dust3d/thirdparty/QuadriFlow/3rd/lemon-1.3.1/lemon/full_graph.h

1083 lines
29 KiB
C
Raw Normal View History

/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2013
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_FULL_GRAPH_H
#define LEMON_FULL_GRAPH_H
#include <lemon/core.h>
#include <lemon/bits/graph_extender.h>
///\ingroup graphs
///\file
///\brief FullDigraph and FullGraph classes.
namespace lemon {
class FullDigraphBase {
public:
typedef FullDigraphBase Digraph;
class Node;
class Arc;
protected:
int _node_num;
int _arc_num;
FullDigraphBase() {}
void construct(int n) { _node_num = n; _arc_num = n * n; }
public:
typedef True NodeNumTag;
typedef True ArcNumTag;
Node operator()(int ix) const { return Node(ix); }
static int index(const Node& node) { return node._id; }
Arc arc(const Node& s, const Node& t) const {
return Arc(s._id * _node_num + t._id);
}
int nodeNum() const { return _node_num; }
int arcNum() const { return _arc_num; }
int maxNodeId() const { return _node_num - 1; }
int maxArcId() const { return _arc_num - 1; }
Node source(Arc arc) const { return arc._id / _node_num; }
Node target(Arc arc) const { return arc._id % _node_num; }
static int id(Node node) { return node._id; }
static int id(Arc arc) { return arc._id; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
typedef True FindArcTag;
Arc findArc(Node s, Node t, Arc prev = INVALID) const {
return prev == INVALID ? arc(s, t) : INVALID;
}
class Node {
friend class FullDigraphBase;
protected:
int _id;
Node(int id) : _id(id) {}
public:
Node() {}
Node (Invalid) : _id(-1) {}
bool operator==(const Node node) const {return _id == node._id;}
bool operator!=(const Node node) const {return _id != node._id;}
bool operator<(const Node node) const {return _id < node._id;}
};
class Arc {
friend class FullDigraphBase;
protected:
int _id; // _node_num * source + target;
Arc(int id) : _id(id) {}
public:
Arc() { }
Arc (Invalid) { _id = -1; }
bool operator==(const Arc arc) const {return _id == arc._id;}
bool operator!=(const Arc arc) const {return _id != arc._id;}
bool operator<(const Arc arc) const {return _id < arc._id;}
};
void first(Node& node) const {
node._id = _node_num - 1;
}
static void next(Node& node) {
--node._id;
}
void first(Arc& arc) const {
arc._id = _arc_num - 1;
}
static void next(Arc& arc) {
--arc._id;
}
void firstOut(Arc& arc, const Node& node) const {
arc._id = (node._id + 1) * _node_num - 1;
}
void nextOut(Arc& arc) const {
if (arc._id % _node_num == 0) arc._id = 0;
--arc._id;
}
void firstIn(Arc& arc, const Node& node) const {
arc._id = _arc_num + node._id - _node_num;
}
void nextIn(Arc& arc) const {
arc._id -= _node_num;
if (arc._id < 0) arc._id = -1;
}
};
typedef DigraphExtender<FullDigraphBase> ExtendedFullDigraphBase;
/// \ingroup graphs
///
/// \brief A directed full graph class.
///
/// FullDigraph is a simple and fast implmenetation of directed full
/// (complete) graphs. It contains an arc from each node to each node
/// (including a loop for each node), therefore the number of arcs
/// is the square of the number of nodes.
/// This class is completely static and it needs constant memory space.
/// Thus you can neither add nor delete nodes or arcs, however
/// the structure can be resized using resize().
///
/// This type fully conforms to the \ref concepts::Digraph "Digraph concept".
/// Most of its member functions and nested classes are documented
/// only in the concept class.
///
/// This class provides constant time counting for nodes and arcs.
///
/// \note FullDigraph and FullGraph classes are very similar,
/// but there are two differences. While this class conforms only
/// to the \ref concepts::Digraph "Digraph" concept, FullGraph
/// conforms to the \ref concepts::Graph "Graph" concept,
/// moreover FullGraph does not contain a loop for each
/// node as this class does.
///
/// \sa FullGraph
class FullDigraph : public ExtendedFullDigraphBase {
typedef ExtendedFullDigraphBase Parent;
public:
/// \brief Default constructor.
///
/// Default constructor. The number of nodes and arcs will be zero.
FullDigraph() { construct(0); }
/// \brief Constructor
///
/// Constructor.
/// \param n The number of the nodes.
FullDigraph(int n) { construct(n); }
/// \brief Resizes the digraph
///
/// This function resizes the digraph. It fully destroys and
/// rebuilds the structure, therefore the maps of the digraph will be
/// reallocated automatically and the previous values will be lost.
void resize(int n) {
Parent::notifier(Arc()).clear();
Parent::notifier(Node()).clear();
construct(n);
Parent::notifier(Node()).build();
Parent::notifier(Arc()).build();
}
/// \brief Returns the node with the given index.
///
/// Returns the node with the given index. Since this structure is
/// completely static, the nodes can be indexed with integers from
/// the range <tt>[0..nodeNum()-1]</tt>.
/// The index of a node is the same as its ID.
/// \sa index()
Node operator()(int ix) const { return Parent::operator()(ix); }
/// \brief Returns the index of the given node.
///
/// Returns the index of the given node. Since this structure is
/// completely static, the nodes can be indexed with integers from
/// the range <tt>[0..nodeNum()-1]</tt>.
/// The index of a node is the same as its ID.
/// \sa operator()()
static int index(const Node& node) { return Parent::index(node); }
/// \brief Returns the arc connecting the given nodes.
///
/// Returns the arc connecting the given nodes.
Arc arc(Node u, Node v) const {
return Parent::arc(u, v);
}
/// \brief Number of nodes.
int nodeNum() const { return Parent::nodeNum(); }
/// \brief Number of arcs.
int arcNum() const { return Parent::arcNum(); }
};
class FullGraphBase {
public:
typedef FullGraphBase Graph;
class Node;
class Arc;
class Edge;
protected:
int _node_num;
int _edge_num;
FullGraphBase() {}
void construct(int n) { _node_num = n; _edge_num = n * (n - 1) / 2; }
int _uid(int e) const {
int u = e / _node_num;
int v = e % _node_num;
return u < v ? u : _node_num - 2 - u;
}
int _vid(int e) const {
int u = e / _node_num;
int v = e % _node_num;
return u < v ? v : _node_num - 1 - v;
}
void _uvid(int e, int& u, int& v) const {
u = e / _node_num;
v = e % _node_num;
if (u >= v) {
u = _node_num - 2 - u;
v = _node_num - 1 - v;
}
}
void _stid(int a, int& s, int& t) const {
if ((a & 1) == 1) {
_uvid(a >> 1, s, t);
} else {
_uvid(a >> 1, t, s);
}
}
int _eid(int u, int v) const {
if (u < (_node_num - 1) / 2) {
return u * _node_num + v;
} else {
return (_node_num - 1 - u) * _node_num - v - 1;
}
}
public:
Node operator()(int ix) const { return Node(ix); }
static int index(const Node& node) { return node._id; }
Edge edge(const Node& u, const Node& v) const {
if (u._id < v._id) {
return Edge(_eid(u._id, v._id));
} else if (u._id != v._id) {
return Edge(_eid(v._id, u._id));
} else {
return INVALID;
}
}
Arc arc(const Node& s, const Node& t) const {
if (s._id < t._id) {
return Arc((_eid(s._id, t._id) << 1) | 1);
} else if (s._id != t._id) {
return Arc(_eid(t._id, s._id) << 1);
} else {
return INVALID;
}
}
typedef True NodeNumTag;
typedef True ArcNumTag;
typedef True EdgeNumTag;
int nodeNum() const { return _node_num; }
int arcNum() const { return 2 * _edge_num; }
int edgeNum() const { return _edge_num; }
static int id(Node node) { return node._id; }
static int id(Arc arc) { return arc._id; }
static int id(Edge edge) { return edge._id; }
int maxNodeId() const { return _node_num-1; }
int maxArcId() const { return 2 * _edge_num-1; }
int maxEdgeId() const { return _edge_num-1; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
static Edge edgeFromId(int id) { return Edge(id);}
Node u(Edge edge) const {
return Node(_uid(edge._id));
}
Node v(Edge edge) const {
return Node(_vid(edge._id));
}
Node source(Arc arc) const {
return Node((arc._id & 1) == 1 ?
_uid(arc._id >> 1) : _vid(arc._id >> 1));
}
Node target(Arc arc) const {
return Node((arc._id & 1) == 1 ?
_vid(arc._id >> 1) : _uid(arc._id >> 1));
}
typedef True FindEdgeTag;
typedef True FindArcTag;
Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
return prev != INVALID ? INVALID : edge(u, v);
}
Arc findArc(Node s, Node t, Arc prev = INVALID) const {
return prev != INVALID ? INVALID : arc(s, t);
}
class Node {
friend class FullGraphBase;
protected:
int _id;
Node(int id) : _id(id) {}
public:
Node() {}
Node (Invalid) { _id = -1; }
bool operator==(const Node node) const {return _id == node._id;}
bool operator!=(const Node node) const {return _id != node._id;}
bool operator<(const Node node) const {return _id < node._id;}
};
class Edge {
friend class FullGraphBase;
friend class Arc;
protected:
int _id;
Edge(int id) : _id(id) {}
public:
Edge() { }
Edge (Invalid) { _id = -1; }
bool operator==(const Edge edge) const {return _id == edge._id;}
bool operator!=(const Edge edge) const {return _id != edge._id;}
bool operator<(const Edge edge) const {return _id < edge._id;}
};
class Arc {
friend class FullGraphBase;
protected:
int _id;
Arc(int id) : _id(id) {}
public:
Arc() { }
Arc (Invalid) { _id = -1; }
operator Edge() const { return Edge(_id != -1 ? (_id >> 1) : -1); }
bool operator==(const Arc arc) const {return _id == arc._id;}
bool operator!=(const Arc arc) const {return _id != arc._id;}
bool operator<(const Arc arc) const {return _id < arc._id;}
};
static bool direction(Arc arc) {
return (arc._id & 1) == 1;
}
static Arc direct(Edge edge, bool dir) {
return Arc((edge._id << 1) | (dir ? 1 : 0));
}
void first(Node& node) const {
node._id = _node_num - 1;
}
static void next(Node& node) {
--node._id;
}
void first(Arc& arc) const {
arc._id = (_edge_num << 1) - 1;
}
static void next(Arc& arc) {
--arc._id;
}
void first(Edge& edge) const {
edge._id = _edge_num - 1;
}
static void next(Edge& edge) {
--edge._id;
}
void firstOut(Arc& arc, const Node& node) const {
int s = node._id, t = _node_num - 1;
if (s < t) {
arc._id = (_eid(s, t) << 1) | 1;
} else {
--t;
arc._id = (t != -1 ? (_eid(t, s) << 1) : -1);
}
}
void nextOut(Arc& arc) const {
int s, t;
_stid(arc._id, s, t);
--t;
if (s < t) {
arc._id = (_eid(s, t) << 1) | 1;
} else {
if (s == t) --t;
arc._id = (t != -1 ? (_eid(t, s) << 1) : -1);
}
}
void firstIn(Arc& arc, const Node& node) const {
int s = _node_num - 1, t = node._id;
if (s > t) {
arc._id = (_eid(t, s) << 1);
} else {
--s;
arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1);
}
}
void nextIn(Arc& arc) const {
int s, t;
_stid(arc._id, s, t);
--s;
if (s > t) {
arc._id = (_eid(t, s) << 1);
} else {
if (s == t) --s;
arc._id = (s != -1 ? (_eid(s, t) << 1) | 1 : -1);
}
}
void firstInc(Edge& edge, bool& dir, const Node& node) const {
int u = node._id, v = _node_num - 1;
if (u < v) {
edge._id = _eid(u, v);
dir = true;
} else {
--v;
edge._id = (v != -1 ? _eid(v, u) : -1);
dir = false;
}
}
void nextInc(Edge& edge, bool& dir) const {
int u, v;
if (dir) {
_uvid(edge._id, u, v);
--v;
if (u < v) {
edge._id = _eid(u, v);
} else {
--v;
edge._id = (v != -1 ? _eid(v, u) : -1);
dir = false;
}
} else {
_uvid(edge._id, v, u);
--v;
edge._id = (v != -1 ? _eid(v, u) : -1);
}
}
};
typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase;
/// \ingroup graphs
///
/// \brief An undirected full graph class.
///
/// FullGraph is a simple and fast implmenetation of undirected full
/// (complete) graphs. It contains an edge between every distinct pair
/// of nodes, therefore the number of edges is <tt>n(n-1)/2</tt>.
/// This class is completely static and it needs constant memory space.
/// Thus you can neither add nor delete nodes or edges, however
/// the structure can be resized using resize().
///
/// This type fully conforms to the \ref concepts::Graph "Graph concept".
/// Most of its member functions and nested classes are documented
/// only in the concept class.
///
/// This class provides constant time counting for nodes, edges and arcs.
///
/// \note FullDigraph and FullGraph classes are very similar,
/// but there are two differences. While FullDigraph
/// conforms only to the \ref concepts::Digraph "Digraph" concept,
/// this class conforms to the \ref concepts::Graph "Graph" concept,
/// moreover this class does not contain a loop for each
/// node as FullDigraph does.
///
/// \sa FullDigraph
class FullGraph : public ExtendedFullGraphBase {
typedef ExtendedFullGraphBase Parent;
public:
/// \brief Default constructor.
///
/// Default constructor. The number of nodes and edges will be zero.
FullGraph() { construct(0); }
/// \brief Constructor
///
/// Constructor.
/// \param n The number of the nodes.
FullGraph(int n) { construct(n); }
/// \brief Resizes the graph
///
/// This function resizes the graph. It fully destroys and
/// rebuilds the structure, therefore the maps of the graph will be
/// reallocated automatically and the previous values will be lost.
void resize(int n) {
Parent::notifier(Arc()).clear();
Parent::notifier(Edge()).clear();
Parent::notifier(Node()).clear();
construct(n);
Parent::notifier(Node()).build();
Parent::notifier(Edge()).build();
Parent::notifier(Arc()).build();
}
/// \brief Returns the node with the given index.
///
/// Returns the node with the given index. Since this structure is
/// completely static, the nodes can be indexed with integers from
/// the range <tt>[0..nodeNum()-1]</tt>.
/// The index of a node is the same as its ID.
/// \sa index()
Node operator()(int ix) const { return Parent::operator()(ix); }
/// \brief Returns the index of the given node.
///
/// Returns the index of the given node. Since this structure is
/// completely static, the nodes can be indexed with integers from
/// the range <tt>[0..nodeNum()-1]</tt>.
/// The index of a node is the same as its ID.
/// \sa operator()()
static int index(const Node& node) { return Parent::index(node); }
/// \brief Returns the arc connecting the given nodes.
///
/// Returns the arc connecting the given nodes.
Arc arc(Node s, Node t) const {
return Parent::arc(s, t);
}
/// \brief Returns the edge connecting the given nodes.
///
/// Returns the edge connecting the given nodes.
Edge edge(Node u, Node v) const {
return Parent::edge(u, v);
}
/// \brief Number of nodes.
int nodeNum() const { return Parent::nodeNum(); }
/// \brief Number of arcs.
int arcNum() const { return Parent::arcNum(); }
/// \brief Number of edges.
int edgeNum() const { return Parent::edgeNum(); }
};
class FullBpGraphBase {
protected:
int _red_num, _blue_num;
int _node_num, _edge_num;
public:
typedef FullBpGraphBase Graph;
class Node;
class Arc;
class Edge;
class Node {
friend class FullBpGraphBase;
protected:
int _id;
explicit Node(int id) { _id = id;}
public:
Node() {}
Node (Invalid) { _id = -1; }
bool operator==(const Node& node) const {return _id == node._id;}
bool operator!=(const Node& node) const {return _id != node._id;}
bool operator<(const Node& node) const {return _id < node._id;}
};
class RedNode : public Node {
friend class FullBpGraphBase;
protected:
explicit RedNode(int pid) : Node(pid) {}
public:
RedNode() {}
RedNode(const RedNode& node) : Node(node) {}
RedNode(Invalid) : Node(INVALID){}
};
class BlueNode : public Node {
friend class FullBpGraphBase;
protected:
explicit BlueNode(int pid) : Node(pid) {}
public:
BlueNode() {}
BlueNode(const BlueNode& node) : Node(node) {}
BlueNode(Invalid) : Node(INVALID){}
};
class Edge {
friend class FullBpGraphBase;
protected:
int _id;
explicit Edge(int id) { _id = id;}
public:
Edge() {}
Edge (Invalid) { _id = -1; }
bool operator==(const Edge& arc) const {return _id == arc._id;}
bool operator!=(const Edge& arc) const {return _id != arc._id;}
bool operator<(const Edge& arc) const {return _id < arc._id;}
};
class Arc {
friend class FullBpGraphBase;
protected:
int _id;
explicit Arc(int id) { _id = id;}
public:
operator Edge() const {
return _id != -1 ? edgeFromId(_id / 2) : INVALID;
}
Arc() {}
Arc (Invalid) { _id = -1; }
bool operator==(const Arc& arc) const {return _id == arc._id;}
bool operator!=(const Arc& arc) const {return _id != arc._id;}
bool operator<(const Arc& arc) const {return _id < arc._id;}
};
protected:
FullBpGraphBase()
: _red_num(0), _blue_num(0), _node_num(0), _edge_num(0) {}
void construct(int redNum, int blueNum) {
_red_num = redNum; _blue_num = blueNum;
_node_num = redNum + blueNum; _edge_num = redNum * blueNum;
}
public:
typedef True NodeNumTag;
typedef True EdgeNumTag;
typedef True ArcNumTag;
int nodeNum() const { return _node_num; }
int redNum() const { return _red_num; }
int blueNum() const { return _blue_num; }
int edgeNum() const { return _edge_num; }
int arcNum() const { return 2 * _edge_num; }
int maxNodeId() const { return _node_num - 1; }
int maxRedId() const { return _red_num - 1; }
int maxBlueId() const { return _blue_num - 1; }
int maxEdgeId() const { return _edge_num - 1; }
int maxArcId() const { return 2 * _edge_num - 1; }
bool red(Node n) const { return n._id < _red_num; }
bool blue(Node n) const { return n._id >= _red_num; }
static RedNode asRedNodeUnsafe(Node n) { return RedNode(n._id); }
static BlueNode asBlueNodeUnsafe(Node n) { return BlueNode(n._id); }
Node source(Arc a) const {
if (a._id & 1) {
return Node((a._id >> 1) % _red_num);
} else {
return Node((a._id >> 1) / _red_num + _red_num);
}
}
Node target(Arc a) const {
if (a._id & 1) {
return Node((a._id >> 1) / _red_num + _red_num);
} else {
return Node((a._id >> 1) % _red_num);
}
}
RedNode redNode(Edge e) const {
return RedNode(e._id % _red_num);
}
BlueNode blueNode(Edge e) const {
return BlueNode(e._id / _red_num + _red_num);
}
static bool direction(Arc a) {
return (a._id & 1) == 1;
}
static Arc direct(Edge e, bool d) {
return Arc(e._id * 2 + (d ? 1 : 0));
}
void first(Node& node) const {
node._id = _node_num - 1;
}
static void next(Node& node) {
--node._id;
}
void first(RedNode& node) const {
node._id = _red_num - 1;
}
static void next(RedNode& node) {
--node._id;
}
void first(BlueNode& node) const {
if (_red_num == _node_num) node._id = -1;
else node._id = _node_num - 1;
}
void next(BlueNode& node) const {
if (node._id == _red_num) node._id = -1;
else --node._id;
}
void first(Arc& arc) const {
arc._id = 2 * _edge_num - 1;
}
static void next(Arc& arc) {
--arc._id;
}
void first(Edge& arc) const {
arc._id = _edge_num - 1;
}
static void next(Edge& arc) {
--arc._id;
}
void firstOut(Arc &a, const Node& v) const {
if (v._id < _red_num) {
a._id = 2 * (v._id + _red_num * (_blue_num - 1)) + 1;
} else {
a._id = 2 * (_red_num - 1 + _red_num * (v._id - _red_num));
}
}
void nextOut(Arc &a) const {
if (a._id & 1) {
a._id -= 2 * _red_num;
if (a._id < 0) a._id = -1;
} else {
if (a._id % (2 * _red_num) == 0) a._id = -1;
else a._id -= 2;
}
}
void firstIn(Arc &a, const Node& v) const {
if (v._id < _red_num) {
a._id = 2 * (v._id + _red_num * (_blue_num - 1));
} else {
a._id = 2 * (_red_num - 1 + _red_num * (v._id - _red_num)) + 1;
}
}
void nextIn(Arc &a) const {
if (a._id & 1) {
if (a._id % (2 * _red_num) == 1) a._id = -1;
else a._id -= 2;
} else {
a._id -= 2 * _red_num;
if (a._id < 0) a._id = -1;
}
}
void firstInc(Edge &e, bool& d, const Node& v) const {
if (v._id < _red_num) {
d = true;
e._id = v._id + _red_num * (_blue_num - 1);
} else {
d = false;
e._id = _red_num - 1 + _red_num * (v._id - _red_num);
}
}
void nextInc(Edge &e, bool& d) const {
if (d) {
e._id -= _red_num;
if (e._id < 0) e._id = -1;
} else {
if (e._id % _red_num == 0) e._id = -1;
else --e._id;
}
}
static int id(const Node& v) { return v._id; }
int id(const RedNode& v) const { return v._id; }
int id(const BlueNode& v) const { return v._id - _red_num; }
static int id(Arc e) { return e._id; }
static int id(Edge e) { return e._id; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
static Edge edgeFromId(int id) { return Edge(id);}
bool valid(Node n) const {
return n._id >= 0 && n._id < _node_num;
}
bool valid(Arc a) const {
return a._id >= 0 && a._id < 2 * _edge_num;
}
bool valid(Edge e) const {
return e._id >= 0 && e._id < _edge_num;
}
RedNode redNode(int index) const {
return RedNode(index);
}
int index(RedNode n) const {
return n._id;
}
BlueNode blueNode(int index) const {
return BlueNode(index + _red_num);
}
int index(BlueNode n) const {
return n._id - _red_num;
}
void clear() {
_red_num = 0; _blue_num = 0;
_node_num = 0; _edge_num = 0;
}
Edge edge(const Node& u, const Node& v) const {
if (u._id < _red_num) {
if (v._id < _red_num) {
return Edge(-1);
} else {
return Edge(u._id + _red_num * (v._id - _red_num));
}
} else {
if (v._id < _red_num) {
return Edge(v._id + _red_num * (u._id - _red_num));
} else {
return Edge(-1);
}
}
}
Arc arc(const Node& u, const Node& v) const {
if (u._id < _red_num) {
if (v._id < _red_num) {
return Arc(-1);
} else {
return Arc(2 * (u._id + _red_num * (v._id - _red_num)) + 1);
}
} else {
if (v._id < _red_num) {
return Arc(2 * (v._id + _red_num * (u._id - _red_num)));
} else {
return Arc(-1);
}
}
}
typedef True FindEdgeTag;
typedef True FindArcTag;
Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
return prev != INVALID ? INVALID : edge(u, v);
}
Arc findArc(Node s, Node t, Arc prev = INVALID) const {
return prev != INVALID ? INVALID : arc(s, t);
}
};
typedef BpGraphExtender<FullBpGraphBase> ExtendedFullBpGraphBase;
/// \ingroup graphs
///
/// \brief An undirected full bipartite graph class.
///
/// FullBpGraph is a simple and fast implmenetation of undirected
/// full bipartite graphs. It contains an edge between every
/// red-blue pairs of nodes, therefore the number of edges is
/// <tt>nr*nb</tt>. This class is completely static and it needs
/// constant memory space. Thus you can neither add nor delete
/// nodes or edges, however the structure can be resized using
/// resize().
///
/// This type fully conforms to the \ref concepts::BpGraph "BpGraph concept".
/// Most of its member functions and nested classes are documented
/// only in the concept class.
///
/// This class provides constant time counting for nodes, edges and arcs.
///
/// \sa FullGraph
class FullBpGraph : public ExtendedFullBpGraphBase {
public:
typedef ExtendedFullBpGraphBase Parent;
/// \brief Default constructor.
///
/// Default constructor. The number of nodes and edges will be zero.
FullBpGraph() { construct(0, 0); }
/// \brief Constructor
///
/// Constructor.
/// \param redNum The number of the red nodes.
/// \param blueNum The number of the blue nodes.
FullBpGraph(int redNum, int blueNum) { construct(redNum, blueNum); }
/// \brief Resizes the graph
///
/// This function resizes the graph. It fully destroys and
/// rebuilds the structure, therefore the maps of the graph will be
/// reallocated automatically and the previous values will be lost.
void resize(int redNum, int blueNum) {
Parent::notifier(Arc()).clear();
Parent::notifier(Edge()).clear();
Parent::notifier(Node()).clear();
Parent::notifier(BlueNode()).clear();
Parent::notifier(RedNode()).clear();
construct(redNum, blueNum);
Parent::notifier(RedNode()).build();
Parent::notifier(BlueNode()).build();
Parent::notifier(Node()).build();
Parent::notifier(Edge()).build();
Parent::notifier(Arc()).build();
}
using Parent::redNode;
using Parent::blueNode;
/// \brief Returns the red node with the given index.
///
/// Returns the red node with the given index. Since this
/// structure is completely static, the red nodes can be indexed
/// with integers from the range <tt>[0..redNum()-1]</tt>.
/// \sa redIndex()
RedNode redNode(int index) const { return Parent::redNode(index); }
/// \brief Returns the index of the given red node.
///
/// Returns the index of the given red node. Since this structure
/// is completely static, the red nodes can be indexed with
/// integers from the range <tt>[0..redNum()-1]</tt>.
///
/// \sa operator()()
int index(RedNode node) const { return Parent::index(node); }
/// \brief Returns the blue node with the given index.
///
/// Returns the blue node with the given index. Since this
/// structure is completely static, the blue nodes can be indexed
/// with integers from the range <tt>[0..blueNum()-1]</tt>.
/// \sa blueIndex()
BlueNode blueNode(int index) const { return Parent::blueNode(index); }
/// \brief Returns the index of the given blue node.
///
/// Returns the index of the given blue node. Since this structure
/// is completely static, the blue nodes can be indexed with
/// integers from the range <tt>[0..blueNum()-1]</tt>.
///
/// \sa operator()()
int index(BlueNode node) const { return Parent::index(node); }
/// \brief Returns the edge which connects the given nodes.
///
/// Returns the edge which connects the given nodes.
Edge edge(const Node& u, const Node& v) const {
return Parent::edge(u, v);
}
/// \brief Returns the arc which connects the given nodes.
///
/// Returns the arc which connects the given nodes.
Arc arc(const Node& u, const Node& v) const {
return Parent::arc(u, v);
}
/// \brief Number of nodes.
int nodeNum() const { return Parent::nodeNum(); }
/// \brief Number of red nodes.
int redNum() const { return Parent::redNum(); }
/// \brief Number of blue nodes.
int blueNum() const { return Parent::blueNum(); }
/// \brief Number of arcs.
int arcNum() const { return Parent::arcNum(); }
/// \brief Number of edges.
int edgeNum() const { return Parent::edgeNum(); }
};
} //namespace lemon
#endif //LEMON_FULL_GRAPH_H