983 lines
26 KiB
C
983 lines
26 KiB
C
|
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
||
|
*
|
||
|
* This file is a part of LEMON, a generic C++ optimization library.
|
||
|
*
|
||
|
* Copyright (C) 2003-2009
|
||
|
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
||
|
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
||
|
*
|
||
|
* Permission to use, modify and distribute this software is granted
|
||
|
* provided that this copyright notice appears in all copies. For
|
||
|
* precise terms see the accompanying LICENSE file.
|
||
|
*
|
||
|
* This software is provided "AS IS" with no warranty of any kind,
|
||
|
* express or implied, and with no claim as to its suitability for any
|
||
|
* purpose.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#ifndef LEMON_ELEVATOR_H
|
||
|
#define LEMON_ELEVATOR_H
|
||
|
|
||
|
///\ingroup auxdat
|
||
|
///\file
|
||
|
///\brief Elevator class
|
||
|
///
|
||
|
///Elevator class implements an efficient data structure
|
||
|
///for labeling items in push-relabel type algorithms.
|
||
|
///
|
||
|
|
||
|
#include <lemon/core.h>
|
||
|
#include <lemon/bits/traits.h>
|
||
|
|
||
|
namespace lemon {
|
||
|
|
||
|
///Class for handling "labels" in push-relabel type algorithms.
|
||
|
|
||
|
///A class for handling "labels" in push-relabel type algorithms.
|
||
|
///
|
||
|
///\ingroup auxdat
|
||
|
///Using this class you can assign "labels" (nonnegative integer numbers)
|
||
|
///to the edges or nodes of a graph, manipulate and query them through
|
||
|
///operations typically arising in "push-relabel" type algorithms.
|
||
|
///
|
||
|
///Each item is either \em active or not, and you can also choose a
|
||
|
///highest level active item.
|
||
|
///
|
||
|
///\sa LinkedElevator
|
||
|
///
|
||
|
///\param GR Type of the underlying graph.
|
||
|
///\param Item Type of the items the data is assigned to (\c GR::Node,
|
||
|
///\c GR::Arc or \c GR::Edge).
|
||
|
template<class GR, class Item>
|
||
|
class Elevator
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
typedef Item Key;
|
||
|
typedef int Value;
|
||
|
|
||
|
private:
|
||
|
|
||
|
typedef Item *Vit;
|
||
|
typedef typename ItemSetTraits<GR,Item>::template Map<Vit>::Type VitMap;
|
||
|
typedef typename ItemSetTraits<GR,Item>::template Map<int>::Type IntMap;
|
||
|
|
||
|
const GR &_g;
|
||
|
int _max_level;
|
||
|
int _item_num;
|
||
|
VitMap _where;
|
||
|
IntMap _level;
|
||
|
std::vector<Item> _items;
|
||
|
std::vector<Vit> _first;
|
||
|
std::vector<Vit> _last_active;
|
||
|
|
||
|
int _highest_active;
|
||
|
|
||
|
void copy(Item i, Vit p)
|
||
|
{
|
||
|
_where[*p=i] = p;
|
||
|
}
|
||
|
void copy(Vit s, Vit p)
|
||
|
{
|
||
|
if(s!=p)
|
||
|
{
|
||
|
Item i=*s;
|
||
|
*p=i;
|
||
|
_where[i] = p;
|
||
|
}
|
||
|
}
|
||
|
void swap(Vit i, Vit j)
|
||
|
{
|
||
|
Item ti=*i;
|
||
|
Vit ct = _where[ti];
|
||
|
_where[ti] = _where[*i=*j];
|
||
|
_where[*j] = ct;
|
||
|
*j=ti;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
|
||
|
///Constructor with given maximum level.
|
||
|
|
||
|
///Constructor with given maximum level.
|
||
|
///
|
||
|
///\param graph The underlying graph.
|
||
|
///\param max_level The maximum allowed level.
|
||
|
///Set the range of the possible labels to <tt>[0..max_level]</tt>.
|
||
|
Elevator(const GR &graph,int max_level) :
|
||
|
_g(graph),
|
||
|
_max_level(max_level),
|
||
|
_item_num(_max_level),
|
||
|
_where(graph),
|
||
|
_level(graph,0),
|
||
|
_items(_max_level),
|
||
|
_first(_max_level+2),
|
||
|
_last_active(_max_level+2),
|
||
|
_highest_active(-1) {}
|
||
|
///Constructor.
|
||
|
|
||
|
///Constructor.
|
||
|
///
|
||
|
///\param graph The underlying graph.
|
||
|
///Set the range of the possible labels to <tt>[0..max_level]</tt>,
|
||
|
///where \c max_level is equal to the number of labeled items in the graph.
|
||
|
Elevator(const GR &graph) :
|
||
|
_g(graph),
|
||
|
_max_level(countItems<GR, Item>(graph)),
|
||
|
_item_num(_max_level),
|
||
|
_where(graph),
|
||
|
_level(graph,0),
|
||
|
_items(_max_level),
|
||
|
_first(_max_level+2),
|
||
|
_last_active(_max_level+2),
|
||
|
_highest_active(-1)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
///Activate item \c i.
|
||
|
|
||
|
///Activate item \c i.
|
||
|
///\pre Item \c i shouldn't be active before.
|
||
|
void activate(Item i)
|
||
|
{
|
||
|
const int l=_level[i];
|
||
|
swap(_where[i],++_last_active[l]);
|
||
|
if(l>_highest_active) _highest_active=l;
|
||
|
}
|
||
|
|
||
|
///Deactivate item \c i.
|
||
|
|
||
|
///Deactivate item \c i.
|
||
|
///\pre Item \c i must be active before.
|
||
|
void deactivate(Item i)
|
||
|
{
|
||
|
swap(_where[i],_last_active[_level[i]]--);
|
||
|
while(_highest_active>=0 &&
|
||
|
_last_active[_highest_active]<_first[_highest_active])
|
||
|
_highest_active--;
|
||
|
}
|
||
|
|
||
|
///Query whether item \c i is active
|
||
|
bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; }
|
||
|
|
||
|
///Return the level of item \c i.
|
||
|
int operator[](Item i) const { return _level[i]; }
|
||
|
|
||
|
///Return the number of items on level \c l.
|
||
|
int onLevel(int l) const
|
||
|
{
|
||
|
return _first[l+1]-_first[l];
|
||
|
}
|
||
|
///Return true if level \c l is empty.
|
||
|
bool emptyLevel(int l) const
|
||
|
{
|
||
|
return _first[l+1]-_first[l]==0;
|
||
|
}
|
||
|
///Return the number of items above level \c l.
|
||
|
int aboveLevel(int l) const
|
||
|
{
|
||
|
return _first[_max_level+1]-_first[l+1];
|
||
|
}
|
||
|
///Return the number of active items on level \c l.
|
||
|
int activesOnLevel(int l) const
|
||
|
{
|
||
|
return _last_active[l]-_first[l]+1;
|
||
|
}
|
||
|
///Return true if there is no active item on level \c l.
|
||
|
bool activeFree(int l) const
|
||
|
{
|
||
|
return _last_active[l]<_first[l];
|
||
|
}
|
||
|
///Return the maximum allowed level.
|
||
|
int maxLevel() const
|
||
|
{
|
||
|
return _max_level;
|
||
|
}
|
||
|
|
||
|
///\name Highest Active Item
|
||
|
///Functions for working with the highest level
|
||
|
///active item.
|
||
|
|
||
|
///@{
|
||
|
|
||
|
///Return a highest level active item.
|
||
|
|
||
|
///Return a highest level active item or INVALID if there is no active
|
||
|
///item.
|
||
|
Item highestActive() const
|
||
|
{
|
||
|
return _highest_active>=0?*_last_active[_highest_active]:INVALID;
|
||
|
}
|
||
|
|
||
|
///Return the highest active level.
|
||
|
|
||
|
///Return the level of the highest active item or -1 if there is no active
|
||
|
///item.
|
||
|
int highestActiveLevel() const
|
||
|
{
|
||
|
return _highest_active;
|
||
|
}
|
||
|
|
||
|
///Lift the highest active item by one.
|
||
|
|
||
|
///Lift the item returned by highestActive() by one.
|
||
|
///
|
||
|
void liftHighestActive()
|
||
|
{
|
||
|
Item it = *_last_active[_highest_active];
|
||
|
++_level[it];
|
||
|
swap(_last_active[_highest_active]--,_last_active[_highest_active+1]);
|
||
|
--_first[++_highest_active];
|
||
|
}
|
||
|
|
||
|
///Lift the highest active item to the given level.
|
||
|
|
||
|
///Lift the item returned by highestActive() to level \c new_level.
|
||
|
///
|
||
|
///\warning \c new_level must be strictly higher
|
||
|
///than the current level.
|
||
|
///
|
||
|
void liftHighestActive(int new_level)
|
||
|
{
|
||
|
const Item li = *_last_active[_highest_active];
|
||
|
|
||
|
copy(--_first[_highest_active+1],_last_active[_highest_active]--);
|
||
|
for(int l=_highest_active+1;l<new_level;l++)
|
||
|
{
|
||
|
copy(--_first[l+1],_first[l]);
|
||
|
--_last_active[l];
|
||
|
}
|
||
|
copy(li,_first[new_level]);
|
||
|
_level[li] = new_level;
|
||
|
_highest_active=new_level;
|
||
|
}
|
||
|
|
||
|
///Lift the highest active item to the top level.
|
||
|
|
||
|
///Lift the item returned by highestActive() to the top level and
|
||
|
///deactivate it.
|
||
|
void liftHighestActiveToTop()
|
||
|
{
|
||
|
const Item li = *_last_active[_highest_active];
|
||
|
|
||
|
copy(--_first[_highest_active+1],_last_active[_highest_active]--);
|
||
|
for(int l=_highest_active+1;l<_max_level;l++)
|
||
|
{
|
||
|
copy(--_first[l+1],_first[l]);
|
||
|
--_last_active[l];
|
||
|
}
|
||
|
copy(li,_first[_max_level]);
|
||
|
--_last_active[_max_level];
|
||
|
_level[li] = _max_level;
|
||
|
|
||
|
while(_highest_active>=0 &&
|
||
|
_last_active[_highest_active]<_first[_highest_active])
|
||
|
_highest_active--;
|
||
|
}
|
||
|
|
||
|
///@}
|
||
|
|
||
|
///\name Active Item on Certain Level
|
||
|
///Functions for working with the active items.
|
||
|
|
||
|
///@{
|
||
|
|
||
|
///Return an active item on level \c l.
|
||
|
|
||
|
///Return an active item on level \c l or \ref INVALID if there is no such
|
||
|
///an item. (\c l must be from the range [0...\c max_level].
|
||
|
Item activeOn(int l) const
|
||
|
{
|
||
|
return _last_active[l]>=_first[l]?*_last_active[l]:INVALID;
|
||
|
}
|
||
|
|
||
|
///Lift the active item returned by \c activeOn(level) by one.
|
||
|
|
||
|
///Lift the active item returned by \ref activeOn() "activeOn(level)"
|
||
|
///by one.
|
||
|
Item liftActiveOn(int level)
|
||
|
{
|
||
|
Item it =*_last_active[level];
|
||
|
++_level[it];
|
||
|
swap(_last_active[level]--, --_first[level+1]);
|
||
|
if (level+1>_highest_active) ++_highest_active;
|
||
|
}
|
||
|
|
||
|
///Lift the active item returned by \c activeOn(level) to the given level.
|
||
|
|
||
|
///Lift the active item returned by \ref activeOn() "activeOn(level)"
|
||
|
///to the given level.
|
||
|
void liftActiveOn(int level, int new_level)
|
||
|
{
|
||
|
const Item ai = *_last_active[level];
|
||
|
|
||
|
copy(--_first[level+1], _last_active[level]--);
|
||
|
for(int l=level+1;l<new_level;l++)
|
||
|
{
|
||
|
copy(_last_active[l],_first[l]);
|
||
|
copy(--_first[l+1], _last_active[l]--);
|
||
|
}
|
||
|
copy(ai,_first[new_level]);
|
||
|
_level[ai] = new_level;
|
||
|
if (new_level>_highest_active) _highest_active=new_level;
|
||
|
}
|
||
|
|
||
|
///Lift the active item returned by \c activeOn(level) to the top level.
|
||
|
|
||
|
///Lift the active item returned by \ref activeOn() "activeOn(level)"
|
||
|
///to the top level and deactivate it.
|
||
|
void liftActiveToTop(int level)
|
||
|
{
|
||
|
const Item ai = *_last_active[level];
|
||
|
|
||
|
copy(--_first[level+1],_last_active[level]--);
|
||
|
for(int l=level+1;l<_max_level;l++)
|
||
|
{
|
||
|
copy(_last_active[l],_first[l]);
|
||
|
copy(--_first[l+1], _last_active[l]--);
|
||
|
}
|
||
|
copy(ai,_first[_max_level]);
|
||
|
--_last_active[_max_level];
|
||
|
_level[ai] = _max_level;
|
||
|
|
||
|
if (_highest_active==level) {
|
||
|
while(_highest_active>=0 &&
|
||
|
_last_active[_highest_active]<_first[_highest_active])
|
||
|
_highest_active--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///@}
|
||
|
|
||
|
///Lift an active item to a higher level.
|
||
|
|
||
|
///Lift an active item to a higher level.
|
||
|
///\param i The item to be lifted. It must be active.
|
||
|
///\param new_level The new level of \c i. It must be strictly higher
|
||
|
///than the current level.
|
||
|
///
|
||
|
void lift(Item i, int new_level)
|
||
|
{
|
||
|
const int lo = _level[i];
|
||
|
const Vit w = _where[i];
|
||
|
|
||
|
copy(_last_active[lo],w);
|
||
|
copy(--_first[lo+1],_last_active[lo]--);
|
||
|
for(int l=lo+1;l<new_level;l++)
|
||
|
{
|
||
|
copy(_last_active[l],_first[l]);
|
||
|
copy(--_first[l+1],_last_active[l]--);
|
||
|
}
|
||
|
copy(i,_first[new_level]);
|
||
|
_level[i] = new_level;
|
||
|
if(new_level>_highest_active) _highest_active=new_level;
|
||
|
}
|
||
|
|
||
|
///Move an inactive item to the top but one level (in a dirty way).
|
||
|
|
||
|
///This function moves an inactive item from the top level to the top
|
||
|
///but one level (in a dirty way).
|
||
|
///\warning It makes the underlying datastructure corrupt, so use it
|
||
|
///only if you really know what it is for.
|
||
|
///\pre The item is on the top level.
|
||
|
void dirtyTopButOne(Item i) {
|
||
|
_level[i] = _max_level - 1;
|
||
|
}
|
||
|
|
||
|
///Lift all items on and above the given level to the top level.
|
||
|
|
||
|
///This function lifts all items on and above level \c l to the top
|
||
|
///level and deactivates them.
|
||
|
void liftToTop(int l)
|
||
|
{
|
||
|
const Vit f=_first[l];
|
||
|
const Vit tl=_first[_max_level];
|
||
|
for(Vit i=f;i!=tl;++i)
|
||
|
_level[*i] = _max_level;
|
||
|
for(int i=l;i<=_max_level;i++)
|
||
|
{
|
||
|
_first[i]=f;
|
||
|
_last_active[i]=f-1;
|
||
|
}
|
||
|
for(_highest_active=l-1;
|
||
|
_highest_active>=0 &&
|
||
|
_last_active[_highest_active]<_first[_highest_active];
|
||
|
_highest_active--) ;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
int _init_lev;
|
||
|
Vit _init_num;
|
||
|
|
||
|
public:
|
||
|
|
||
|
///\name Initialization
|
||
|
///Using these functions you can initialize the levels of the items.
|
||
|
///\n
|
||
|
///The initialization must be started with calling \c initStart().
|
||
|
///Then the items should be listed level by level starting with the
|
||
|
///lowest one (level 0) using \c initAddItem() and \c initNewLevel().
|
||
|
///Finally \c initFinish() must be called.
|
||
|
///The items not listed are put on the highest level.
|
||
|
///@{
|
||
|
|
||
|
///Start the initialization process.
|
||
|
void initStart()
|
||
|
{
|
||
|
_init_lev=0;
|
||
|
_init_num=&_items[0];
|
||
|
_first[0]=&_items[0];
|
||
|
_last_active[0]=&_items[0]-1;
|
||
|
Vit n=&_items[0];
|
||
|
for(typename ItemSetTraits<GR,Item>::ItemIt i(_g);i!=INVALID;++i)
|
||
|
{
|
||
|
*n=i;
|
||
|
_where[i] = n;
|
||
|
_level[i] = _max_level;
|
||
|
++n;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///Add an item to the current level.
|
||
|
void initAddItem(Item i)
|
||
|
{
|
||
|
swap(_where[i],_init_num);
|
||
|
_level[i] = _init_lev;
|
||
|
++_init_num;
|
||
|
}
|
||
|
|
||
|
///Start a new level.
|
||
|
|
||
|
///Start a new level.
|
||
|
///It shouldn't be used before the items on level 0 are listed.
|
||
|
void initNewLevel()
|
||
|
{
|
||
|
_init_lev++;
|
||
|
_first[_init_lev]=_init_num;
|
||
|
_last_active[_init_lev]=_init_num-1;
|
||
|
}
|
||
|
|
||
|
///Finalize the initialization process.
|
||
|
void initFinish()
|
||
|
{
|
||
|
for(_init_lev++;_init_lev<=_max_level;_init_lev++)
|
||
|
{
|
||
|
_first[_init_lev]=_init_num;
|
||
|
_last_active[_init_lev]=_init_num-1;
|
||
|
}
|
||
|
_first[_max_level+1]=&_items[0]+_item_num;
|
||
|
_last_active[_max_level+1]=&_items[0]+_item_num-1;
|
||
|
_highest_active = -1;
|
||
|
}
|
||
|
|
||
|
///@}
|
||
|
|
||
|
};
|
||
|
|
||
|
///Class for handling "labels" in push-relabel type algorithms.
|
||
|
|
||
|
///A class for handling "labels" in push-relabel type algorithms.
|
||
|
///
|
||
|
///\ingroup auxdat
|
||
|
///Using this class you can assign "labels" (nonnegative integer numbers)
|
||
|
///to the edges or nodes of a graph, manipulate and query them through
|
||
|
///operations typically arising in "push-relabel" type algorithms.
|
||
|
///
|
||
|
///Each item is either \em active or not, and you can also choose a
|
||
|
///highest level active item.
|
||
|
///
|
||
|
///\sa Elevator
|
||
|
///
|
||
|
///\param GR Type of the underlying graph.
|
||
|
///\param Item Type of the items the data is assigned to (\c GR::Node,
|
||
|
///\c GR::Arc or \c GR::Edge).
|
||
|
template <class GR, class Item>
|
||
|
class LinkedElevator {
|
||
|
public:
|
||
|
|
||
|
typedef Item Key;
|
||
|
typedef int Value;
|
||
|
|
||
|
private:
|
||
|
|
||
|
typedef typename ItemSetTraits<GR,Item>::
|
||
|
template Map<Item>::Type ItemMap;
|
||
|
typedef typename ItemSetTraits<GR,Item>::
|
||
|
template Map<int>::Type IntMap;
|
||
|
typedef typename ItemSetTraits<GR,Item>::
|
||
|
template Map<bool>::Type BoolMap;
|
||
|
|
||
|
const GR &_graph;
|
||
|
int _max_level;
|
||
|
int _item_num;
|
||
|
std::vector<Item> _first, _last;
|
||
|
ItemMap _prev, _next;
|
||
|
int _highest_active;
|
||
|
IntMap _level;
|
||
|
BoolMap _active;
|
||
|
|
||
|
public:
|
||
|
///Constructor with given maximum level.
|
||
|
|
||
|
///Constructor with given maximum level.
|
||
|
///
|
||
|
///\param graph The underlying graph.
|
||
|
///\param max_level The maximum allowed level.
|
||
|
///Set the range of the possible labels to <tt>[0..max_level]</tt>.
|
||
|
LinkedElevator(const GR& graph, int max_level)
|
||
|
: _graph(graph), _max_level(max_level), _item_num(_max_level),
|
||
|
_first(_max_level + 1), _last(_max_level + 1),
|
||
|
_prev(graph), _next(graph),
|
||
|
_highest_active(-1), _level(graph), _active(graph) {}
|
||
|
|
||
|
///Constructor.
|
||
|
|
||
|
///Constructor.
|
||
|
///
|
||
|
///\param graph The underlying graph.
|
||
|
///Set the range of the possible labels to <tt>[0..max_level]</tt>,
|
||
|
///where \c max_level is equal to the number of labeled items in the graph.
|
||
|
LinkedElevator(const GR& graph)
|
||
|
: _graph(graph), _max_level(countItems<GR, Item>(graph)),
|
||
|
_item_num(_max_level),
|
||
|
_first(_max_level + 1), _last(_max_level + 1),
|
||
|
_prev(graph, INVALID), _next(graph, INVALID),
|
||
|
_highest_active(-1), _level(graph), _active(graph) {}
|
||
|
|
||
|
|
||
|
///Activate item \c i.
|
||
|
|
||
|
///Activate item \c i.
|
||
|
///\pre Item \c i shouldn't be active before.
|
||
|
void activate(Item i) {
|
||
|
_active[i] = true;
|
||
|
|
||
|
int level = _level[i];
|
||
|
if (level > _highest_active) {
|
||
|
_highest_active = level;
|
||
|
}
|
||
|
|
||
|
if (_prev[i] == INVALID || _active[_prev[i]]) return;
|
||
|
//unlace
|
||
|
_next[_prev[i]] = _next[i];
|
||
|
if (_next[i] != INVALID) {
|
||
|
_prev[_next[i]] = _prev[i];
|
||
|
} else {
|
||
|
_last[level] = _prev[i];
|
||
|
}
|
||
|
//lace
|
||
|
_next[i] = _first[level];
|
||
|
_prev[_first[level]] = i;
|
||
|
_prev[i] = INVALID;
|
||
|
_first[level] = i;
|
||
|
|
||
|
}
|
||
|
|
||
|
///Deactivate item \c i.
|
||
|
|
||
|
///Deactivate item \c i.
|
||
|
///\pre Item \c i must be active before.
|
||
|
void deactivate(Item i) {
|
||
|
_active[i] = false;
|
||
|
int level = _level[i];
|
||
|
|
||
|
if (_next[i] == INVALID || !_active[_next[i]])
|
||
|
goto find_highest_level;
|
||
|
|
||
|
//unlace
|
||
|
_prev[_next[i]] = _prev[i];
|
||
|
if (_prev[i] != INVALID) {
|
||
|
_next[_prev[i]] = _next[i];
|
||
|
} else {
|
||
|
_first[_level[i]] = _next[i];
|
||
|
}
|
||
|
//lace
|
||
|
_prev[i] = _last[level];
|
||
|
_next[_last[level]] = i;
|
||
|
_next[i] = INVALID;
|
||
|
_last[level] = i;
|
||
|
|
||
|
find_highest_level:
|
||
|
if (level == _highest_active) {
|
||
|
while (_highest_active >= 0 && activeFree(_highest_active))
|
||
|
--_highest_active;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///Query whether item \c i is active
|
||
|
bool active(Item i) const { return _active[i]; }
|
||
|
|
||
|
///Return the level of item \c i.
|
||
|
int operator[](Item i) const { return _level[i]; }
|
||
|
|
||
|
///Return the number of items on level \c l.
|
||
|
int onLevel(int l) const {
|
||
|
int num = 0;
|
||
|
Item n = _first[l];
|
||
|
while (n != INVALID) {
|
||
|
++num;
|
||
|
n = _next[n];
|
||
|
}
|
||
|
return num;
|
||
|
}
|
||
|
|
||
|
///Return true if the level is empty.
|
||
|
bool emptyLevel(int l) const {
|
||
|
return _first[l] == INVALID;
|
||
|
}
|
||
|
|
||
|
///Return the number of items above level \c l.
|
||
|
int aboveLevel(int l) const {
|
||
|
int num = 0;
|
||
|
for (int level = l + 1; level < _max_level; ++level)
|
||
|
num += onLevel(level);
|
||
|
return num;
|
||
|
}
|
||
|
|
||
|
///Return the number of active items on level \c l.
|
||
|
int activesOnLevel(int l) const {
|
||
|
int num = 0;
|
||
|
Item n = _first[l];
|
||
|
while (n != INVALID && _active[n]) {
|
||
|
++num;
|
||
|
n = _next[n];
|
||
|
}
|
||
|
return num;
|
||
|
}
|
||
|
|
||
|
///Return true if there is no active item on level \c l.
|
||
|
bool activeFree(int l) const {
|
||
|
return _first[l] == INVALID || !_active[_first[l]];
|
||
|
}
|
||
|
|
||
|
///Return the maximum allowed level.
|
||
|
int maxLevel() const {
|
||
|
return _max_level;
|
||
|
}
|
||
|
|
||
|
///\name Highest Active Item
|
||
|
///Functions for working with the highest level
|
||
|
///active item.
|
||
|
|
||
|
///@{
|
||
|
|
||
|
///Return a highest level active item.
|
||
|
|
||
|
///Return a highest level active item or INVALID if there is no active
|
||
|
///item.
|
||
|
Item highestActive() const {
|
||
|
return _highest_active >= 0 ? _first[_highest_active] : INVALID;
|
||
|
}
|
||
|
|
||
|
///Return the highest active level.
|
||
|
|
||
|
///Return the level of the highest active item or -1 if there is no active
|
||
|
///item.
|
||
|
int highestActiveLevel() const {
|
||
|
return _highest_active;
|
||
|
}
|
||
|
|
||
|
///Lift the highest active item by one.
|
||
|
|
||
|
///Lift the item returned by highestActive() by one.
|
||
|
///
|
||
|
void liftHighestActive() {
|
||
|
Item i = _first[_highest_active];
|
||
|
if (_next[i] != INVALID) {
|
||
|
_prev[_next[i]] = INVALID;
|
||
|
_first[_highest_active] = _next[i];
|
||
|
} else {
|
||
|
_first[_highest_active] = INVALID;
|
||
|
_last[_highest_active] = INVALID;
|
||
|
}
|
||
|
_level[i] = ++_highest_active;
|
||
|
if (_first[_highest_active] == INVALID) {
|
||
|
_first[_highest_active] = i;
|
||
|
_last[_highest_active] = i;
|
||
|
_prev[i] = INVALID;
|
||
|
_next[i] = INVALID;
|
||
|
} else {
|
||
|
_prev[_first[_highest_active]] = i;
|
||
|
_next[i] = _first[_highest_active];
|
||
|
_first[_highest_active] = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///Lift the highest active item to the given level.
|
||
|
|
||
|
///Lift the item returned by highestActive() to level \c new_level.
|
||
|
///
|
||
|
///\warning \c new_level must be strictly higher
|
||
|
///than the current level.
|
||
|
///
|
||
|
void liftHighestActive(int new_level) {
|
||
|
Item i = _first[_highest_active];
|
||
|
if (_next[i] != INVALID) {
|
||
|
_prev[_next[i]] = INVALID;
|
||
|
_first[_highest_active] = _next[i];
|
||
|
} else {
|
||
|
_first[_highest_active] = INVALID;
|
||
|
_last[_highest_active] = INVALID;
|
||
|
}
|
||
|
_level[i] = _highest_active = new_level;
|
||
|
if (_first[_highest_active] == INVALID) {
|
||
|
_first[_highest_active] = _last[_highest_active] = i;
|
||
|
_prev[i] = INVALID;
|
||
|
_next[i] = INVALID;
|
||
|
} else {
|
||
|
_prev[_first[_highest_active]] = i;
|
||
|
_next[i] = _first[_highest_active];
|
||
|
_first[_highest_active] = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///Lift the highest active item to the top level.
|
||
|
|
||
|
///Lift the item returned by highestActive() to the top level and
|
||
|
///deactivate it.
|
||
|
void liftHighestActiveToTop() {
|
||
|
Item i = _first[_highest_active];
|
||
|
_level[i] = _max_level;
|
||
|
if (_next[i] != INVALID) {
|
||
|
_prev[_next[i]] = INVALID;
|
||
|
_first[_highest_active] = _next[i];
|
||
|
} else {
|
||
|
_first[_highest_active] = INVALID;
|
||
|
_last[_highest_active] = INVALID;
|
||
|
}
|
||
|
while (_highest_active >= 0 && activeFree(_highest_active))
|
||
|
--_highest_active;
|
||
|
}
|
||
|
|
||
|
///@}
|
||
|
|
||
|
///\name Active Item on Certain Level
|
||
|
///Functions for working with the active items.
|
||
|
|
||
|
///@{
|
||
|
|
||
|
///Return an active item on level \c l.
|
||
|
|
||
|
///Return an active item on level \c l or \ref INVALID if there is no such
|
||
|
///an item. (\c l must be from the range [0...\c max_level].
|
||
|
Item activeOn(int l) const
|
||
|
{
|
||
|
return _active[_first[l]] ? _first[l] : INVALID;
|
||
|
}
|
||
|
|
||
|
///Lift the active item returned by \c activeOn(l) by one.
|
||
|
|
||
|
///Lift the active item returned by \ref activeOn() "activeOn(l)"
|
||
|
///by one.
|
||
|
Item liftActiveOn(int l)
|
||
|
{
|
||
|
Item i = _first[l];
|
||
|
if (_next[i] != INVALID) {
|
||
|
_prev[_next[i]] = INVALID;
|
||
|
_first[l] = _next[i];
|
||
|
} else {
|
||
|
_first[l] = INVALID;
|
||
|
_last[l] = INVALID;
|
||
|
}
|
||
|
_level[i] = ++l;
|
||
|
if (_first[l] == INVALID) {
|
||
|
_first[l] = _last[l] = i;
|
||
|
_prev[i] = INVALID;
|
||
|
_next[i] = INVALID;
|
||
|
} else {
|
||
|
_prev[_first[l]] = i;
|
||
|
_next[i] = _first[l];
|
||
|
_first[l] = i;
|
||
|
}
|
||
|
if (_highest_active < l) {
|
||
|
_highest_active = l;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///Lift the active item returned by \c activeOn(l) to the given level.
|
||
|
|
||
|
///Lift the active item returned by \ref activeOn() "activeOn(l)"
|
||
|
///to the given level.
|
||
|
void liftActiveOn(int l, int new_level)
|
||
|
{
|
||
|
Item i = _first[l];
|
||
|
if (_next[i] != INVALID) {
|
||
|
_prev[_next[i]] = INVALID;
|
||
|
_first[l] = _next[i];
|
||
|
} else {
|
||
|
_first[l] = INVALID;
|
||
|
_last[l] = INVALID;
|
||
|
}
|
||
|
_level[i] = l = new_level;
|
||
|
if (_first[l] == INVALID) {
|
||
|
_first[l] = _last[l] = i;
|
||
|
_prev[i] = INVALID;
|
||
|
_next[i] = INVALID;
|
||
|
} else {
|
||
|
_prev[_first[l]] = i;
|
||
|
_next[i] = _first[l];
|
||
|
_first[l] = i;
|
||
|
}
|
||
|
if (_highest_active < l) {
|
||
|
_highest_active = l;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///Lift the active item returned by \c activeOn(l) to the top level.
|
||
|
|
||
|
///Lift the active item returned by \ref activeOn() "activeOn(l)"
|
||
|
///to the top level and deactivate it.
|
||
|
void liftActiveToTop(int l)
|
||
|
{
|
||
|
Item i = _first[l];
|
||
|
if (_next[i] != INVALID) {
|
||
|
_prev[_next[i]] = INVALID;
|
||
|
_first[l] = _next[i];
|
||
|
} else {
|
||
|
_first[l] = INVALID;
|
||
|
_last[l] = INVALID;
|
||
|
}
|
||
|
_level[i] = _max_level;
|
||
|
if (l == _highest_active) {
|
||
|
while (_highest_active >= 0 && activeFree(_highest_active))
|
||
|
--_highest_active;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///@}
|
||
|
|
||
|
/// \brief Lift an active item to a higher level.
|
||
|
///
|
||
|
/// Lift an active item to a higher level.
|
||
|
/// \param i The item to be lifted. It must be active.
|
||
|
/// \param new_level The new level of \c i. It must be strictly higher
|
||
|
/// than the current level.
|
||
|
///
|
||
|
void lift(Item i, int new_level) {
|
||
|
if (_next[i] != INVALID) {
|
||
|
_prev[_next[i]] = _prev[i];
|
||
|
} else {
|
||
|
_last[new_level] = _prev[i];
|
||
|
}
|
||
|
if (_prev[i] != INVALID) {
|
||
|
_next[_prev[i]] = _next[i];
|
||
|
} else {
|
||
|
_first[new_level] = _next[i];
|
||
|
}
|
||
|
_level[i] = new_level;
|
||
|
if (_first[new_level] == INVALID) {
|
||
|
_first[new_level] = _last[new_level] = i;
|
||
|
_prev[i] = INVALID;
|
||
|
_next[i] = INVALID;
|
||
|
} else {
|
||
|
_prev[_first[new_level]] = i;
|
||
|
_next[i] = _first[new_level];
|
||
|
_first[new_level] = i;
|
||
|
}
|
||
|
if (_highest_active < new_level) {
|
||
|
_highest_active = new_level;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///Move an inactive item to the top but one level (in a dirty way).
|
||
|
|
||
|
///This function moves an inactive item from the top level to the top
|
||
|
///but one level (in a dirty way).
|
||
|
///\warning It makes the underlying datastructure corrupt, so use it
|
||
|
///only if you really know what it is for.
|
||
|
///\pre The item is on the top level.
|
||
|
void dirtyTopButOne(Item i) {
|
||
|
_level[i] = _max_level - 1;
|
||
|
}
|
||
|
|
||
|
///Lift all items on and above the given level to the top level.
|
||
|
|
||
|
///This function lifts all items on and above level \c l to the top
|
||
|
///level and deactivates them.
|
||
|
void liftToTop(int l) {
|
||
|
for (int i = l + 1; _first[i] != INVALID; ++i) {
|
||
|
Item n = _first[i];
|
||
|
while (n != INVALID) {
|
||
|
_level[n] = _max_level;
|
||
|
n = _next[n];
|
||
|
}
|
||
|
_first[i] = INVALID;
|
||
|
_last[i] = INVALID;
|
||
|
}
|
||
|
if (_highest_active > l - 1) {
|
||
|
_highest_active = l - 1;
|
||
|
while (_highest_active >= 0 && activeFree(_highest_active))
|
||
|
--_highest_active;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
|
||
|
int _init_level;
|
||
|
|
||
|
public:
|
||
|
|
||
|
///\name Initialization
|
||
|
///Using these functions you can initialize the levels of the items.
|
||
|
///\n
|
||
|
///The initialization must be started with calling \c initStart().
|
||
|
///Then the items should be listed level by level starting with the
|
||
|
///lowest one (level 0) using \c initAddItem() and \c initNewLevel().
|
||
|
///Finally \c initFinish() must be called.
|
||
|
///The items not listed are put on the highest level.
|
||
|
///@{
|
||
|
|
||
|
///Start the initialization process.
|
||
|
void initStart() {
|
||
|
|
||
|
for (int i = 0; i <= _max_level; ++i) {
|
||
|
_first[i] = _last[i] = INVALID;
|
||
|
}
|
||
|
_init_level = 0;
|
||
|
for(typename ItemSetTraits<GR,Item>::ItemIt i(_graph);
|
||
|
i != INVALID; ++i) {
|
||
|
_level[i] = _max_level;
|
||
|
_active[i] = false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///Add an item to the current level.
|
||
|
void initAddItem(Item i) {
|
||
|
_level[i] = _init_level;
|
||
|
if (_last[_init_level] == INVALID) {
|
||
|
_first[_init_level] = i;
|
||
|
_last[_init_level] = i;
|
||
|
_prev[i] = INVALID;
|
||
|
_next[i] = INVALID;
|
||
|
} else {
|
||
|
_prev[i] = _last[_init_level];
|
||
|
_next[i] = INVALID;
|
||
|
_next[_last[_init_level]] = i;
|
||
|
_last[_init_level] = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///Start a new level.
|
||
|
|
||
|
///Start a new level.
|
||
|
///It shouldn't be used before the items on level 0 are listed.
|
||
|
void initNewLevel() {
|
||
|
++_init_level;
|
||
|
}
|
||
|
|
||
|
///Finalize the initialization process.
|
||
|
void initFinish() {
|
||
|
_highest_active = -1;
|
||
|
}
|
||
|
|
||
|
///@}
|
||
|
|
||
|
};
|
||
|
|
||
|
|
||
|
} //END OF NAMESPACE LEMON
|
||
|
|
||
|
#endif
|
||
|
|