range [\a beg, \a end) of vertices in order of increasing dot product of vertex - \a base on \dir.
*
* @tparam[in] T a forward iterator type.
* @param[in] dir The direction in which to sort vertices.
* @param[in] base
* @param[in] beg The start of the vertex range to sort.
* @param[in] end The end of the vertex range to sort.
* @param[out] out The sorted vertex result.
* @param[in] size_hint A hint regarding the size of the output
* vector (to avoid needing to be able to calculate \a
* end - \a beg).
*/
template<typename T>
void orderVertices(const carve::geom3d::Vector &dir, const carve::geom3d::Vector &base,
T beg, const T end, std::vector<const poly_t::vertex_t *> &out,
size_t size_hint = 1) {
typedef std::vector<std::pair<double, const poly_t::vertex_t *> > DVVector;
std::vector<std::pair<double, const poly_t::vertex_t *> > ordered_vertices;
ordered_vertices.reserve(size_hint);
for (; beg != end; ++beg) {
const poly_t::vertex_t *v = (*beg);
ordered_vertices.push_back(std::make_pair(carve::geom::dot(v->v - base, dir), v));
}
std::sort(ordered_vertices.begin(), ordered_vertices.end());
out.clear();
out.reserve(ordered_vertices.size());
for (DVVector::const_iterator
i = ordered_vertices.begin(), e = ordered_vertices.end();
i != e;
++i) {
out.push_back((*i).second);
}
}
/**
*
*
* @param dir
* @param base
* @param beg
* @param end
*/
template<typename T>
void selectOrderingProjection(carve::geom3d::Vector &dir, carve::geom3d::Vector &base,
T beg, const T end) {
double dx, dy, dz;
const poly_t::vertex_t *min_x, *min_y, *min_z, *max_x, *max_y, *max_z;
if (beg == end) return;
min_x = max_x = min_y = max_y = min_z = max_z = *beg++;
for (; beg != end; ++beg) {
if (min_x->v.x > (*beg)->v.x) min_x = *beg;
if (min_y->v.y > (*beg)->v.y) min_y = *beg;
if (min_z->v.z > (*beg)->v.z) min_z = *beg;
if (max_x->v.x < (*beg)->v.x) max_x = *beg;
if (max_y->v.y < (*beg)->v.y) max_y = *beg;
if (max_z->v.z < (*beg)->v.z) max_z = *beg;
}
dx = max_x->v.x - min_x->v.x;
dy = max_y->v.y - min_y->v.y;
dz = max_z->v.z - min_z->v.z;
if (dx > dy) {
if (dx > dz) {
dir = max_x->v - min_x->v; base = min_x->v;
} else {
dir = max_z->v - min_z->v; base = min_z->v;
}
} else {
if (dy > dz) {
dir = max_y->v - min_y->v; base = min_y->v;
} else {
dir = max_z->v - min_z->v; base = min_z->v;
}
}
}
}
namespace {
void dump_octree_stats(std::ostream &out, carve::csg::Octree::Node *node, size_t depth, std::string indent = "") {
if (node->is_leaf) {
out
<< indent
<< node << "." << depth << " "
<< node->faces.size() << " faces "
<< node->edges.size() << " edges "
<< node->vertices.size() << " vertices"
<< std::endl;
} else {
out
<< indent
<< node << "." << depth
<< std::endl;
for (size_t i = 0; i < 8; ++i) {
dump_octree_stats(out, node->children[i], depth+1, indent + " ");
}
}
}
struct dump_data {
const poly_t::vertex_t *i_pt;
carve::csg::IObj i_src;
carve::csg::IObj i_tgt;
dump_data(const poly_t::vertex_t *_i_pt,
carve::csg::IObj _i_src,
carve::csg::IObj _i_tgt) : i_pt(_i_pt), i_src(_i_src), i_tgt(_i_tgt) {
}
};
struct dump_sort {
bool operator()(const dump_data &a, const dump_data &b) const {
if (a.i_pt->v.x < b.i_pt->v.x) return true;
if (a.i_pt->v.x > b.i_pt->v.x) return false;
if (a.i_pt->v.y < b.i_pt->v.y) return true;
if (a.i_pt->v.y > b.i_pt->v.y) return false;
if (a.i_pt->v.z < b.i_pt->v.z) return true;
if (a.i_pt->v.z > b.i_pt->v.z) return false;
return false;
}
};
void dump_intersections(std::ostream &out, carve::csg::Intersections &csg_intersections) {
std::vector<dump_data> temp;
for (carve::csg::Intersections::const_iterator
i = csg_intersections.begin(),
ie = csg_intersections.end();
i != ie;
++i) {
const carve::csg::IObj &i_src = ((*i).first);
for (carve::csg::Intersections::mapped_type::const_iterator
j = (*i).second.begin(),
je = (*i).second.end();
j != je;
++j) {
const carve::csg::IObj &i_tgt = ((*j).first);
const poly_t::vertex_t *i_pt = ((*j).second);
temp.push_back(dump_data(i_pt, i_src, i_tgt));
}
}
std::sort(temp.begin(), temp.end(), dump_sort());
for (size_t i = 0; i < temp.size(); ++i) {
const carve::csg::IObj &i_src = temp[i].i_src;
const carve::csg::IObj &i_tgt = temp[i].i_tgt;
out
<< "INTERSECTION: " << temp[i].i_pt << " (" << temp[i].i_pt->v << ") "
<< "is " << i_src << ".." << i_tgt << std::endl;
}
#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
std::vector<carve::geom3d::Vector> vertices;
for (carve::csg::Intersections::const_iterator
i = csg_intersections.begin(),
ie = csg_intersections.end();
i != ie;
++i) {
for (carve::csg::Intersections::mapped_type::const_iterator
j = (*i).second.begin(),
je = (*i).second.end();
j != je;
++j) {
const poly_t::vertex_t *i_pt = ((*j).second);
vertices.push_back(i_pt->v);
}
}
carve::point::PointSet points(vertices);
std::string outf("/tmp/intersection-points.ply");
::writePLY(outf, &points, true);
#endif
}
}
bool carve::csg::CSG::Hooks::hasHook(unsigned hook_num) {
return hooks[hook_num].size() > 0;
}
void carve::csg::CSG::Hooks::intersectionVertex(const poly_t::vertex_t *vertex,
const IObjPairSet &intersections) {
for (std::list<Hook *>::iterator j = hooks[INTERSECTION_VERTEX_HOOK].begin();
j != hooks[INTERSECTION_VERTEX_HOOK].end();
++j) {
(*j)->intersectionVertex(vertex, intersections);
}
}
void carve::csg::CSG::Hooks::processOutputFace(std::vector<poly_t::face_t *> &faces,
const poly_t::face_t *orig_face,
bool flipped) {
for (std::list<Hook *>::iterator j = hooks[PROCESS_OUTPUT_FACE_HOOK].begin();
j != hooks[PROCESS_OUTPUT_FACE_HOOK].end();
++j) {
(*j)->processOutputFace(faces, orig_face, flipped);
}
}
void carve::csg::CSG::Hooks::resultFace(const poly_t::face_t *new_face,
const poly_t::face_t *orig_face,
bool flipped) {
for (std::list<Hook *>::iterator j = hooks[RESULT_FACE_HOOK].begin();
j != hooks[RESULT_FACE_HOOK].end();
++j) {
(*j)->resultFace(new_face, orig_face, flipped);
}
}
void carve::csg::CSG::Hooks::registerHook(Hook *hook, unsigned hook_bits) {
for (unsigned i = 0; i < HOOK_MAX; ++i) {
if (hook_bits & (1U << i)) {
hooks[i].push_back(hook);
}
}
}
void carve::csg::CSG::Hooks::unregisterHook(Hook *hook) {
for (unsigned i = 0; i < HOOK_MAX; ++i) {
hooks[i].erase(std::remove(hooks[i].begin(), hooks[i].end(), hook), hooks[i].end());
}
}
void carve::csg::CSG::Hooks::reset() {
for (unsigned i = 0; i < HOOK_MAX; ++i) {
for (std::list<Hook *>::iterator j = hooks[i].begin(); j != hooks[i].end(); ++j) {
delete (*j);
}
hooks[i].clear();
}
}
carve::csg::CSG::Hooks::Hooks() : hooks() {
hooks.resize(HOOK_MAX);
}
carve::csg::CSG::Hooks::~Hooks() {
reset();
}
void carve::csg::CSG::makeVertexIntersections() {
static carve::TimingName FUNC_NAME("CSG::makeVertexIntersections()");
carve::TimingBlock block(FUNC_NAME);
vertex_intersections.clear();
for (Intersections::const_iterator
i = intersections.begin(),
ie = intersections.end();
i != ie;
++i) {
const IObj &i_src = ((*i).first);
for (Intersections::mapped_type::const_iterator
j = (*i).second.begin(),
je = (*i).second.end();
j != je;
++j) {
const IObj &i_tgt = ((*j).first);
const poly_t::vertex_t *i_pt = ((*j).second);
vertex_intersections[i_pt].insert(std::make_pair(i_src, i_tgt));
}
}
}
static const poly_t::vertex_t *chooseWeldPoint(
const carve::csg::detail::VSet &equivalent,
carve::csg::VertexPool &vertex_pool) {
// XXX: choose a better weld point.
if (!equivalent.size()) return NULL;
for (carve::csg::detail::VSet::const_iterator
i = equivalent.begin(), e = equivalent.end();
i != e;
++i) {
if (!vertex_pool.inPool((*i))) return (*i);
}
return *equivalent.begin();
}
static const poly_t::vertex_t *weld(
const carve::csg::detail::VSet &equivalent,
carve::csg::VertexIntersections &vertex_intersections,
carve::csg::VertexPool &vertex_pool) {
const poly_t::vertex_t *weld_point = chooseWeldPoint(equivalent, vertex_pool);
#if defined(CARVE_DEBUG)
std::cerr << "weld: " << equivalent.size() << " vertices ( ";
for (carve::csg::detail::VSet::const_iterator
i = equivalent.begin(), e = equivalent.end();
i != e;
++i) {
const poly_t::vertex_t *v = (*i);
std::cerr << " " << v;
}
std::cerr << ") to " << weld_point << std::endl;
#endif
if (!weld_point) return NULL;
carve::csg::VertexIntersections::mapped_type &weld_tgt = (vertex_intersections[weld_point]);
for (carve::csg::detail::VSet::const_iterator
i = equivalent.begin(), e = equivalent.end();
i != e;
++i) {
const poly_t::vertex_t *v = (*i);
if (v != weld_point) {
carve::csg::VertexIntersections::iterator j = vertex_intersections.find(v);
if (j != vertex_intersections.end()) {
weld_tgt.insert((*j).second.begin(), (*j).second.end());
vertex_intersections.erase(j);
}
}
}
return weld_point;
}
void carve::csg::CSG::groupIntersections() {
static carve::TimingName GROUP_INTERSECTONS("groupIntersections()");
carve::TimingBlock block(GROUP_INTERSECTONS);
std::vector<const poly_t::vertex_t *> vertices;
detail::VVSMap graph;
#if defined(CARVE_DEBUG)
std::cerr << "groupIntersections()" << ": vertex_intersections.size()==" << vertex_intersections.size() << std::endl;
#endif
vertices.reserve(vertex_intersections.size());
for (carve::csg::VertexIntersections::const_iterator
i = vertex_intersections.begin(),
e = vertex_intersections.end();
i != e;
++i)
{
vertices.push_back((*i).first);
}
carve::geom3d::AABB aabb;
aabb.fit(vertices.begin(), vertices.end(), carve::poly::vec_adapt_vertex_ptr());
Octree vertex_intersections_octree;
vertex_intersections_octree.setBounds(aabb);
vertex_intersections_octree.addVertices(vertices);
std::vector<const poly_t::vertex_t *> out;
for (size_t i = 0, l = vertices.size(); i != l; ++i) {
// let's find all the vertices near this one.
out.clear();
vertex_intersections_octree.findVerticesNearAllowDupes(vertices[i]->v, out);
for (size_t j = 0; j < out.size(); ++j) {
if (vertices[i] != out[j] && carve::geom::equal(vertices[i]->v, out[j]->v)) {
#if defined(CARVE_DEBUG)
std::cerr << "EQ: " << vertices[i] << "," << out[j] << " " << vertices[i]->v << "," << out[j]->v << std::endl;
#endif
graph[vertices[i]].insert(out[j]);
graph[out[j]].insert(vertices[i]);
}
}
}
detail::VSet visited, open;
while (graph.size()) {
visited.clear();
open.clear();
detail::VVSMap::iterator i = graph.begin();
open.insert((*i).first);
while (open.size()) {
detail::VSet::iterator t = open.begin();
const poly_t::vertex_t *o = (*t);
open.erase(t);
i = graph.find(o);
CARVE_ASSERT(i != graph.end());
visited.insert(o);
for (detail::VVSMap::mapped_type::const_iterator
j = (*i).second.begin(),
je = (*i).second.end();
j != je;
++j) {
if (visited.count((*j)) == 0) {
open.insert((*j));
}
}
graph.erase(i);
}
weld(visited, vertex_intersections, vertex_pool);
}
}
void carve::csg::CSG::intersectingFacePairs(detail::Data &data) {
static carve::TimingName FUNC_NAME("CSG::intersectingFacePairs()");
carve::TimingBlock block(FUNC_NAME);
// iterate over all intersection points.
for (carve::csg::VertexIntersections::const_iterator
i = vertex_intersections.begin(),
ie = vertex_intersections.end();
i != ie;
++i) {
const poly_t::vertex_t *i_pt = ((*i).first);
detail::VFSMap::mapped_type &face_set = (data.fmap_rev[i_pt]);
// for all pairs of intersecting objects at this point
for (carve::csg::VertexIntersections::mapped_type::const_iterator
j = (*i).second.begin(),
je = (*i).second.end();
j != je;
++j) {
const carve::csg::IObj &i_src = ((*j).first);
const carve::csg::IObj &i_tgt = ((*j).second);
// work out the faces involved. this updates fmap_rev.
intersections.facesForObject(i_src, face_set);
intersections.facesForObject(i_tgt, face_set);
// record the intersection with respect to any involved vertex.
if (i_src.obtype == IObj::OBTYPE_VERTEX) data.vmap[i_src.vertex] = i_pt;
if (i_tgt.obtype == IObj::OBTYPE_VERTEX) data.vmap[i_tgt.vertex] = i_pt;
// record the intersection with respect to any involved edge.
if (i_src.obtype == IObj::OBTYPE_EDGE) data.emap[i_src.edge].insert(i_pt);
if (i_tgt.obtype == IObj::OBTYPE_EDGE) data.emap[i_tgt.edge].insert(i_pt);
}
// record the intersection with respect to each face.
for (detail::VFSMap::mapped_type::const_iterator k = face_set.begin(), ke = face_set.end(); k != ke; ++k) {
const poly_t::face_t *f = (*k);
data.fmap[f].insert(i_pt);
}
}
}
void carve::csg::CSG::generateVertexEdgeIntersections(const poly_t *a, const poly_t *b) {
static carve::TimingName FUNC_NAME("CSG::generateVertexEdgeIntersections()");
carve::TimingBlock block(FUNC_NAME);
std::vector<const poly_t::edge_t *> edges_in_b;
for (size_t va_i = 0, va_l = a->vertices.size(); va_i != va_l; ++va_i) {
const poly_t::vertex_t *v = &(a->vertices[va_i]);
if (a->connectivity.vertex_to_face[a->vertexToIndex_fast(v)].size() == 0) {
continue;
}
b->findEdgesNear(v->v, edges_in_b);
// std::cerr << "testing vertex: " << v << " " << v->v << std::endl;
for (size_t eb_i = 0, eb_l = edges_in_b.size(); eb_i != eb_l; ++eb_i) {
const poly_t::edge_t *edge_b = edges_in_b[eb_i];
const poly_t::vertex_t *ev1 = edge_b->v1, *ev2 = edge_b->v2;
// std::cerr << " aganist edge: " << edge_b << " [" << ev1 << "," << ev2 << "] " << ev1->v << " " << ev2->v << std::endl;
if (intersections.intersects(v, edge_b)) {
// std::cerr << " already intersected" << std::endl;
continue;
}
if (std::min(ev1->v.x, ev2->v.x) - carve::EPSILON > v->v.x ||
std::max(ev1->v.x, ev2->v.x) + carve::EPSILON < v->v.x ||
std::min(ev1->v.y, ev2->v.y) - carve::EPSILON > v->v.y ||
std::max(ev1->v.y, ev2->v.y) + carve::EPSILON < v->v.y ||
std::min(ev1->v.z, ev2->v.z) - carve::EPSILON > v->v.z ||
std::max(ev1->v.z, ev2->v.z) + carve::EPSILON < v->v.z) {
continue;
}
if (distance2(ev1->v, v->v) < carve::EPSILON2) {
// vertex-vertex intersection
intersections.record(IObj(ev1), IObj(v), v);
// std::cerr << "INTERSECT(VV) " << v << "-" << ev1 << std::endl;
} else if (distance2(ev2->v, v->v) < carve::EPSILON2) {
// vertex-vertex intersection
intersections.record(IObj(ev2), IObj(v), v);
// std::cerr << "INTERSECT(VV) " << v << "-" << ev2 << std::endl;
} else {
double a = cross(ev2->v - ev1->v, v->v - ev1->v).length2();
double b = (ev2->v - ev1->v).length2();
if (a < b * carve::EPSILON2) {
// vertex-edge intersection
intersections.record(IObj(edge_b), IObj(v), v);
// std::cerr << "INTERSECT(VE) " << v << "-" << edge_b << std::endl;
}
}
}
}
}
void carve::csg::CSG::generateEdgeEdgeIntersections(const poly_t *a, const poly_t *b) {
static carve::TimingName FUNC_NAME("CSG::generateEdgeEdgeIntersections()");
carve::TimingBlock block(FUNC_NAME);
std::vector<const poly_t::edge_t *> edges_in_b;
for (size_t ea_i = 0, ea_l = a->edges.size(); ea_i != ea_l; ++ea_i) {
const poly_t::edge_t *edge_a = &a->edges[ea_i];
const poly_t::vertex_t *v1 = edge_a->v1, *v2 = edge_a->v2;
b->findEdgesNear(*edge_a, edges_in_b);
for (size_t eb_i = 0, eb_l = edges_in_b.size(); eb_i != eb_l; ++eb_i) {
const poly_t::edge_t *edge_b = edges_in_b[eb_i];
const poly_t::vertex_t *v3 = edge_b->v1, *v4 = edge_b->v2;
if (intersections.intersects(edge_a, edge_b)) {
continue;
}
if (std::max(v3->v.x, v4->v.x) + carve::EPSILON < std::min(v1->v.x, v2->v.x) - carve::EPSILON ||
std::max(v1->v.x, v2->v.x) + carve::EPSILON < std::min(v3->v.x, v4->v.x) - carve::EPSILON) continue;
if (std::max(v3->v.y, v4->v.y) + carve::EPSILON < std::min(v1->v.y, v2->v.y) - carve::EPSILON ||
std::max(v1->v.y, v2->v.y) + carve::EPSILON < std::min(v3->v.y, v4->v.y) - carve::EPSILON) continue;
if (std::max(v3->v.z, v4->v.z) + carve::EPSILON < std::min(v1->v.z, v2->v.z) - carve::EPSILON ||
std::max(v1->v.z, v2->v.z) + carve::EPSILON < std::min(v3->v.z, v4->v.z) - carve::EPSILON) continue;
carve::geom3d::Vector p1, p2;
double mu1, mu2;
switch (carve::geom3d::rayRayIntersection(carve::geom3d::Ray(v2->v - v1->v, v1->v),
carve::geom3d::Ray(v4->v - v3->v, v3->v),
p1, p2, mu1, mu2)) {
case RR_INTERSECTION: {
// edges intersect
carve::geom3d::Vector p1, p2;
double mu1, mu2;
// std::cerr << "edge intersect: " << v1 << " " << v2 << " " << v3 << " " << v4 << std::endl;
if (!carve::geom3d::rayRayIntersection(carve::geom3d::Ray(v2->v - v1->v, v1->v),
carve::geom3d::Ray(v4->v - v3->v, v3->v),
p1, p2, mu1, mu2) ||
!carve::geom::equal(p1, p2)) {
continue;
}
if (mu1 >= 0.0 && mu1 <= 1.0 && mu2 >= 0.0 && mu2 <= 1.0) {
IObj o1, o2;
const poly_t::vertex_t *p;
o1 = IObj(edge_a);
o2 = IObj(edge_b);
p = vertex_pool.get((p1 + p2) / 2.0);
intersections.record(o1, o2, p);
}
}
case RR_PARALLEL: {
// edges parallel. any intersection of this type should have
// been handled by generateVertexEdgeIntersections().
break;
}
case RR_DEGENERATE: {
throw carve::exception("degenerate edge");
break;
}
case RR_NO_INTERSECTION: {
break;
}
}
}
}
}
void carve::csg::CSG::generateEdgeFaceIntersections(const poly_t *a, const poly_t *b) {
static carve::TimingName FUNC_NAME("CSG::generateEdgeFaceIntersections()");
carve::TimingBlock block(FUNC_NAME);
detail::FSet if_e;
std::vector<const poly_t::edge_t *> edges_in_b;
for (size_t fa_i = 0, fa_l = a->faces.size(); fa_i != fa_l; ++fa_i) {
const poly_t::face_t &face_a = a->faces[fa_i];
b->findEdgesNear(face_a, edges_in_b);
// vertex-face intersections.
for (size_t eb_i = 0, eb_l = edges_in_b.size(); eb_i != eb_l; ++eb_i) {
const poly_t::edge_t *edge_b = (edges_in_b[eb_i]);
if (edge_b == NULL) continue;
double d1 = carve::geom::distance(face_a.plane_eqn, edge_b->v1->v);
double d2 = carve::geom::distance(face_a.plane_eqn, edge_b->v2->v);
// shortcircuit: does the edge cross the face?
if (std::max(d1, d2) < -carve::EPSILON || std::min(d1, d2) > carve::EPSILON) { edges_in_b[eb_i] = NULL; continue; }
if (fabs(d1) < carve::EPSILON &&
!intersections.intersects(edge_b->v1, &face_a) &&
face_a.containsPoint(edge_b->v1->v)) {
intersections.record(edge_b->v1, &face_a, edge_b->v1);
for (size_t eb_j = eb_i + 1; eb_j != eb_l; ++eb_j) {
if (edges_in_b[eb_j] &&
(edges_in_b[eb_j]->v1 == edge_b->v1 ||
edges_in_b[eb_j]->v2 == edge_b->v1)) edges_in_b[eb_j] = NULL;
}
edges_in_b[eb_i] = NULL;
}
if (fabs(d2) < carve::EPSILON &&
!intersections.intersects(edge_b->v2, &face_a) &&
face_a.containsPoint(edge_b->v2->v)) {
intersections.record(edge_b->v2, &face_a, edge_b->v2);
for (size_t eb_j = eb_i + 1; eb_j != eb_l; ++eb_j) {
if (edges_in_b[eb_j] &&
(edges_in_b[eb_j]->v1 == edge_b->v2 ||
edges_in_b[eb_j]->v2 == edge_b->v2)) edges_in_b[eb_j] = NULL;
}
edges_in_b[eb_i] = NULL;
}
}
// edge-face intersections.
for (size_t eb_i = 0, eb_l = edges_in_b.size(); eb_i != eb_l; ++eb_i) {
const poly_t::edge_t *edge_b = (edges_in_b[eb_i]);
if (edge_b == NULL) continue;
if (intersections.intersects(edge_b, &face_a)) continue;
carve::geom3d::Vector p;
if (face_a.simpleLineSegmentIntersection(carve::geom3d::LineSegment(edge_b->v1->v, edge_b->v2->v), p)) {
intersections.record(edge_b, &face_a, vertex_pool.get(p));
}
}
}
}
void carve::csg::CSG::determinePotentiallyInteractingOctreeNodes(const poly_t *a, const poly_t *b) {
}
void carve::csg::CSG::generateIntersections(const poly_t *a, const poly_t *b) {
generateVertexEdgeIntersections(a, b);
generateVertexEdgeIntersections(b, a);
#if defined(CARVE_DEBUG)
std::cerr << "generateEdgeEdgeIntersections" << std::endl;
#endif
generateEdgeEdgeIntersections(a, b);
#if defined(CARVE_DEBUG)
std::cerr << "generateEdgeFaceIntersections" << std::endl;
#endif
generateEdgeFaceIntersections(a, b);
generateEdgeFaceIntersections(b, a);
#if defined(CARVE_DEBUG)
std::cerr << "makeVertexIntersections" << std::endl;
#endif
makeVertexIntersections();
#if defined(CARVE_DEBUG)
std::cerr << " intersections.size() " << intersections.size() << std::endl;
map_histogram(std::cerr, intersections);
std::cerr << " vertex_intersections.size() " << vertex_intersections.size() << std::endl;
map_histogram(std::cerr, vertex_intersections);
#endif
#if defined(CARVE_DEBUG) && defined(DEBUG_DRAW_INTERSECTIONS)
HOOK(drawIntersections(vertex_intersections););
#endif
#if defined(CARVE_DEBUG)
// std::cerr << "groupIntersections" << std::endl;
#endif
//groupIntersections();
#if defined(CARVE_DEBUG)
std::cerr << " intersections.size() " << intersections.size() << std::endl;
std::cerr << " vertex_intersections.size() " << vertex_intersections.size() << std::endl;
#endif
// notify about intersections.
if (hooks.hasHook(Hooks::INTERSECTION_VERTEX_HOOK)) {
for (VertexIntersections::const_iterator i = vertex_intersections.begin();
i != vertex_intersections.end();
++i) {
hooks.intersectionVertex((*i).first, (*i).second);
}
}
// from here on, only vertex_intersections is used for intersection
// information.
// intersections still contains the vertex_to_face map. maybe that
// should be moved out into another class.
static_cast<Intersections::super>(intersections).clear();
}
carve::csg::CSG::CSG() {
}
/**
* \brief For each intersected edge, decompose into a set of vertex pairs representing an ordered set of edge fragments.
*
* @tparam[in,out] data Internal intersection data. data.emap is used to produce data.divided_edges.
*/
void carve::csg::CSG::divideIntersectedEdges(detail::Data &data) {
static carve::TimingName FUNC_NAME("CSG::divideIntersectedEdges()");
carve::TimingBlock block(FUNC_NAME);
for (detail::EVSMap::const_iterator i = data.emap.begin(), ei = data.emap.end(); i != ei; ++i) {
const poly_t::edge_t *edge = (*i).first;
const detail::EVSMap::mapped_type &vertices = (*i).second;
std::vector<const poly_t::vertex_t *> &verts = data.divided_edges[edge];
orderVertices(edge->v2->v - edge->v1->v, edge->v1->v,
vertices.begin(), vertices.end(),
verts, vertices.size());
}
}
carve::csg::CSG::~CSG() {
}
void carve::csg::CSG::divideEdges(const std::vector<poly_t::edge_t > &edges,
const poly_t *poly,
detail::Data &data) {
static carve::TimingName FUNC_NAME("CSG::divideEdges()");
carve::TimingBlock block(FUNC_NAME);
for (std::vector<poly_t::edge_t >::const_iterator
i = edges.begin(), e = edges.end();
i != e;
++i) {
const poly_t::edge_t *edge = (&(*i));
detail::EVSMap::const_iterator ei = data.emap.find(edge);
if (ei != data.emap.end()) {
const detail::EVSMap::mapped_type &vertices = ((*ei).second);
std::vector<const poly_t::vertex_t *> &verts = (data.divided_edges[edge]);
orderVertices(edge->v2->v - edge->v1->v, edge->v1->v,
vertices.begin(), vertices.end(),
verts, vertices.size());
}
}
}
void carve::csg::CSG::makeFaceEdges(carve::csg::EdgeClassification &eclass,
detail::Data &data) {
detail::FSet face_b_set;
for (detail::FVSMap::const_iterator
i = data.fmap.begin(), ie = data.fmap.end();
i != ie;
++i) {
const poly_t::face_t *face_a = (*i).first;
const detail::FVSMap::mapped_type &face_a_intersections = ((*i).second);
face_b_set.clear();
// work out the set of faces from the opposing polyhedron that intersect face_a.
for (detail::FVSMap::mapped_type::const_iterator
j = face_a_intersections.begin(), je = face_a_intersections.end();
j != je;
++j) {
for (detail::VFSMap::mapped_type::const_iterator
k = data.fmap_rev[*j].begin(), ke = data.fmap_rev[*j].end();
k != ke;
++k) {
const poly_t::face_t *face_b = (*k);
if (face_a != face_b && face_b->owner != face_a->owner) {
face_b_set.insert(face_b);
}
}
}
// run through each intersecting face.
for (detail::FSet::const_iterator
j = face_b_set.begin(), je = face_b_set.end();
j != je;
++j) {
const poly_t::face_t *face_b = (*j);
const detail::FVSMap::mapped_type &face_b_intersections = (data.fmap[face_b]);
std::vector<const poly_t::vertex_t *> vertices;
vertices.reserve(std::min(face_a_intersections.size(), face_b_intersections.size()));
// record the points of intersection between face_a and face_b
std::set_intersection(face_a_intersections.begin(),
face_a_intersections.end(),
face_b_intersections.begin(),
face_b_intersections.end(),
std::back_inserter(vertices));
#if defined(CARVE_DEBUG)
std::cerr << "face pair: "
<< face_a << ":" << face_b
<< " N(verts) " << vertices.size() << std::endl;
for (std::vector<const poly_t::vertex_t *>::const_iterator i = vertices.begin(), e = vertices.end(); i != e; ++i) {
std::cerr << (*i) << " " << (*i)->v << " ("
<< carve::geom::distance(face_a->plane_eqn, (*i)->v) << ","
<< carve::geom::distance(face_b->plane_eqn, (*i)->v) << ")"
<< std::endl;
//CARVE_ASSERT(carve::geom3d::distance(face_a->plane_eqn, *(*i)) < EPSILON);
//CARVE_ASSERT(carve::geom3d::distance(face_b->plane_eqn, *(*i)) < EPSILON);
}
#endif
// if there are two points of intersection, then the added edge is simple to determine.
if (vertices.size() == 2) {
const poly_t::vertex_t *v1 = vertices[0];
const poly_t::vertex_t *v2 = vertices[1];
carve::geom3d::Vector c = (v1->v + v2->v) / 2;
// determine whether the midpoint of the implied edge is contained in face_a and face_b
#if defined(CARVE_DEBUG)
std::cerr << "face_a->nVertices() = " << face_a->nVertices() << " face_a->containsPointInProjection(c) = " << face_a->containsPointInProjection(c) << std::endl;
std::cerr << "face_b->nVertices() = " << face_b->nVertices() << " face_b->containsPointInProjection(c) = " << face_b->containsPointInProjection(c) << std::endl;
#endif
if (face_a->containsPointInProjection(c) && face_b->containsPointInProjection(c)) {
#if defined(CARVE_DEBUG)
std::cerr << "adding edge: " << v1 << "-" << v2 << std::endl;
#if defined(DEBUG_DRAW_FACE_EDGES)
HOOK(drawEdge(v1, v2, 1, 1, 1, 1, 1, 1, 1, 1, 2.0););
#endif
#endif
// record the edge, with class information.
if (v1 > v2) std::swap(v1, v2);
eclass[ordered_edge(v1, v2)] = EC2(EDGE_ON, EDGE_ON);
data.face_split_edges[face_a].insert(std::make_pair(v1, v2));
data.face_split_edges[face_b].insert(std::make_pair(v1, v2));
}
continue;
}
// otherwise, it's more complex.
carve::geom3d::Vector base, dir;
std::vector<const poly_t::vertex_t *> ordered;
// skip coplanar edges. this simplifies the resulting
// mesh. eventually all coplanar face regions of two polyhedra
// must reach a point where they are no longer coplanar (or the
// polyhedra are identical).
if (!facesAreCoplanar(face_a, face_b)) {
// order the intersection vertices (they must lie along a
// vector, as the faces aren't coplanar).
selectOrderingProjection(dir, base, vertices.begin(), vertices.end());
orderVertices(dir, base, vertices.begin(), vertices.end(), ordered, vertices.size());
// for each possible edge in the ordering, test the midpoint,
// and record if it's contained in face_a and face_b.
for (int k = 0, ke = (int)ordered.size() - 1; k < ke; ++k) {
const poly_t::vertex_t *v1 = ordered[k];
const poly_t::vertex_t *v2 = ordered[k + 1];
carve::geom3d::Vector c = (v1->v + v2->v) / 2;
#if defined(CARVE_DEBUG)
std::cerr << "testing edge: " << v1 << "-" << v2 << " at " << c << std::endl;
std::cerr << "a: " << face_a->containsPointInProjection(c) << " b: " << face_b->containsPointInProjection(c) << std::endl;
std::cerr << "face_a->containsPointInProjection(c): " << face_a->containsPointInProjection(c) << std::endl;
std::cerr << "face_b->containsPointInProjection(c): " << face_b->containsPointInProjection(c) << std::endl;
#endif
if (face_a->containsPointInProjection(c) && face_b->containsPointInProjection(c)) {
#if defined(CARVE_DEBUG)
std::cerr << "adding edge: " << v1 << "-" << v2 << std::endl;
#if defined(DEBUG_DRAW_FACE_EDGES)
HOOK(drawEdge(v1, v2, .5, .5, .5, 1, .5, .5, .5, 1, 2.0););
#endif
#endif
// record the edge, with class information.
if (v1 > v2) std::swap(v1, v2);
eclass[ordered_edge(v1, v2)] = EC2(EDGE_ON, EDGE_ON);
data.face_split_edges[face_a].insert(std::make_pair(v1, v2));
data.face_split_edges[face_b].insert(std::make_pair(v1, v2));
}
}
}
}
}
#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
{
V2Set edges;
for (detail::FV2SMap::const_iterator i = data.face_split_edges.begin(); i != data.face_split_edges.end(); ++i) {
edges.insert((*i).second.begin(), (*i).second.end());
}
detail::VSet vertices;
for (V2Set::const_iterator i = edges.begin(); i != edges.end(); ++i) {
vertices.insert((*i).first);
vertices.insert((*i).second);
}
carve::line::PolylineSet intersection_graph;
intersection_graph.vertices.resize(vertices.size());
std::map<const poly_t::vertex_t *, size_t> vmap;
size_t j = 0;
for (detail::VSet::const_iterator i = vertices.begin(); i != vertices.end(); ++i) {
intersection_graph.vertices[j].v = (*i)->v;
vmap[(*i)] = j++;
}
for (V2Set::const_iterator i = edges.begin(); i != edges.end(); ++i) {
size_t line[2];
line[0] = vmap[(*i).first];
line[1] = vmap[(*i).second];
intersection_graph.addPolyline(false, line, line + 2);
}
std::string out("/tmp/intersection-edges.ply");
::writePLY(out, &intersection_graph, true);
}
#endif
}
/**
*
*
* @param fll
*/
static void checkFaceLoopIntegrity(carve::csg::FaceLoopList &fll) {
static carve::TimingName FUNC_NAME("CSG::checkFaceLoopIntegrity()");
carve::TimingBlock block(FUNC_NAME);
std::unordered_map<carve::csg::V2, int, carve::poly::hash_vertex_ptr> counts;
for (carve::csg::FaceLoop *fl = fll.head; fl; fl = fl->next) {
std::vector<const poly_t::vertex_t *> &loop = (fl->vertices);
const poly_t::vertex_t *v1, *v2;
v1 = loop[loop.size() - 1];
for (unsigned i = 0; i < loop.size(); ++i) {
v2 = loop[i];
if (v1 < v2) {
counts[std::make_pair(v1, v2)]++;
} else {
counts[std::make_pair(v2, v1)]--;
}
v1 = v2;
}
}
for (std::unordered_map<carve::csg::V2, int, carve::poly::hash_vertex_ptr>::const_iterator
x = counts.begin(), xe = counts.end(); x != xe; ++x) {
if ((*x).second) {
std::cerr << "FACE LOOP ERROR: " << (*x).first.first << "-" << (*x).first.second << " : " << (*x).second << std::endl;
}
}
}
/**
*
*
* @param a
* @param b
* @param vclass
* @param eclass
* @param a_face_loops
* @param b_face_loops
* @param a_edge_count
* @param b_edge_count
* @param hooks
*/
void carve::csg::CSG::calc(const poly_t *a,
const poly_t *b,
carve::csg::VertexClassification &vclass,
carve::csg::EdgeClassification &eclass,
carve::csg::FaceLoopList &a_face_loops,
carve::csg::FaceLoopList &b_face_loops,
size_t &a_edge_count,
size_t &b_edge_count) {
detail::Data data;
#if defined(CARVE_DEBUG)
std::cerr << "init" << std::endl;
#endif
init();
generateIntersections(a, b);
#if defined(CARVE_DEBUG)
std::cerr << "intersectingFacePairs" << std::endl;
#endif
intersectingFacePairs(data);
#if defined(CARVE_DEBUG)
std::cerr << "emap:" << std::endl;
map_histogram(std::cerr, data.emap);
std::cerr << "fmap:" << std::endl;
map_histogram(std::cerr, data.fmap);
std::cerr << "fmap_rev:" << std::endl;
map_histogram(std::cerr, data.fmap_rev);
#endif
// std::cerr << "removeCoplanarFaces" << std::endl;
// fp_intersections.removeCoplanarFaces();
#if defined(CARVE_DEBUG) && defined(DEBUG_DRAW_OCTREE)
HOOK(drawOctree(a->octree););
HOOK(drawOctree(b->octree););
#endif
#if defined(CARVE_DEBUG)
std::cerr << "divideEdges" << std::endl;
#endif
// divideEdges(a->edges, b, data);
// divideEdges(b->edges, a, data);
divideIntersectedEdges(data);
#if defined(CARVE_DEBUG)
std::cerr << "makeFaceEdges" << std::endl;
#endif
// makeFaceEdges(data.face_split_edges, eclass, data.fmap, data.fmap_rev);
makeFaceEdges(eclass, data);
#if defined(CARVE_DEBUG)
std::cerr << "generateFaceLoops" << std::endl;
#endif
a_edge_count = generateFaceLoops(a, data, a_face_loops);
b_edge_count = generateFaceLoops(b, data, b_face_loops);
#if defined(CARVE_DEBUG)
std::cerr << "generated " << a_edge_count << " edges for poly a" << std::endl;
std::cerr << "generated " << b_edge_count << " edges for poly b" << std::endl;
#endif
#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
{
std::string out("/tmp/a_split.ply");
writePLY(out, faceLoopsToPolyhedron(a_face_loops), false);
}
{
std::string out("/tmp/b_split.ply");
writePLY(out, faceLoopsToPolyhedron(b_face_loops), false);
}
#endif
checkFaceLoopIntegrity(a_face_loops);
checkFaceLoopIntegrity(b_face_loops);
#if defined(CARVE_DEBUG)
std::cerr << "classify" << std::endl;
#endif
// initialize some classification information.
for (std::vector<poly_t::vertex_t>::const_iterator
i = a->vertices.begin(), e = a->vertices.end(); i != e; ++i) {
vclass[map_vertex(data.vmap, &(*i))].cls[0] = POINT_ON;
}
for (std::vector<poly_t::vertex_t>::const_iterator
i = b->vertices.begin(), e = b->vertices.end(); i != e; ++i) {
vclass[map_vertex(data.vmap, &(*i))].cls[1] = POINT_ON;
}
for (VertexIntersections::const_iterator
i = vertex_intersections.begin(), e = vertex_intersections.end(); i != e; ++i) {
vclass[(*i).first] = PC2(POINT_ON, POINT_ON);
}
#if defined(CARVE_DEBUG)
std::cerr << data.divided_edges.size() << " edges are split" << std::endl;
std::cerr << data.face_split_edges.size() << " faces are split" << std::endl;
std::cerr << "poly a: " << a_face_loops.size() << " face loops" << std::endl;
std::cerr << "poly b: " << b_face_loops.size() << " face loops" << std::endl;
#endif
// std::cerr << "OCTREE A:" << std::endl;
// dump_octree_stats(a->octree.root, 0);
// std::cerr << "OCTREE B:" << std::endl;
// dump_octree_stats(b->octree.root, 0);
}
/**
*
*
* @param shared_edges
* @param result_list
* @param shared_edge_ptr
*/
void returnSharedEdges(carve::csg::V2Set &shared_edges,
std::list<poly_t *> &result_list,
carve::csg::V2Set *shared_edge_ptr) {
// need to convert shared edges to point into result
typedef std::map<carve::geom3d::Vector, poly_t::vertex_t *> remap_type;
remap_type remap;
for (std::list<poly_t *>::iterator list_it =
result_list.begin(); list_it != result_list.end(); list_it++) {
poly_t *result = *list_it;
if (result) {
for (std::vector<poly_t::vertex_t>::iterator it =
result->vertices.begin(); it != result->vertices.end(); it++) {
remap.insert(std::make_pair((*it).v, &(*it)));
}
}
}
for (carve::csg::V2Set::iterator it = shared_edges.begin();
it != shared_edges.end(); it++) {
remap_type::iterator first_it = remap.find(((*it).first)->v);
remap_type::iterator second_it = remap.find(((*it).second)->v);
CARVE_ASSERT(first_it != remap.end() && second_it != remap.end());
shared_edge_ptr->insert(std::make_pair(first_it->second, second_it->second));
}
}
/**
*
*
* @param a
* @param b
* @param collector
* @param hooks
* @param shared_edges_ptr
* @param classify_type
*
* @return
*/
poly_t *carve::csg::CSG::compute(const poly_t *a,
const poly_t *b,
carve::csg::CSG::Collector &collector,
carve::csg::V2Set *shared_edges_ptr,
CLASSIFY_TYPE classify_type) {
static carve::TimingName FUNC_NAME("CSG::compute");
carve::TimingBlock block(FUNC_NAME);
VertexClassification vclass;
EdgeClassification eclass;
FLGroupList a_loops_grouped;
FLGroupList b_loops_grouped;
FaceLoopList a_face_loops;
FaceLoopList b_face_loops;
size_t a_edge_count;
size_t b_edge_count;
{
static carve::TimingName FUNC_NAME("CSG::compute - calc()");
carve::TimingBlock block(FUNC_NAME);
calc(a, b, vclass, eclass,a_face_loops, b_face_loops, a_edge_count, b_edge_count);
}
detail::LoopEdges a_edge_map;
detail::LoopEdges b_edge_map;
{
static carve::TimingName FUNC_NAME("CSG::compute - makeEdgeMap()");
carve::TimingBlock block(FUNC_NAME);
makeEdgeMap(a_face_loops, a_edge_count, a_edge_map);
makeEdgeMap(b_face_loops, b_edge_count, b_edge_map);
}
{
static carve::TimingName FUNC_NAME("CSG::compute - sortFaceLoopLists()");
carve::TimingBlock block(FUNC_NAME);
a_edge_map.sortFaceLoopLists();
b_edge_map.sortFaceLoopLists();
}
V2Set shared_edges;
{
static carve::TimingName FUNC_NAME("CSG::compute - findSharedEdges()");
carve::TimingBlock block(FUNC_NAME);
findSharedEdges(a_edge_map, b_edge_map, shared_edges);
}
{
static carve::TimingName FUNC_NAME("CSG::compute - groupFaceLoops()");
carve::TimingBlock block(FUNC_NAME);
groupFaceLoops(a_face_loops, a_edge_map, shared_edges, a_loops_grouped);
groupFaceLoops(b_face_loops, b_edge_map, shared_edges, b_loops_grouped);
#if defined(CARVE_DEBUG)
std::cerr << "*** a_loops_grouped.size(): " << a_loops_grouped.size() << std::endl;
std::cerr << "*** b_loops_grouped.size(): " << b_loops_grouped.size() << std::endl;
#endif
}
#if defined(CARVE_DEBUG) && defined(DEBUG_DRAW_GROUPS)
{
float n = 1.0 / (a_loops_grouped.size() + b_loops_grouped.size() + 1);
float H = 0.0, S = 1.0, V = 1.0;
float r, g, b;
for (FLGroupList::const_iterator i = a_loops_grouped.begin(); i != a_loops_grouped.end(); ++i) {
carve::colour::HSV2RGB(H, S, V, r, g, b); H += n;
drawFaceLoopList((*i).face_loops, r, g, b, 1.0, r * .5, g * .5, b * .5, 1.0, true);
}
for (FLGroupList::const_iterator i = b_loops_grouped.begin(); i != b_loops_grouped.end(); ++i) {
carve::colour::HSV2RGB(H, S, V, r, g, b); H += n;
drawFaceLoopList((*i).face_loops, r, g, b, 1.0, r * .5, g * .5, b * .5, 1.0, true);
}
for (FLGroupList::const_iterator i = a_loops_grouped.begin(); i != a_loops_grouped.end(); ++i) {
drawFaceLoopListWireframe((*i).face_loops);
}
for (FLGroupList::const_iterator i = b_loops_grouped.begin(); i != b_loops_grouped.end(); ++i) {
drawFaceLoopListWireframe((*i).face_loops);
}
}
#endif
switch (classify_type) {
case CLASSIFY_EDGE:
classifyFaceGroupsEdge(shared_edges,
vclass,
a,
a_loops_grouped,
a_edge_map,
b,
b_loops_grouped,
b_edge_map,
collector);
break;
case CLASSIFY_NORMAL:
classifyFaceGroups(shared_edges,
vclass,
a,
a_loops_grouped,
a_edge_map,
b,
b_loops_grouped,
b_edge_map,
collector);
break;
}
poly_t *result = collector.done(hooks);
if (result != NULL && shared_edges_ptr != NULL) {
std::list<poly_t *> result_list;
result_list.push_back(result);
returnSharedEdges(shared_edges, result_list, shared_edges_ptr);
}
return result;
}
/**
*
*
* @param a
* @param b
* @param op
* @param hooks
* @param shared_edges
* @param classify_type
*
* @return
*/
poly_t *carve::csg::CSG::compute(const poly_t *a,
const poly_t *b,
carve::csg::CSG::OP op,
carve::csg::V2Set *shared_edges,
CLASSIFY_TYPE classify_type) {
Collector *coll = makeCollector(op, a, b);
if (!coll) return NULL;
poly_t *result = compute(a, b, *coll, shared_edges, classify_type);
delete coll;
return result;
}
/**
*
*
* @param closed
* @param open
* @param FaceClass
* @param result
* @param hooks
* @param shared_edges_ptr
*
* @return
*/
bool carve::csg::CSG::sliceAndClassify(const poly_t *closed,
const poly_t *open,
std::list<std::pair<FaceClass, poly_t *> > &result,
carve::csg::V2Set *shared_edges_ptr) {
if (closed->hasOpenManifolds()) return false;
carve::csg::VertexClassification vclass;
carve::csg::EdgeClassification eclass;
carve::csg::FLGroupList a_loops_grouped;
carve::csg::FLGroupList b_loops_grouped;
carve::csg::FaceLoopList a_face_loops;
carve::csg::FaceLoopList b_face_loops;
size_t a_edge_count;
size_t b_edge_count;
calc(closed, open, vclass, eclass,a_face_loops, b_face_loops, a_edge_count, b_edge_count);
detail::LoopEdges a_edge_map;
detail::LoopEdges b_edge_map;
makeEdgeMap(a_face_loops, a_edge_count, a_edge_map);
makeEdgeMap(b_face_loops, b_edge_count, b_edge_map);
carve::csg::V2Set shared_edges;
findSharedEdges(a_edge_map, b_edge_map, shared_edges);
groupFaceLoops(a_face_loops, a_edge_map, shared_edges, a_loops_grouped);
groupFaceLoops(b_face_loops, b_edge_map, shared_edges, b_loops_grouped);
halfClassifyFaceGroups(shared_edges,
vclass,
closed,
a_loops_grouped,
a_edge_map,
open,
b_loops_grouped,
b_edge_map,
result);
if (shared_edges_ptr != NULL) {
std::list<poly_t *> result_list;
for (std::list<std::pair<FaceClass, poly_t *> >::iterator it = result.begin(); it != result.end(); it++) {
result_list.push_back(it->second);
}
returnSharedEdges(shared_edges, result_list, shared_edges_ptr);
}
return true;
}
/**
*
*
* @param a
* @param b
* @param a_sliced
* @param b_sliced
* @param hooks
* @param shared_edges_ptr
*/
void carve::csg::CSG::slice(const poly_t *a,
const poly_t *b,
std::list<poly_t *> &a_sliced,
std::list<poly_t *> &b_sliced,
carve::csg::V2Set *shared_edges_ptr) {
carve::csg::VertexClassification vclass;
carve::csg::EdgeClassification eclass;
carve::csg::FLGroupList a_loops_grouped;
carve::csg::FLGroupList b_loops_grouped;
carve::csg::FaceLoopList a_face_loops;
carve::csg::FaceLoopList b_face_loops;
size_t a_edge_count;
size_t b_edge_count;
calc(a, b, vclass, eclass,a_face_loops, b_face_loops, a_edge_count, b_edge_count);
detail::LoopEdges a_edge_map;
detail::LoopEdges b_edge_map;
makeEdgeMap(a_face_loops, a_edge_count, a_edge_map);
makeEdgeMap(b_face_loops, b_edge_count, b_edge_map);
carve::csg::V2Set shared_edges;
findSharedEdges(a_edge_map, b_edge_map, shared_edges);
groupFaceLoops(a_face_loops, a_edge_map, shared_edges, a_loops_grouped);
groupFaceLoops(b_face_loops, b_edge_map, shared_edges, b_loops_grouped);
for (carve::csg::FLGroupList::iterator
i = a_loops_grouped.begin(), e = a_loops_grouped.end();
i != e; ++i) {
Collector *all = makeCollector(ALL, a, b);
all->collect(&*i, hooks);
a_sliced.push_back(all->done(hooks));
delete all;
}
for (carve::csg::FLGroupList::iterator
i = b_loops_grouped.begin(), e = b_loops_grouped.end();
i != e; ++i) {
Collector *all = makeCollector(ALL, a, b);
all->collect(&*i, hooks);
b_sliced.push_back(all->done(hooks));
delete all;
}
if (shared_edges_ptr != NULL) {
std::list<poly_t *> result_list;
result_list.insert(result_list.end(), a_sliced.begin(), a_sliced.end());
result_list.insert(result_list.end(), b_sliced.begin(), b_sliced.end());
returnSharedEdges(shared_edges, result_list, shared_edges_ptr);
}
}
/**
*
*
*/
void carve::csg::CSG::init() {
intersections.clear();
vertex_intersections.clear();
vertex_pool.reset();
}