dust3d/src/riggenerator.cpp

1186 lines
49 KiB
C++
Raw Normal View History

#include <tbb/parallel_for.h>
#include <tbb/blocked_range.h>
#include <QGuiApplication>
#include <QDebug>
#include <QElapsedTimer>
#include <cmath>
#include <QVector2D>
#include <queue>
#include <iostream>
#include <unordered_map>
#include "riggenerator.h"
#include "util.h"
#include "boundingboxmesh.h"
#include "theme.h"
class GroupEndpointsStitcher
{
public:
GroupEndpointsStitcher(const std::vector<OutcomeNode> *nodes,
const std::vector<std::unordered_set<size_t>> *groups,
const std::vector<std::pair<size_t, size_t>> *groupEndpoints,
std::vector<std::pair<size_t, float>> *stitchResult) :
m_nodes(nodes),
m_groups(groups),
m_groupEndpoints(groupEndpoints),
m_stitchResult(stitchResult)
{
}
void operator()(const tbb::blocked_range<size_t> &range) const
{
for (size_t i = range.begin(); i != range.end(); ++i) {
std::vector<std::pair<size_t, float>> distance2WithNodes;
const auto &endpoint = (*m_groupEndpoints)[i];
const auto &endpointNode = (*m_nodes)[endpoint.second];
for (size_t groupIndex = 0; groupIndex < m_groups->size(); ++groupIndex) {
if (endpoint.first == groupIndex)
continue;
for (const auto &j: (*m_groups)[groupIndex]) {
const auto &node = (*m_nodes)[j];
if (node.partId == endpointNode.partId ||
node.mirroredByPartId == endpointNode.partId ||
node.mirrorFromPartId == endpointNode.partId) {
continue;
}
distance2WithNodes.push_back({j,
(endpointNode.origin - node.origin).lengthSquared()});
}
}
if (distance2WithNodes.empty())
continue;
(*m_stitchResult)[i] = *std::min_element(distance2WithNodes.begin(), distance2WithNodes.end(), [](const std::pair<size_t, float> &first, const std::pair<size_t, float> &second) {
return first.second < second.second;
});
}
}
private:
const std::vector<OutcomeNode> *m_nodes = nullptr;
const std::vector<std::unordered_set<size_t>> *m_groups = nullptr;
const std::vector<std::pair<size_t, size_t>> *m_groupEndpoints = nullptr;
std::vector<std::pair<size_t, float>> *m_stitchResult = nullptr;
};
RigGenerator::RigGenerator(RigType rigType, const Outcome &outcome) :
m_rigType(rigType),
m_outcome(new Outcome(outcome))
{
}
RigGenerator::~RigGenerator()
{
delete m_outcome;
delete m_resultMesh;
delete m_resultBones;
delete m_resultWeights;
}
Outcome *RigGenerator::takeOutcome()
{
Outcome *outcome = m_outcome;
m_outcome = nullptr;
return outcome;
}
std::vector<RiggerBone> *RigGenerator::takeResultBones()
{
std::vector<RiggerBone> *resultBones = m_resultBones;
m_resultBones = nullptr;
return resultBones;
}
std::map<int, RiggerVertexWeights> *RigGenerator::takeResultWeights()
{
std::map<int, RiggerVertexWeights> *resultWeights = m_resultWeights;
m_resultWeights = nullptr;
return resultWeights;
}
MeshLoader *RigGenerator::takeResultMesh()
{
MeshLoader *resultMesh = m_resultMesh;
m_resultMesh = nullptr;
return resultMesh;
}
bool RigGenerator::isSucceed()
{
return m_isSucceed;
}
const std::vector<std::pair<QtMsgType, QString>> &RigGenerator::messages()
{
return m_messages;
}
void RigGenerator::groupNodeIndices(const std::map<size_t, std::unordered_set<size_t>> &neighborMap,
std::vector<std::unordered_set<size_t>> *groups)
{
std::unordered_set<size_t> visited;
for (const auto &it: neighborMap) {
if (visited.find(it.first) != visited.end())
continue;
std::unordered_set<size_t> group;
std::queue<size_t> waitQueue;
visited.insert(it.first);
group.insert(it.first);
waitQueue.push(it.first);
while (!waitQueue.empty()) {
auto nodeIndex = waitQueue.front();
waitQueue.pop();
auto findNeighbor = neighborMap.find(nodeIndex);
if (findNeighbor != neighborMap.end()) {
for (const auto &neighbor: findNeighbor->second) {
if (visited.find(neighbor) == visited.end()) {
visited.insert(neighbor);
group.insert(neighbor);
waitQueue.push(neighbor);
}
}
}
}
groups->push_back(group);
}
}
void RigGenerator::buildNeighborMap()
{
if (nullptr == m_outcome->triangleSourceNodes())
return;
std::map<std::pair<QUuid, QUuid>, size_t> nodeIdToIndexMap;
for (size_t i = 0; i < m_outcome->bodyNodes.size(); ++i) {
const auto &node = m_outcome->bodyNodes[i];
nodeIdToIndexMap.insert({{node.partId, node.nodeId}, i});
m_neighborMap.insert({i, {}});
}
for (const auto &it: m_outcome->bodyEdges) {
const auto &findSource = nodeIdToIndexMap.find(it.first);
if (findSource == nodeIdToIndexMap.end())
continue;
const auto &findTarget = nodeIdToIndexMap.find(it.second);
if (findTarget == nodeIdToIndexMap.end())
continue;
m_neighborMap[findSource->second].insert(findTarget->second);
m_neighborMap[findTarget->second].insert(findSource->second);
}
//std::vector<std::tuple<QVector3D, QVector3D, float, float, QColor>> debugBoxes;
while (true) {
std::vector<std::unordered_set<size_t>> groups;
groupNodeIndices(m_neighborMap, &groups);
if (groups.size() < 2)
break;
std::vector<std::pair<size_t, size_t>> groupEndpoints;
for (size_t groupIndex = 0; groupIndex < groups.size(); ++groupIndex) {
const auto &group = groups[groupIndex];
for (const auto &nodeIndex: group) {
if (m_neighborMap[nodeIndex].size() >= 2)
continue;
groupEndpoints.push_back({groupIndex, nodeIndex});
}
}
if (groupEndpoints.empty())
break;
std::vector<std::pair<size_t, float>> stitchResult(groupEndpoints.size(),
{m_outcome->bodyNodes.size(), std::numeric_limits<float>::max()});
tbb::parallel_for(tbb::blocked_range<size_t>(0, groupEndpoints.size()),
GroupEndpointsStitcher(&m_outcome->bodyNodes, &groups, &groupEndpoints,
&stitchResult));
auto minDistantMatch = std::min_element(stitchResult.begin(), stitchResult.end(), [&](
const std::pair<size_t, float> &first,
const std::pair<size_t, float> &second) {
return first.second < second.second;
});
if (minDistantMatch->first == m_outcome->bodyNodes.size())
break;
const auto &fromNodeIndex = groupEndpoints[minDistantMatch - stitchResult.begin()].second;
const auto &toNodeIndex = minDistantMatch->first;
m_neighborMap[fromNodeIndex].insert(toNodeIndex);
m_neighborMap[toNodeIndex].insert(fromNodeIndex);
//const auto &fromNode = m_outcome->bodyNodes[fromNodeIndex];
//const auto &toNode = m_outcome->bodyNodes[toNodeIndex];
//debugBoxes.push_back(std::make_tuple(fromNode.origin, toNode.origin,
// fromNode.radius, toNode.radius, Qt::red));
}
//m_debugEdgeVertices = buildBoundingBoxMeshEdges(debugBoxes, &m_debugEdgeVerticesNum);
}
void RigGenerator::buildBoneNodeChain()
{
std::vector<std::tuple<size_t, std::unordered_set<size_t>, bool>> segments;
std::unordered_set<size_t> middle;
size_t middleStartNodeIndex = m_outcome->bodyNodes.size();
for (size_t nodeIndex = 0; nodeIndex < m_outcome->bodyNodes.size(); ++nodeIndex) {
const auto &node = m_outcome->bodyNodes[nodeIndex];
if (!BoneMarkIsBranchNode(node.boneMark))
continue;
m_branchNodesMapByMark[(int)node.boneMark].push_back(nodeIndex);
if (BoneMark::Neck == node.boneMark) {
if (middleStartNodeIndex == m_outcome->bodyNodes.size())
middleStartNodeIndex = nodeIndex;
} else if (BoneMark::Tail == node.boneMark) {
middleStartNodeIndex = nodeIndex;
}
std::unordered_set<size_t> left;
std::unordered_set<size_t> right;
splitByNodeIndex(nodeIndex, &left, &right);
if (left.size() > right.size())
std::swap(left, right);
for (const auto &it: right)
middle.insert(it);
segments.push_back({nodeIndex, left, false});
}
for (const auto &it: segments) {
const auto &nodeIndex = std::get<0>(it);
const auto &left = std::get<1>(it);
for (const auto &it: left)
middle.erase(it);
middle.erase(nodeIndex);
}
middle.erase(middleStartNodeIndex);
if (middleStartNodeIndex != m_outcome->bodyNodes.size())
segments.push_back({middleStartNodeIndex, middle, true});
for (const auto &it: segments) {
const auto &fromNodeIndex = std::get<0>(it);
const auto &left = std::get<1>(it);
const auto &isSpine = std::get<2>(it);
const auto &fromNode = m_outcome->bodyNodes[fromNodeIndex];
std::vector<std::vector<size_t>> boneNodeIndices;
std::unordered_set<size_t> visited;
size_t attachNodeIndex = fromNodeIndex;
collectNodesForBoneRecursively(fromNodeIndex,
&left,
&boneNodeIndices,
0,
&visited);
if (BoneMark::Limb == fromNode.boneMark) {
for (const auto &neighbor: m_neighborMap[fromNodeIndex]) {
if (left.find(neighbor) == left.end()) {
attachNodeIndex = neighbor;
break;
}
}
}
m_boneNodeChain.push_back({fromNodeIndex, boneNodeIndices, isSpine, attachNodeIndex});
}
for (size_t i = 0; i < m_boneNodeChain.size(); ++i) {
const auto &chain = m_boneNodeChain[i];
const auto &node = m_outcome->bodyNodes[chain.fromNodeIndex];
const auto &isSpine = chain.isSpine;
//printf("Chain[%lu] %s %s", i, BoneMarkToString(node.boneMark), isSpine ? "SPINE " : "");
//printf("|");
//for (size_t j = 0; j < chain.nodeChain.size(); ++j) {
// printf("%lu%s ", chain.nodeChain[j], chain.nodeIsJointFlags[j] ? "(JOINT)" : "");
//}
//printf("\r\n");
//for (size_t j = 0; j < chain.nodeChain.size(); ++j) {
// const auto &node = m_outcome->bodyNodes[chain.nodeChain[j]];
// printf(" >>%lu part:%s node:%s (%f,%f,%f)%s\r\n",
// chain.nodeChain[j],
// node.partId.toString().toUtf8().constData(),
// node.nodeId.toString().toUtf8().constData(),
// node.origin.x(), node.origin.y(), node.origin.z(),
// chain.nodeIsJointFlags[j] ? "(JOINT)" : "");
//}
if (isSpine) {
m_spineChains.push_back(i);
continue;
}
if (BoneMark::Neck == node.boneMark) {
m_neckChains.push_back(i);
} else if (BoneMark::Tail == node.boneMark) {
m_tailChains.push_back(i);
} else if (BoneMark::Limb == node.boneMark) {
if (node.origin.x() < 0) {
m_leftLimbChains.push_back(i);
} else if (node.origin.x() > 0) {
m_rightLimbChains.push_back(i);
}
}
}
}
void RigGenerator::calculateSpineDirection(bool *isVertical)
{
float left = std::numeric_limits<float>::lowest();
float right = std::numeric_limits<float>::max();
float top = std::numeric_limits<float>::lowest();
float bottom = std::numeric_limits<float>::max();
auto updateBoundingBox = [&](const std::vector<size_t> &chains) {
for (const auto &it: chains) {
const auto &node = m_outcome->bodyNodes[m_boneNodeChain[it].fromNodeIndex];
if (node.origin.y() > top)
top = node.origin.y();
if (node.origin.y() < bottom)
bottom = node.origin.y();
if (node.origin.z() > left)
left = node.origin.z();
if (node.origin.z() < right)
right = node.origin.z();
}
};
updateBoundingBox(m_leftLimbChains);
updateBoundingBox(m_rightLimbChains);
auto zLength = left - right;
auto yLength = top - bottom;
*isVertical = yLength >= zLength;
}
void RigGenerator::attachLimbsToSpine()
{
Q_ASSERT(m_leftLimbChains.size() == m_rightLimbChains.size());
Q_ASSERT(m_spineChains.size() == 1);
m_attachLimbsToSpineNodeIndices.resize(m_leftLimbChains.size());
for (size_t i = 0; i < m_leftLimbChains.size(); ++i) {
const auto &leftNode = m_outcome->bodyNodes[m_boneNodeChain[m_leftLimbChains[i]].attachNodeIndex];
const auto &rightNode = m_outcome->bodyNodes[m_boneNodeChain[m_rightLimbChains[i]].attachNodeIndex];
auto limbMiddle = (leftNode.origin + rightNode.origin) * 0.5;
std::vector<std::pair<size_t, float>> distance2WithSpine;
auto boneNodeChainIndex = m_spineChains[0];
const auto &nodeIndices = m_boneNodeChain[boneNodeChainIndex].nodeIndices;
for (const auto &it: nodeIndices) {
for (const auto &nodeIndex: it) {
distance2WithSpine.push_back({
nodeIndex,
(m_outcome->bodyNodes[nodeIndex].origin - limbMiddle).lengthSquared()
});
}
}
if (distance2WithSpine.empty())
continue;
auto nodeIndex = std::min_element(distance2WithSpine.begin(), distance2WithSpine.end(), [](
const std::pair<size_t, float> &first, const std::pair<size_t, float> &second) {
return first.second < second.second;
})->first;
m_attachLimbsToSpineNodeIndices[i] = nodeIndex;
m_virtualJoints.insert(nodeIndex);
}
}
void RigGenerator::buildSkeleton()
{
bool addMarkHelpInfo = false;
if (m_leftLimbChains.size() != m_rightLimbChains.size()) {
m_messages.push_back({QtInfoMsg, tr("Imbalanced left and right limbs")});
} else if (m_leftLimbChains.empty()) {
m_messages.push_back({QtInfoMsg, tr("No limbs found")});
addMarkHelpInfo = true;
}
if (m_spineChains.empty()) {
m_messages.push_back({QtInfoMsg, tr("No body found")});
addMarkHelpInfo = true;
}
if (addMarkHelpInfo) {
m_messages.push_back({QtInfoMsg, tr("Please mark the neck, limbs and joints from the context menu")});
}
if (!m_messages.empty())
return;
calculateSpineDirection(&m_isSpineVertical);
auto sortLimbChains = [&](std::vector<size_t> &chains) {
std::sort(chains.begin(), chains.end(), [&](const size_t &first,
const size_t &second) {
if (m_isSpineVertical) {
return m_outcome->bodyNodes[m_boneNodeChain[first].fromNodeIndex].origin.y() <
m_outcome->bodyNodes[m_boneNodeChain[second].fromNodeIndex].origin.y();
}
return m_outcome->bodyNodes[m_boneNodeChain[first].fromNodeIndex].origin.z() <
m_outcome->bodyNodes[m_boneNodeChain[second].fromNodeIndex].origin.z();
});
};
sortLimbChains(m_leftLimbChains);
sortLimbChains(m_rightLimbChains);
attachLimbsToSpine();
extractSpineJoints();
extractBranchJoints();
size_t rootSpineJointIndex = m_attachLimbsToSpineJointIndices[0];
size_t lastSpineJointIndex = m_spineJoints.size() - 1;
m_resultBones = new std::vector<RiggerBone>;
m_resultWeights = new std::map<int, RiggerVertexWeights>;
{
const auto &firstSpineNode = m_outcome->bodyNodes[m_spineJoints[rootSpineJointIndex]];
RiggerBone bone;
bone.headPosition = QVector3D(0.0, 0.0, 0.0);
bone.tailPosition = firstSpineNode.origin;
bone.headRadius = 0;
bone.tailRadius = firstSpineNode.radius;
bone.name = QString("Body");
bone.index = m_resultBones->size();
bone.parent = -1;
m_boneNameToIndexMap.insert({bone.name, (int)bone.index});
m_resultBones->push_back(bone);
}
auto attachedBoneIndex = [&](size_t spineJointIndex) {
if (spineJointIndex == rootSpineJointIndex) {
return m_boneNameToIndexMap[QString("Body")];
}
return m_boneNameToIndexMap[QString("Spine") + QString::number(spineJointIndex - rootSpineJointIndex)];
};
for (size_t spineJointIndex = rootSpineJointIndex;
spineJointIndex + 1 < m_spineJoints.size();
++spineJointIndex) {
const auto &currentNode = m_outcome->bodyNodes[m_spineJoints[spineJointIndex]];
const auto &nextNode = m_outcome->bodyNodes[m_spineJoints[spineJointIndex + 1]];
RiggerBone bone;
bone.headPosition = currentNode.origin;
bone.tailPosition = nextNode.origin;
bone.headRadius = currentNode.radius;
bone.tailRadius = nextNode.radius;
bone.color = 0 == (spineJointIndex - rootSpineJointIndex) % 2 ? Theme::white : BoneMarkToColor(BoneMark::Joint);
bone.name = QString("Spine") + QString::number(spineJointIndex + 1 - rootSpineJointIndex);
bone.index = m_resultBones->size();
bone.parent = attachedBoneIndex(spineJointIndex);
m_boneNameToIndexMap.insert({bone.name, (int)bone.index});
m_resultBones->push_back(bone);
(*m_resultBones)[bone.parent].children.push_back(bone.index);
}
auto addSpineLinkBone = [&](size_t limbIndex,
const std::vector<std::vector<size_t>> &limbJoints,
const QString &chainPrefix) {
QString chainName = chainPrefix + QString::number(limbIndex + 1);
const auto &spineJointIndex = m_attachLimbsToSpineJointIndices[limbIndex];
const auto &spineNode = m_outcome->bodyNodes[m_spineJoints[spineJointIndex]];
const auto &limbFirstNode = m_outcome->bodyNodes[limbJoints[limbIndex][0]];
const auto &parentIndex = attachedBoneIndex(spineJointIndex);
RiggerBone bone;
bone.headPosition = spineNode.origin;
bone.tailPosition = limbFirstNode.origin;
bone.headRadius = spineNode.radius;
bone.tailRadius = limbFirstNode.radius;
bone.color = Theme::white;
bone.name = QString("Virtual_") + (*m_resultBones)[parentIndex].name + QString("_") + chainName;
bone.index = m_resultBones->size();
bone.parent = parentIndex;
m_boneNameToIndexMap.insert({bone.name, (int)bone.index});
m_resultBones->push_back(bone);
(*m_resultBones)[parentIndex].children.push_back(bone.index);
};
auto addLimbBone = [&](size_t limbIndex,
const std::vector<std::vector<size_t>> &limbJoints,
const QString &chainPrefix) {
const auto &joints = limbJoints[limbIndex];
QString chainName = chainPrefix + QString::number(limbIndex + 1);
for (size_t limbJointIndex = 0;
limbJointIndex + 1 < joints.size();
++limbJointIndex) {
const auto &currentNode = m_outcome->bodyNodes[joints[limbJointIndex]];
const auto &nextNode = m_outcome->bodyNodes[joints[limbJointIndex + 1]];
RiggerBone bone;
bone.headPosition = currentNode.origin;
bone.tailPosition = nextNode.origin;
bone.headRadius = currentNode.radius;
bone.tailRadius = nextNode.radius;
bone.color = 0 == limbJointIndex % 2 ? BoneMarkToColor(BoneMark::Limb) : BoneMarkToColor(BoneMark::Joint);
bone.name = chainName + QString("_Joint") + QString::number(limbJointIndex + 1);
bone.index = m_resultBones->size();
if (limbJointIndex > 0) {
auto parentName = chainName + QString("_Joint") + QString::number(limbJointIndex);
bone.parent = m_boneNameToIndexMap[parentName];
} else {
const auto &spineJointIndex = m_attachLimbsToSpineJointIndices[limbIndex];
const auto &parentIndex = attachedBoneIndex(spineJointIndex);
auto parentName = QString("Virtual_") + (*m_resultBones)[parentIndex].name + QString("_") + chainName;
bone.parent = m_boneNameToIndexMap[parentName];
}
m_boneNameToIndexMap.insert({bone.name, (int)bone.index});
m_resultBones->push_back(bone);
(*m_resultBones)[bone.parent].children.push_back(bone.index);
}
};
for (size_t limbIndex = 0;
limbIndex < m_attachLimbsToSpineJointIndices.size();
++limbIndex) {
addSpineLinkBone(limbIndex, m_leftLimbJoints, QString("LeftLimb"));
addSpineLinkBone(limbIndex, m_rightLimbJoints, QString("RightLimb"));
addLimbBone(limbIndex, m_leftLimbJoints, QString("LeftLimb"));
addLimbBone(limbIndex, m_rightLimbJoints, QString("RightLimb"));
}
if (!m_neckJoints.empty()) {
for (size_t neckJointIndex = 0;
neckJointIndex + 1 < m_neckJoints.size();
++neckJointIndex) {
const auto &currentNode = m_outcome->bodyNodes[m_neckJoints[neckJointIndex]];
const auto &nextNode = m_outcome->bodyNodes[m_neckJoints[neckJointIndex + 1]];
RiggerBone bone;
bone.headPosition = currentNode.origin;
bone.tailPosition = nextNode.origin;
bone.headRadius = currentNode.radius;
bone.tailRadius = nextNode.radius;
bone.color = 0 == neckJointIndex % 2 ? BoneMarkToColor(BoneMark::Neck) : BoneMarkToColor(BoneMark::Joint);
bone.name = QString("Neck_Joint") + QString::number(neckJointIndex + 1);
bone.index = m_resultBones->size();
if (neckJointIndex > 0) {
auto parentName = QString("Neck_Joint") + QString::number(neckJointIndex);
bone.parent = m_boneNameToIndexMap[parentName];
} else {
auto parentName = QString("Spine") + QString::number(lastSpineJointIndex - rootSpineJointIndex);
bone.parent = m_boneNameToIndexMap[parentName];
}
m_boneNameToIndexMap.insert({bone.name, (int)bone.index});
m_resultBones->push_back(bone);
(*m_resultBones)[bone.parent].children.push_back(bone.index);
}
}
if (!m_tailJoints.empty()) {
QString nearestSpine = "Body";
for (int spineJointIndex = rootSpineJointIndex;
spineJointIndex >= 0;
--spineJointIndex) {
if (m_spineJoints[spineJointIndex] == m_tailJoints[0])
break;
const auto &currentNode = m_outcome->bodyNodes[m_spineJoints[spineJointIndex]];
const auto &nextNode = spineJointIndex > 0 ?
m_outcome->bodyNodes[m_spineJoints[spineJointIndex - 1]] :
m_outcome->bodyNodes[m_tailJoints[0]];
RiggerBone bone;
bone.headPosition = currentNode.origin;
bone.tailPosition = nextNode.origin;
bone.headRadius = currentNode.radius;
bone.tailRadius = nextNode.radius;
bone.color = 0 == (rootSpineJointIndex - spineJointIndex) % 2 ? BoneMarkToColor(BoneMark::Joint) : Theme::white;
bone.name = QString("Spine0") + QString::number(rootSpineJointIndex - spineJointIndex + 1);
bone.index = m_resultBones->size();
if ((int)rootSpineJointIndex == spineJointIndex) {
auto parentName = QString("Body");
bone.parent = m_boneNameToIndexMap[parentName];
} else {
auto parentName = QString("Spine0") + QString::number(rootSpineJointIndex - spineJointIndex);
bone.parent = m_boneNameToIndexMap[parentName];
}
m_boneNameToIndexMap.insert({bone.name, (int)bone.index});
m_resultBones->push_back(bone);
(*m_resultBones)[bone.parent].children.push_back(bone.index);
nearestSpine = bone.name;
}
for (size_t tailJointIndex = 0;
tailJointIndex + 1 < m_tailJoints.size();
++tailJointIndex) {
const auto &currentNode = m_outcome->bodyNodes[m_tailJoints[tailJointIndex]];
const auto &nextNode = m_outcome->bodyNodes[m_tailJoints[tailJointIndex + 1]];
RiggerBone bone;
bone.headPosition = currentNode.origin;
bone.tailPosition = nextNode.origin;
bone.headRadius = currentNode.radius;
bone.tailRadius = nextNode.radius;
bone.color = 0 == tailJointIndex % 2 ? BoneMarkToColor(BoneMark::Tail) : BoneMarkToColor(BoneMark::Joint);
bone.name = QString("Tail_Joint") + QString::number(tailJointIndex + 1);
bone.index = m_resultBones->size();
if (tailJointIndex > 0) {
auto parentName = QString("Tail_Joint") + QString::number(tailJointIndex);
bone.parent = m_boneNameToIndexMap[parentName];
} else {
auto parentName = nearestSpine;
bone.parent = m_boneNameToIndexMap[parentName];
}
m_boneNameToIndexMap.insert({bone.name, (int)bone.index});
m_resultBones->push_back(bone);
(*m_resultBones)[bone.parent].children.push_back(bone.index);
}
}
m_isSucceed = true;
2019-10-02 22:51:38 +00:00
//for (size_t i = 0; i < m_resultBones->size(); ++i) {
// const auto &bone = (*m_resultBones)[i];
// std::cout << "bone:" << bone.name.toUtf8().constData() << " " << " headRadius:" << bone.headRadius << " tailRadius:" << bone.tailRadius << std::endl;
// for (const auto &childIndex: bone.children) {
// const auto &child = (*m_resultBones)[childIndex];
// std::cout << " child:" << child.name.toUtf8().constData() << " " << std::endl;
// }
//}
}
void RigGenerator::computeSkinWeights()
{
if (!m_isSucceed)
return;
auto collectNodeIndices = [&](size_t chainIndex,
std::unordered_map<size_t, size_t> *nodeIndexToContainerMap,
size_t containerIndex) {
const auto &chain = m_boneNodeChain[chainIndex];
for (const auto &it: chain.nodeIndices) {
for (const auto &subIt: it)
nodeIndexToContainerMap->insert({subIt, containerIndex});
}
nodeIndexToContainerMap->insert({chain.fromNodeIndex, containerIndex});
};
const size_t neckIndex = 0;
const size_t tailIndex = 1;
const size_t spineIndex = 2;
const size_t limbStartIndex = 3;
std::unordered_map<size_t, size_t> nodeIndicesToBranchMap;
if (!m_neckChains.empty())
collectNodeIndices(m_neckChains[0], &nodeIndicesToBranchMap, neckIndex);
if (!m_tailChains.empty())
collectNodeIndices(m_tailChains[0], &nodeIndicesToBranchMap, tailIndex);
if (!m_spineChains.empty())
collectNodeIndices(m_spineChains[0], &nodeIndicesToBranchMap, spineIndex);
for (size_t i = 0; i < m_leftLimbChains.size(); ++i) {
collectNodeIndices(m_leftLimbChains[i], &nodeIndicesToBranchMap,
limbStartIndex + i);
}
for (size_t i = 0; i < m_rightLimbChains.size(); ++i) {
collectNodeIndices(m_rightLimbChains[i], &nodeIndicesToBranchMap,
limbStartIndex + m_leftLimbChains.size() + i);
}
std::vector<std::vector<size_t>> vertexBranches(limbStartIndex +
m_leftLimbChains.size() +
m_rightLimbChains.size() +
1);
std::map<std::pair<QUuid, QUuid>, size_t> nodeIdToIndexMap;
for (size_t nodeIndex = 0; nodeIndex < m_outcome->bodyNodes.size(); ++nodeIndex) {
const auto &node = m_outcome->bodyNodes[nodeIndex];
nodeIdToIndexMap[{node.partId, node.nodeId}] = nodeIndex;
}
for (size_t vertexIndex = 0; vertexIndex < m_outcome->vertices.size(); ++vertexIndex) {
const auto &vertexSourceId = m_outcome->vertexSourceNodes[vertexIndex];
auto findNodeIndex = nodeIdToIndexMap.find(vertexSourceId);
if (findNodeIndex == nodeIdToIndexMap.end()) {
vertexBranches[spineIndex].push_back(vertexIndex);
continue;
}
const auto &nodeIndex = findNodeIndex->second;
auto findBranch = nodeIndicesToBranchMap.find(nodeIndex);
if (findBranch == nodeIndicesToBranchMap.end()) {
vertexBranches[spineIndex].push_back(vertexIndex);
continue;
}
vertexBranches[findBranch->second].push_back(vertexIndex);
}
auto findNeckBoneIndex = m_boneNameToIndexMap.find(QString("Neck_Joint1"));
if (findNeckBoneIndex != m_boneNameToIndexMap.end()) {
computeBranchSkinWeights(findNeckBoneIndex->second,
QString("Neck_"), vertexBranches[neckIndex],
&vertexBranches[spineIndex]);
}
auto findTailBoneIndex = m_boneNameToIndexMap.find(QString("Tail_Joint1"));
if (findTailBoneIndex != m_boneNameToIndexMap.end()) {
computeBranchSkinWeights(findTailBoneIndex->second,
QString("Tail_"), vertexBranches[tailIndex],
&vertexBranches[spineIndex]);
}
for (size_t i = 0; i < m_leftLimbChains.size(); ++i) {
auto namePrefix = QString("LeftLimb") + QString::number(i + 1) + "_";
auto findLimbBoneIndex = m_boneNameToIndexMap.find(namePrefix + "Joint1");
if (findLimbBoneIndex != m_boneNameToIndexMap.end()) {
computeBranchSkinWeights(findLimbBoneIndex->second,
namePrefix, vertexBranches[limbStartIndex + i],
&vertexBranches[spineIndex]);
}
}
for (size_t i = 0; i < m_rightLimbChains.size(); ++i) {
auto namePrefix = QString("RightLimb") + QString::number(i + 1) + "_";
auto findLimbBoneIndex = m_boneNameToIndexMap.find(namePrefix + "Joint1");
if (findLimbBoneIndex != m_boneNameToIndexMap.end()) {
computeBranchSkinWeights(findLimbBoneIndex->second,
namePrefix, vertexBranches[limbStartIndex + m_leftLimbChains.size() + i],
&vertexBranches[spineIndex]);
}
}
auto findBackSpineBoneIndex = m_boneNameToIndexMap.find(QString("Spine01"));
std::vector<size_t> backSpineVertices;
auto findSpineBoneIndex = m_boneNameToIndexMap.find(QString("Spine1"));
if (findSpineBoneIndex != m_boneNameToIndexMap.end()) {
computeBranchSkinWeights(findSpineBoneIndex->second,
QString("Spine"), vertexBranches[spineIndex],
findBackSpineBoneIndex != m_boneNameToIndexMap.end() ?
&backSpineVertices : nullptr);
}
if (findBackSpineBoneIndex != m_boneNameToIndexMap.end()) {
computeBranchSkinWeights(findBackSpineBoneIndex->second,
QString("Spine"), backSpineVertices);
}
for (auto &it: *m_resultWeights)
it.second.finalizeWeights();
//for (size_t i = 0; i < m_outcome->vertices.size(); ++i) {
// auto findWeights = m_resultWeights->find(i);
// if (findWeights == m_resultWeights->end()) {
// const auto &sourceNode = m_outcome->vertexSourceNodes[i];
// printf("NoWeight vertex index:%lu Source:%s %s\r\n",
// i,
// sourceNode.first.toString().toUtf8().constData(),
// sourceNode.second.toString().toUtf8().constData());
// }
//}
}
void RigGenerator::computeBranchSkinWeights(size_t fromBoneIndex,
const QString &boneNamePrefix,
const std::vector<size_t> &vertexIndices,
std::vector<size_t> *discardedVertexIndices)
{
std::vector<size_t> remainVertexIndices = vertexIndices;
size_t currentBoneIndex = fromBoneIndex;
while (true) {
const auto &currentBone = (*m_resultBones)[currentBoneIndex];
std::vector<size_t> newRemainVertexIndices;
const auto &parentBone = (*m_resultBones)[currentBone.parent];
auto currentDirection = (currentBone.tailPosition - currentBone.headPosition).normalized();
auto parentDirection = currentBone.parent <= 0 ?
currentDirection :
(parentBone.tailPosition - parentBone.headPosition).normalized();
auto cutNormal = ((parentDirection + currentDirection) * 0.5f).normalized();
auto beginGradientLength = parentBone.headRadius * 0.5f;
auto endGradientLength = parentBone.tailRadius * 0.5f;
auto parentLength = (parentBone.tailPosition - parentBone.headPosition).length();
auto previousBoneIndex = currentBone.name.startsWith("Virtual") ? parentBone.parent : currentBone.parent;
for (const auto &vertexIndex: remainVertexIndices) {
const auto &position = m_outcome->vertices[vertexIndex];
auto direction = (position - currentBone.headPosition).normalized();
if (QVector3D::dotProduct(direction, cutNormal) > 0) {
float angle = radianBetweenVectors(direction, currentDirection);
auto projectedLength = std::cos(angle) * (position - currentBone.headPosition).length();
if (projectedLength <= endGradientLength) {
auto factor = 0.5 * (1.0 - projectedLength / endGradientLength);
(*m_resultWeights)[vertexIndex].addBone(previousBoneIndex, factor);
}
newRemainVertexIndices.push_back(vertexIndex);
continue;
}
if (fromBoneIndex == currentBoneIndex) {
if (nullptr != discardedVertexIndices)
discardedVertexIndices->push_back(vertexIndex);
else
(*m_resultWeights)[vertexIndex].addBone(currentBoneIndex, 1.0);
continue;
}
float angle = radianBetweenVectors(direction, -parentDirection);
auto projectedLength = std::cos(angle) * (position - currentBone.headPosition).length();
if (projectedLength <= endGradientLength) {
(*m_resultWeights)[vertexIndex].addBone(previousBoneIndex, 0.5 + 0.5 * projectedLength / endGradientLength);
(*m_resultWeights)[vertexIndex].addBone(currentBoneIndex, 0.5 * (1.0 - projectedLength / endGradientLength));
continue;
}
if (projectedLength <= parentLength - beginGradientLength) {
(*m_resultWeights)[vertexIndex].addBone(previousBoneIndex, 1.0);
continue;
}
if (projectedLength <= parentLength) {
auto factor = 0.5 + 0.5 * (parentLength - projectedLength) / beginGradientLength;
(*m_resultWeights)[vertexIndex].addBone(previousBoneIndex, factor);
continue;
}
auto factor = 0.5 * (1.0 - (projectedLength - parentLength) / beginGradientLength);
(*m_resultWeights)[vertexIndex].addBone(previousBoneIndex, factor);
continue;
}
remainVertexIndices = newRemainVertexIndices;
if (currentBone.children.empty() || !currentBone.name.startsWith(boneNamePrefix)) {
for (const auto &vertexIndex: remainVertexIndices) {
(*m_resultWeights)[vertexIndex].addBone(currentBoneIndex, 0.5);
}
break;
}
currentBoneIndex = currentBone.children[0];
}
}
void RigGenerator::extractJointsFromBoneNodeChain(const BoneNodeChain &boneNodeChain,
std::vector<size_t> *joints)
{
const size_t &fromNodeIndex = boneNodeChain.fromNodeIndex;
const std::vector<std::vector<size_t>> &nodeIndices = boneNodeChain.nodeIndices;
extractJoints(fromNodeIndex, nodeIndices, joints);
}
void RigGenerator::extractJoints(const size_t &fromNodeIndex,
const std::vector<std::vector<size_t>> &nodeIndices,
std::vector<size_t> *joints,
bool checkLastNoneMarkedNode)
{
if (joints->empty() ||
(*joints)[joints->size() - 1] != fromNodeIndex) {
joints->push_back(fromNodeIndex);
}
const auto &fromNode = m_outcome->bodyNodes[fromNodeIndex];
std::vector<std::pair<size_t, float>> nodeIndicesAndDistance2Array;
for (const auto &it: nodeIndices) {
for (const auto &nodeIndex: it) {
const auto &node = m_outcome->bodyNodes[nodeIndex];
nodeIndicesAndDistance2Array.push_back({
nodeIndex,
(fromNode.origin - node.origin).lengthSquared()
});
}
}
if (nodeIndicesAndDistance2Array.empty())
return;
std::sort(nodeIndicesAndDistance2Array.begin(), nodeIndicesAndDistance2Array.end(),
[](const decltype(nodeIndicesAndDistance2Array)::value_type &first,
const decltype(nodeIndicesAndDistance2Array)::value_type &second) {
return first.second < second.second;
});
std::vector<size_t> jointIndices;
for (size_t i = 0; i < nodeIndicesAndDistance2Array.size(); ++i) {
const auto &item = nodeIndicesAndDistance2Array[i];
const auto &node = m_outcome->bodyNodes[item.first];
if (BoneMark::None != node.boneMark ||
m_virtualJoints.find(item.first) != m_virtualJoints.end()) {
jointIndices.push_back(i);
continue;
}
}
bool appendLastJoint = false;
if (checkLastNoneMarkedNode &&
!jointIndices.empty() &&
jointIndices[jointIndices.size() - 1] + 1 != nodeIndicesAndDistance2Array.size()) {
size_t lastIndex = fromNodeIndex;
float sumOfDistances = 0.0f;
for (const auto &itemIndex: jointIndices) {
const auto &item = nodeIndicesAndDistance2Array[itemIndex];
const auto &currentNode = m_outcome->bodyNodes[item.first];
const auto &lastNode = m_outcome->bodyNodes[lastIndex];
lastIndex = item.first;
sumOfDistances += (currentNode.origin - lastNode.origin).length();
}
float averageDistance = sumOfDistances / jointIndices.size();
const auto &lastItem = nodeIndicesAndDistance2Array[nodeIndicesAndDistance2Array.size() - 1];
float distance = (m_outcome->bodyNodes[lastItem.first].origin -
m_outcome->bodyNodes[lastIndex].origin).length();
// FIXME: replace the hardcoded value
if (distance >= averageDistance * 0.5) {
appendLastJoint = true;
}
}
if (jointIndices.empty() || appendLastJoint) {
jointIndices.push_back(nodeIndicesAndDistance2Array.size() - 1);
}
for (const auto &itemIndex: jointIndices) {
const auto &item = nodeIndicesAndDistance2Array[itemIndex];
if (!joints->empty()) {
if ((*joints)[joints->size() - 1] == item.first)
continue;
}
joints->push_back(item.first);
}
}
void RigGenerator::extractBranchJoints()
{
if (!m_neckChains.empty())
extractJointsFromBoneNodeChain(m_boneNodeChain[m_neckChains[0]], &m_neckJoints);
if (!m_tailChains.empty())
extractJointsFromBoneNodeChain(m_boneNodeChain[m_tailChains[0]], &m_tailJoints);
m_leftLimbJoints.resize(m_leftLimbChains.size());
for (size_t i = 0; i < m_leftLimbChains.size(); ++i) {
extractJointsFromBoneNodeChain(m_boneNodeChain[m_leftLimbChains[i]], &m_leftLimbJoints[i]);
}
m_rightLimbJoints.resize(m_rightLimbChains.size());
for (size_t i = 0; i < m_rightLimbChains.size(); ++i) {
extractJointsFromBoneNodeChain(m_boneNodeChain[m_rightLimbChains[i]], &m_rightLimbJoints[i]);
}
}
void RigGenerator::extractSpineJoints()
{
auto findTail = m_branchNodesMapByMark.find((int)BoneMark::Tail);
if (findTail != m_branchNodesMapByMark.end()) {
m_spineJoints.push_back(findTail->second[0]);
}
if (!m_attachLimbsToSpineNodeIndices.empty() &&
!m_spineChains.empty()) {
const auto &fromNodeIndex = findTail == m_branchNodesMapByMark.end() ?
m_attachLimbsToSpineNodeIndices[0] : findTail->second[0];
std::vector<size_t> joints;
extractJoints(fromNodeIndex,
m_boneNodeChain[m_spineChains[0]].nodeIndices,
&joints,
false);
m_attachLimbsToSpineJointIndices.resize(m_attachLimbsToSpineNodeIndices.size());
for (const auto &nodeIndex: joints) {
for (size_t i = 0; i < m_attachLimbsToSpineNodeIndices.size(); ++i) {
if (m_attachLimbsToSpineNodeIndices[i] == nodeIndex) {
m_attachLimbsToSpineJointIndices[i] = m_spineJoints.size();
}
}
m_spineJoints.push_back(nodeIndex);
}
}
auto findNeck = m_branchNodesMapByMark.find((int)BoneMark::Neck);
if (findNeck != m_branchNodesMapByMark.end()) {
m_spineJoints.push_back(findNeck->second[0]);
}
}
/*
void RigGenerator::extractSpineJoints()
{
auto &spine = m_boneNodeChain[m_spineChains[0]];
auto findTail = m_branchNodesMapByMark.find((int)BoneMark::Tail);
if (findTail != m_branchNodesMapByMark.end()) {
m_spineJoints.push_back(findTail->second[0]);
} else {
std::reverse(spine.nodeChain.begin(), spine.nodeChain.end());
std::reverse(spine.nodeIsJointFlags.begin(), spine.nodeIsJointFlags.end());
std::reverse(m_attachLimbsToSpineChainPositions.begin(), m_attachLimbsToSpineChainPositions.end());
for (auto &it: m_attachLimbsToSpineChainPositions) {
it = spine.nodeChain.size() - 1 - it;
}
}
m_attachLimbsToSpineJointIndices.resize(m_attachLimbsToSpineChainPositions.size());
for (size_t i = 0; i < spine.nodeChain.size(); ++i) {
bool limbsAttached = false;
for (size_t j = 0; j < m_attachLimbsToSpineChainPositions.size(); ++j) {
if (i == m_attachLimbsToSpineChainPositions[j]) {
m_attachLimbsToSpineJointIndices[j] = m_spineJoints.size();
limbsAttached = true;
}
}
if (limbsAttached || spine.nodeIsJointFlags[i]) {
m_spineJoints.push_back(spine.nodeChain[i]);
continue;
}
}
auto findNeck = m_branchNodesMapByMark.find((int)BoneMark::Neck);
if (findNeck != m_branchNodesMapByMark.end()) {
m_spineJoints.push_back(findNeck->second[0]);
}
}
*/
void RigGenerator::splitByNodeIndex(size_t nodeIndex,
std::unordered_set<size_t> *left,
std::unordered_set<size_t> *right)
{
const auto &neighbors = m_neighborMap[nodeIndex];
if (2 != neighbors.size()) {
return;
}
{
std::unordered_set<size_t> visited;
visited.insert(*neighbors.begin());
collectNodes(nodeIndex, left, &visited);
left->erase(nodeIndex);
}
{
std::unordered_set<size_t> visited;
visited.insert(*(++neighbors.begin()));
collectNodes(nodeIndex, right, &visited);
right->erase(nodeIndex);
}
}
void RigGenerator::collectNodes(size_t fromNodeIndex,
std::unordered_set<size_t> *container,
std::unordered_set<size_t> *visited)
{
std::queue<size_t> waitQueue;
waitQueue.push(fromNodeIndex);
while (!waitQueue.empty()) {
auto nodeIndex = waitQueue.front();
waitQueue.pop();
if (visited->find(nodeIndex) != visited->end())
continue;
visited->insert(nodeIndex);
container->insert(nodeIndex);
for (const auto &neighborNodeIndex: m_neighborMap[nodeIndex]) {
if (visited->find(neighborNodeIndex) != visited->end())
continue;
waitQueue.push(neighborNodeIndex);
}
}
}
void RigGenerator::collectNodesForBoneRecursively(size_t fromNodeIndex,
const std::unordered_set<size_t> *limitedNodeIndices,
std::vector<std::vector<size_t>> *boneNodeIndices,
size_t depth,
std::unordered_set<size_t> *visited)
{
std::vector<size_t> nodeIndices;
for (const auto &nodeIndex: m_neighborMap[fromNodeIndex]) {
if (limitedNodeIndices->find(nodeIndex) == limitedNodeIndices->end())
continue;
if (visited->find(nodeIndex) != visited->end())
continue;
visited->insert(nodeIndex);
if (depth >= boneNodeIndices->size())
boneNodeIndices->resize(depth + 1);
(*boneNodeIndices)[depth].push_back(nodeIndex);
nodeIndices.push_back(nodeIndex);
}
for (const auto &nodeIndex: nodeIndices) {
collectNodesForBoneRecursively(nodeIndex,
limitedNodeIndices,
boneNodeIndices,
depth + 1,
visited);
}
}
void RigGenerator::buildDemoMesh()
{
// Blend vertices colors according to bone weights
std::vector<QColor> inputVerticesColors(m_outcome->vertices.size(), Qt::black);
if (m_isSucceed) {
const auto &resultWeights = *m_resultWeights;
const auto &resultBones = *m_resultBones;
m_resultWeights = new std::map<int, RiggerVertexWeights>;
*m_resultWeights = resultWeights;
m_resultBones = new std::vector<RiggerBone>;
*m_resultBones = resultBones;
for (const auto &weightItem: resultWeights) {
size_t vertexIndex = weightItem.first;
const auto &weight = weightItem.second;
int blendR = 0, blendG = 0, blendB = 0;
for (int i = 0; i < 4; i++) {
2018-11-17 23:02:12 +00:00
int boneIndex = weight.boneIndices[i];
if (boneIndex > 0) {
const auto &bone = resultBones[boneIndex];
blendR += bone.color.red() * weight.boneWeights[i];
blendG += bone.color.green() * weight.boneWeights[i];
blendB += bone.color.blue() * weight.boneWeights[i];
}
}
QColor blendColor = QColor(blendR, blendG, blendB, 255);
inputVerticesColors[vertexIndex] = blendColor;
}
}
// Create mesh for demo
const std::vector<QVector3D> *triangleTangents = m_outcome->triangleTangents();
const auto &inputVerticesPositions = m_outcome->vertices;
const std::vector<std::vector<QVector3D>> *triangleVertexNormals = m_outcome->triangleVertexNormals();
ShaderVertex *triangleVertices = nullptr;
int triangleVerticesNum = 0;
if (m_isSucceed) {
triangleVertices = new ShaderVertex[m_outcome->triangles.size() * 3];
const QVector3D defaultUv = QVector3D(0, 0, 0);
const QVector3D defaultTangents = QVector3D(0, 0, 0);
for (size_t triangleIndex = 0; triangleIndex < m_outcome->triangles.size(); triangleIndex++) {
const auto &sourceTriangle = m_outcome->triangles[triangleIndex];
const auto *sourceTangent = &defaultTangents;
if (nullptr != triangleTangents)
sourceTangent = &(*triangleTangents)[triangleIndex];
for (int i = 0; i < 3; i++) {
ShaderVertex &currentVertex = triangleVertices[triangleVerticesNum++];
const auto &sourcePosition = inputVerticesPositions[sourceTriangle[i]];
const auto &sourceColor = inputVerticesColors[sourceTriangle[i]];
const auto *sourceNormal = &defaultUv;
if (nullptr != triangleVertexNormals)
sourceNormal = &(*triangleVertexNormals)[triangleIndex][i];
currentVertex.posX = sourcePosition.x();
currentVertex.posY = sourcePosition.y();
currentVertex.posZ = sourcePosition.z();
currentVertex.texU = 0;
currentVertex.texV = 0;
currentVertex.colorR = sourceColor.redF();
currentVertex.colorG = sourceColor.greenF();
currentVertex.colorB = sourceColor.blueF();
currentVertex.normX = sourceNormal->x();
currentVertex.normY = sourceNormal->y();
currentVertex.normZ = sourceNormal->z();
currentVertex.metalness = MeshLoader::m_defaultMetalness;
currentVertex.roughness = MeshLoader::m_defaultRoughness;
currentVertex.tangentX = sourceTangent->x();
currentVertex.tangentY = sourceTangent->y();
currentVertex.tangentZ = sourceTangent->z();
}
}
}
// Create bone bounding box for demo
ShaderVertex *edgeVertices = nullptr;
int edgeVerticesNum = 0;
if (m_isSucceed) {
const auto &resultBones = *m_resultBones;
std::vector<std::tuple<QVector3D, QVector3D, float, float, QColor>> boxes;
for (const auto &bone: resultBones) {
if (bone.name.startsWith("Virtual") || bone.name.startsWith("Body"))
continue;
boxes.push_back(std::make_tuple(bone.headPosition, bone.tailPosition,
bone.headRadius, bone.tailRadius, bone.color));
}
edgeVertices = buildBoundingBoxMeshEdges(boxes, &edgeVerticesNum);
}
if (nullptr != m_debugEdgeVertices) {
delete[] edgeVertices;
edgeVertices = m_debugEdgeVertices;
m_debugEdgeVertices = nullptr;
edgeVerticesNum = m_debugEdgeVerticesNum;
m_debugEdgeVerticesNum = 0;
}
m_resultMesh = new MeshLoader(triangleVertices, triangleVerticesNum,
edgeVertices, edgeVerticesNum);
}
void RigGenerator::generate()
{
buildNeighborMap();
buildBoneNodeChain();
buildSkeleton();
computeSkinWeights();
buildDemoMesh();
}
void RigGenerator::process()
{
QElapsedTimer countTimeConsumed;
countTimeConsumed.start();
generate();
qDebug() << "The rig generation took" << countTimeConsumed.elapsed() << "milliseconds";
this->moveToThread(QGuiApplication::instance()->thread());
emit finished();
}