534 lines
17 KiB
C
534 lines
17 KiB
C
|
/* -*- mode: C++; indent-tabs-mode: nil; -*-
|
||
|
*
|
||
|
* This file is a part of LEMON, a generic C++ optimization library.
|
||
|
*
|
||
|
* Copyright (C) 2003-2013
|
||
|
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
|
||
|
* (Egervary Research Group on Combinatorial Optimization, EGRES).
|
||
|
*
|
||
|
* Permission to use, modify and distribute this software is granted
|
||
|
* provided that this copyright notice appears in all copies. For
|
||
|
* precise terms see the accompanying LICENSE file.
|
||
|
*
|
||
|
* This software is provided "AS IS" with no warranty of any kind,
|
||
|
* express or implied, and with no claim as to its suitability for any
|
||
|
* purpose.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#ifndef LEMON_INSERTION_TSP_H
|
||
|
#define LEMON_INSERTION_TSP_H
|
||
|
|
||
|
/// \ingroup tsp
|
||
|
/// \file
|
||
|
/// \brief Insertion algorithm for symmetric TSP
|
||
|
|
||
|
#include <vector>
|
||
|
#include <functional>
|
||
|
#include <lemon/full_graph.h>
|
||
|
#include <lemon/maps.h>
|
||
|
#include <lemon/random.h>
|
||
|
|
||
|
namespace lemon {
|
||
|
|
||
|
/// \ingroup tsp
|
||
|
///
|
||
|
/// \brief Insertion algorithm for symmetric TSP.
|
||
|
///
|
||
|
/// InsertionTsp implements the insertion heuristic for solving
|
||
|
/// symmetric \ref tsp "TSP".
|
||
|
///
|
||
|
/// This is a fast and effective tour construction method that has
|
||
|
/// many variants.
|
||
|
/// It starts with a subtour containing a few nodes of the graph and it
|
||
|
/// iteratively inserts the other nodes into this subtour according to a
|
||
|
/// certain node selection rule.
|
||
|
///
|
||
|
/// This method is among the fastest TSP algorithms, and it typically
|
||
|
/// provides quite good solutions (usually much better than
|
||
|
/// \ref NearestNeighborTsp and \ref GreedyTsp).
|
||
|
///
|
||
|
/// InsertionTsp implements four different node selection rules,
|
||
|
/// from which the most effective one (\e farthest \e node \e selection)
|
||
|
/// is used by default.
|
||
|
/// With this choice, the algorithm runs in O(n<sup>2</sup>) time.
|
||
|
/// For more information, see \ref SelectionRule.
|
||
|
///
|
||
|
/// \tparam CM Type of the cost map.
|
||
|
template <typename CM>
|
||
|
class InsertionTsp
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
/// Type of the cost map
|
||
|
typedef CM CostMap;
|
||
|
/// Type of the edge costs
|
||
|
typedef typename CM::Value Cost;
|
||
|
|
||
|
private:
|
||
|
|
||
|
GRAPH_TYPEDEFS(FullGraph);
|
||
|
|
||
|
const FullGraph &_gr;
|
||
|
const CostMap &_cost;
|
||
|
std::vector<Node> _notused;
|
||
|
std::vector<Node> _tour;
|
||
|
Cost _sum;
|
||
|
|
||
|
public:
|
||
|
|
||
|
/// \brief Constants for specifying the node selection rule.
|
||
|
///
|
||
|
/// Enum type containing constants for specifying the node selection
|
||
|
/// rule for the \ref run() function.
|
||
|
///
|
||
|
/// During the algorithm, nodes are selected for addition to the current
|
||
|
/// subtour according to the applied rule.
|
||
|
/// The FARTHEST method is one of the fastest selection rules, and
|
||
|
/// it is typically the most effective, thus it is the default
|
||
|
/// option. The RANDOM rule usually gives slightly worse results,
|
||
|
/// but it is more robust.
|
||
|
///
|
||
|
/// The desired selection rule can be specified as a parameter of the
|
||
|
/// \ref run() function.
|
||
|
enum SelectionRule {
|
||
|
|
||
|
/// An unvisited node having minimum distance from the current
|
||
|
/// subtour is selected at each step.
|
||
|
/// The algorithm runs in O(n<sup>2</sup>) time using this
|
||
|
/// selection rule.
|
||
|
NEAREST,
|
||
|
|
||
|
/// An unvisited node having maximum distance from the current
|
||
|
/// subtour is selected at each step.
|
||
|
/// The algorithm runs in O(n<sup>2</sup>) time using this
|
||
|
/// selection rule.
|
||
|
FARTHEST,
|
||
|
|
||
|
/// An unvisited node whose insertion results in the least
|
||
|
/// increase of the subtour's total cost is selected at each step.
|
||
|
/// The algorithm runs in O(n<sup>3</sup>) time using this
|
||
|
/// selection rule, but in most cases, it is almost as fast as
|
||
|
/// with other rules.
|
||
|
CHEAPEST,
|
||
|
|
||
|
/// An unvisited node is selected randomly without any evaluation
|
||
|
/// at each step.
|
||
|
/// The global \ref rnd "random number generator instance" is used.
|
||
|
/// You can seed it before executing the algorithm, if you
|
||
|
/// would like to.
|
||
|
/// The algorithm runs in O(n<sup>2</sup>) time using this
|
||
|
/// selection rule.
|
||
|
RANDOM
|
||
|
};
|
||
|
|
||
|
public:
|
||
|
|
||
|
/// \brief Constructor
|
||
|
///
|
||
|
/// Constructor.
|
||
|
/// \param gr The \ref FullGraph "full graph" the algorithm runs on.
|
||
|
/// \param cost The cost map.
|
||
|
InsertionTsp(const FullGraph &gr, const CostMap &cost)
|
||
|
: _gr(gr), _cost(cost) {}
|
||
|
|
||
|
/// \name Execution Control
|
||
|
/// @{
|
||
|
|
||
|
/// \brief Runs the algorithm.
|
||
|
///
|
||
|
/// This function runs the algorithm.
|
||
|
///
|
||
|
/// \param rule The node selection rule. For more information, see
|
||
|
/// \ref SelectionRule.
|
||
|
///
|
||
|
/// \return The total cost of the found tour.
|
||
|
Cost run(SelectionRule rule = FARTHEST) {
|
||
|
_tour.clear();
|
||
|
|
||
|
if (_gr.nodeNum() == 0) return _sum = 0;
|
||
|
else if (_gr.nodeNum() == 1) {
|
||
|
_tour.push_back(_gr(0));
|
||
|
return _sum = 0;
|
||
|
}
|
||
|
|
||
|
switch (rule) {
|
||
|
case NEAREST:
|
||
|
init(true);
|
||
|
start<ComparingSelection<std::less<Cost> >,
|
||
|
DefaultInsertion>();
|
||
|
break;
|
||
|
case FARTHEST:
|
||
|
init(false);
|
||
|
start<ComparingSelection<std::greater<Cost> >,
|
||
|
DefaultInsertion>();
|
||
|
break;
|
||
|
case CHEAPEST:
|
||
|
init(true);
|
||
|
start<CheapestSelection, CheapestInsertion>();
|
||
|
break;
|
||
|
case RANDOM:
|
||
|
init(true);
|
||
|
start<RandomSelection, DefaultInsertion>();
|
||
|
break;
|
||
|
}
|
||
|
return _sum;
|
||
|
}
|
||
|
|
||
|
/// @}
|
||
|
|
||
|
/// \name Query Functions
|
||
|
/// @{
|
||
|
|
||
|
/// \brief The total cost of the found tour.
|
||
|
///
|
||
|
/// This function returns the total cost of the found tour.
|
||
|
///
|
||
|
/// \pre run() must be called before using this function.
|
||
|
Cost tourCost() const {
|
||
|
return _sum;
|
||
|
}
|
||
|
|
||
|
/// \brief Returns a const reference to the node sequence of the
|
||
|
/// found tour.
|
||
|
///
|
||
|
/// This function returns a const reference to a vector
|
||
|
/// that stores the node sequence of the found tour.
|
||
|
///
|
||
|
/// \pre run() must be called before using this function.
|
||
|
const std::vector<Node>& tourNodes() const {
|
||
|
return _tour;
|
||
|
}
|
||
|
|
||
|
/// \brief Gives back the node sequence of the found tour.
|
||
|
///
|
||
|
/// This function copies the node sequence of the found tour into
|
||
|
/// an STL container through the given output iterator. The
|
||
|
/// <tt>value_type</tt> of the container must be <tt>FullGraph::Node</tt>.
|
||
|
/// For example,
|
||
|
/// \code
|
||
|
/// std::vector<FullGraph::Node> nodes(countNodes(graph));
|
||
|
/// tsp.tourNodes(nodes.begin());
|
||
|
/// \endcode
|
||
|
/// or
|
||
|
/// \code
|
||
|
/// std::list<FullGraph::Node> nodes;
|
||
|
/// tsp.tourNodes(std::back_inserter(nodes));
|
||
|
/// \endcode
|
||
|
///
|
||
|
/// \pre run() must be called before using this function.
|
||
|
template <typename Iterator>
|
||
|
void tourNodes(Iterator out) const {
|
||
|
std::copy(_tour.begin(), _tour.end(), out);
|
||
|
}
|
||
|
|
||
|
/// \brief Gives back the found tour as a path.
|
||
|
///
|
||
|
/// This function copies the found tour as a list of arcs/edges into
|
||
|
/// the given \ref lemon::concepts::Path "path structure".
|
||
|
///
|
||
|
/// \pre run() must be called before using this function.
|
||
|
template <typename Path>
|
||
|
void tour(Path &path) const {
|
||
|
path.clear();
|
||
|
for (int i = 0; i < int(_tour.size()) - 1; ++i) {
|
||
|
path.addBack(_gr.arc(_tour[i], _tour[i+1]));
|
||
|
}
|
||
|
if (int(_tour.size()) >= 2) {
|
||
|
path.addBack(_gr.arc(_tour.back(), _tour.front()));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// @}
|
||
|
|
||
|
private:
|
||
|
|
||
|
// Initializes the algorithm
|
||
|
void init(bool min) {
|
||
|
Edge min_edge = min ? mapMin(_gr, _cost) : mapMax(_gr, _cost);
|
||
|
|
||
|
_tour.clear();
|
||
|
_tour.push_back(_gr.u(min_edge));
|
||
|
_tour.push_back(_gr.v(min_edge));
|
||
|
|
||
|
_notused.clear();
|
||
|
for (NodeIt n(_gr); n!=INVALID; ++n) {
|
||
|
if (n != _gr.u(min_edge) && n != _gr.v(min_edge)) {
|
||
|
_notused.push_back(n);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
_sum = _cost[min_edge] * 2;
|
||
|
}
|
||
|
|
||
|
// Executes the algorithm
|
||
|
template <class SelectionFunctor, class InsertionFunctor>
|
||
|
void start() {
|
||
|
SelectionFunctor selectNode(_gr, _cost, _tour, _notused);
|
||
|
InsertionFunctor insertNode(_gr, _cost, _tour, _sum);
|
||
|
|
||
|
for (int i=0; i<_gr.nodeNum()-2; ++i) {
|
||
|
insertNode.insert(selectNode.select());
|
||
|
}
|
||
|
|
||
|
_sum = _cost[_gr.edge(_tour.back(), _tour.front())];
|
||
|
for (int i = 0; i < int(_tour.size())-1; ++i) {
|
||
|
_sum += _cost[_gr.edge(_tour[i], _tour[i+1])];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Implementation of the nearest and farthest selection rule
|
||
|
template <typename Comparator>
|
||
|
class ComparingSelection {
|
||
|
public:
|
||
|
ComparingSelection(const FullGraph &gr, const CostMap &cost,
|
||
|
std::vector<Node> &tour, std::vector<Node> ¬used)
|
||
|
: _gr(gr), _cost(cost), _tour(tour), _notused(notused),
|
||
|
_dist(gr, 0), _compare()
|
||
|
{
|
||
|
// Compute initial distances for the unused nodes
|
||
|
for (unsigned int i=0; i<_notused.size(); ++i) {
|
||
|
Node u = _notused[i];
|
||
|
Cost min_dist = _cost[_gr.edge(u, _tour[0])];
|
||
|
for (unsigned int j=1; j<_tour.size(); ++j) {
|
||
|
Cost curr = _cost[_gr.edge(u, _tour[j])];
|
||
|
if (curr < min_dist) {
|
||
|
min_dist = curr;
|
||
|
}
|
||
|
}
|
||
|
_dist[u] = min_dist;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Node select() {
|
||
|
|
||
|
// Select an used node with minimum distance
|
||
|
Cost ins_dist = 0;
|
||
|
int ins_node = -1;
|
||
|
for (unsigned int i=0; i<_notused.size(); ++i) {
|
||
|
Cost curr = _dist[_notused[i]];
|
||
|
if (_compare(curr, ins_dist) || ins_node == -1) {
|
||
|
ins_dist = curr;
|
||
|
ins_node = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Remove the selected node from the unused vector
|
||
|
Node sn = _notused[ins_node];
|
||
|
_notused[ins_node] = _notused.back();
|
||
|
_notused.pop_back();
|
||
|
|
||
|
// Update the distances of the remaining nodes
|
||
|
for (unsigned int i=0; i<_notused.size(); ++i) {
|
||
|
Node u = _notused[i];
|
||
|
Cost nc = _cost[_gr.edge(sn, u)];
|
||
|
if (nc < _dist[u]) {
|
||
|
_dist[u] = nc;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return sn;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
const FullGraph &_gr;
|
||
|
const CostMap &_cost;
|
||
|
std::vector<Node> &_tour;
|
||
|
std::vector<Node> &_notused;
|
||
|
FullGraph::NodeMap<Cost> _dist;
|
||
|
Comparator _compare;
|
||
|
};
|
||
|
|
||
|
// Implementation of the cheapest selection rule
|
||
|
class CheapestSelection {
|
||
|
private:
|
||
|
Cost costDiff(Node u, Node v, Node w) const {
|
||
|
return
|
||
|
_cost[_gr.edge(u, w)] +
|
||
|
_cost[_gr.edge(v, w)] -
|
||
|
_cost[_gr.edge(u, v)];
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
CheapestSelection(const FullGraph &gr, const CostMap &cost,
|
||
|
std::vector<Node> &tour, std::vector<Node> ¬used)
|
||
|
: _gr(gr), _cost(cost), _tour(tour), _notused(notused),
|
||
|
_ins_cost(gr, 0), _ins_pos(gr, -1)
|
||
|
{
|
||
|
// Compute insertion cost and position for the unused nodes
|
||
|
for (unsigned int i=0; i<_notused.size(); ++i) {
|
||
|
Node u = _notused[i];
|
||
|
Cost min_cost = costDiff(_tour.back(), _tour.front(), u);
|
||
|
int min_pos = 0;
|
||
|
for (unsigned int j=1; j<_tour.size(); ++j) {
|
||
|
Cost curr_cost = costDiff(_tour[j-1], _tour[j], u);
|
||
|
if (curr_cost < min_cost) {
|
||
|
min_cost = curr_cost;
|
||
|
min_pos = j;
|
||
|
}
|
||
|
}
|
||
|
_ins_cost[u] = min_cost;
|
||
|
_ins_pos[u] = min_pos;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Cost select() {
|
||
|
|
||
|
// Select an used node with minimum insertion cost
|
||
|
Cost min_cost = 0;
|
||
|
int min_node = -1;
|
||
|
for (unsigned int i=0; i<_notused.size(); ++i) {
|
||
|
Cost curr_cost = _ins_cost[_notused[i]];
|
||
|
if (curr_cost < min_cost || min_node == -1) {
|
||
|
min_cost = curr_cost;
|
||
|
min_node = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Remove the selected node from the unused vector
|
||
|
Node sn = _notused[min_node];
|
||
|
_notused[min_node] = _notused.back();
|
||
|
_notused.pop_back();
|
||
|
|
||
|
// Insert the selected node into the tour
|
||
|
const int ipos = _ins_pos[sn];
|
||
|
_tour.insert(_tour.begin() + ipos, sn);
|
||
|
|
||
|
// Update the insertion cost and position of the remaining nodes
|
||
|
for (unsigned int i=0; i<_notused.size(); ++i) {
|
||
|
Node u = _notused[i];
|
||
|
Cost curr_cost = _ins_cost[u];
|
||
|
int curr_pos = _ins_pos[u];
|
||
|
|
||
|
int ipos_prev = ipos == 0 ? _tour.size()-1 : ipos-1;
|
||
|
int ipos_next = ipos == int(_tour.size())-1 ? 0 : ipos+1;
|
||
|
Cost nc1 = costDiff(_tour[ipos_prev], _tour[ipos], u);
|
||
|
Cost nc2 = costDiff(_tour[ipos], _tour[ipos_next], u);
|
||
|
|
||
|
if (nc1 <= curr_cost || nc2 <= curr_cost) {
|
||
|
// A new position is better than the old one
|
||
|
if (nc1 <= nc2) {
|
||
|
curr_cost = nc1;
|
||
|
curr_pos = ipos;
|
||
|
} else {
|
||
|
curr_cost = nc2;
|
||
|
curr_pos = ipos_next;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
if (curr_pos == ipos) {
|
||
|
// The minimum should be found again
|
||
|
curr_cost = costDiff(_tour.back(), _tour.front(), u);
|
||
|
curr_pos = 0;
|
||
|
for (unsigned int j=1; j<_tour.size(); ++j) {
|
||
|
Cost tmp_cost = costDiff(_tour[j-1], _tour[j], u);
|
||
|
if (tmp_cost < curr_cost) {
|
||
|
curr_cost = tmp_cost;
|
||
|
curr_pos = j;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else if (curr_pos > ipos) {
|
||
|
++curr_pos;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
_ins_cost[u] = curr_cost;
|
||
|
_ins_pos[u] = curr_pos;
|
||
|
}
|
||
|
|
||
|
return min_cost;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
const FullGraph &_gr;
|
||
|
const CostMap &_cost;
|
||
|
std::vector<Node> &_tour;
|
||
|
std::vector<Node> &_notused;
|
||
|
FullGraph::NodeMap<Cost> _ins_cost;
|
||
|
FullGraph::NodeMap<int> _ins_pos;
|
||
|
};
|
||
|
|
||
|
// Implementation of the random selection rule
|
||
|
class RandomSelection {
|
||
|
public:
|
||
|
RandomSelection(const FullGraph &, const CostMap &,
|
||
|
std::vector<Node> &, std::vector<Node> ¬used)
|
||
|
: _notused(notused) {}
|
||
|
|
||
|
Node select() const {
|
||
|
const int index = rnd[_notused.size()];
|
||
|
Node n = _notused[index];
|
||
|
_notused[index] = _notused.back();
|
||
|
_notused.pop_back();
|
||
|
return n;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
std::vector<Node> &_notused;
|
||
|
};
|
||
|
|
||
|
|
||
|
// Implementation of the default insertion method
|
||
|
class DefaultInsertion {
|
||
|
private:
|
||
|
Cost costDiff(Node u, Node v, Node w) const {
|
||
|
return
|
||
|
_cost[_gr.edge(u, w)] +
|
||
|
_cost[_gr.edge(v, w)] -
|
||
|
_cost[_gr.edge(u, v)];
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
DefaultInsertion(const FullGraph &gr, const CostMap &cost,
|
||
|
std::vector<Node> &tour, Cost &total_cost) :
|
||
|
_gr(gr), _cost(cost), _tour(tour), _total(total_cost) {}
|
||
|
|
||
|
void insert(Node n) const {
|
||
|
int min = 0;
|
||
|
Cost min_val =
|
||
|
costDiff(_tour.front(), _tour.back(), n);
|
||
|
|
||
|
for (unsigned int i=1; i<_tour.size(); ++i) {
|
||
|
Cost tmp = costDiff(_tour[i-1], _tour[i], n);
|
||
|
if (tmp < min_val) {
|
||
|
min = i;
|
||
|
min_val = tmp;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
_tour.insert(_tour.begin()+min, n);
|
||
|
_total += min_val;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
const FullGraph &_gr;
|
||
|
const CostMap &_cost;
|
||
|
std::vector<Node> &_tour;
|
||
|
Cost &_total;
|
||
|
};
|
||
|
|
||
|
// Implementation of a special insertion method for the cheapest
|
||
|
// selection rule
|
||
|
class CheapestInsertion {
|
||
|
TEMPLATE_GRAPH_TYPEDEFS(FullGraph);
|
||
|
public:
|
||
|
CheapestInsertion(const FullGraph &, const CostMap &,
|
||
|
std::vector<Node> &, Cost &total_cost) :
|
||
|
_total(total_cost) {}
|
||
|
|
||
|
void insert(Cost diff) const {
|
||
|
_total += diff;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
Cost &_total;
|
||
|
};
|
||
|
|
||
|
};
|
||
|
|
||
|
}; // namespace lemon
|
||
|
|
||
|
#endif
|