dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/Polygon_mesh_processing/distance.h

1318 lines
53 KiB
C
Raw Normal View History

2020-10-13 12:44:25 +00:00
// Copyright (c) 2015 GeometryFactory (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Polygon_mesh_processing/include/CGAL/Polygon_mesh_processing/distance.h $
// $Id: distance.h 26eb790 2020-06-18T12:46:46+02:00 Mael Rouxel-Labbé
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Maxime Gimeno and Sebastien Loriot
#ifndef CGAL_POLYGON_MESH_PROCESSING_DISTANCE_H
#define CGAL_POLYGON_MESH_PROCESSING_DISTANCE_H
#include <CGAL/license/Polygon_mesh_processing/distance.h>
#include <CGAL/Polygon_mesh_processing/internal/mesh_to_point_set_hausdorff_distance.h>
#include <CGAL/Polygon_mesh_processing/measure.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_traits.h>
#include <CGAL/AABB_triangle_primitive.h>
#include <CGAL/AABB_face_graph_triangle_primitive.h>
#include <CGAL/utility.h>
#include <CGAL/Polygon_mesh_processing/internal/named_function_params.h>
#include <CGAL/Polygon_mesh_processing/internal/named_params_helper.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/spatial_sort.h>
#ifdef CGAL_LINKED_WITH_TBB
#include <tbb/parallel_reduce.h>
#include <tbb/blocked_range.h>
#include <atomic>
#endif // CGAL_LINKED_WITH_TBB
#include <boost/unordered_set.hpp>
#include <algorithm>
#include <array>
#include <cmath>
namespace CGAL {
namespace Polygon_mesh_processing {
namespace internal {
template <class Kernel, class PointOutputIterator>
PointOutputIterator
triangle_grid_sampling(const typename Kernel::Point_3& p0,
const typename Kernel::Point_3& p1,
const typename Kernel::Point_3& p2,
double distance,
PointOutputIterator out)
{
typename Kernel::Compute_squared_distance_3 squared_distance;
const double d_p0p1 = to_double(approximate_sqrt( squared_distance(p0, p1) ));
const double d_p0p2 = to_double(approximate_sqrt( squared_distance(p0, p2) ));
const double n = (std::max)(std::ceil( d_p0p1 / distance ),
std::ceil( d_p0p2 / distance ));
for(double i=1; i<n; ++i)
{
for(double j=1; j<n-i; ++j)
{
const double c0=(1-(i+j)/n), c1=i/n, c2=j/n;
*out++ = typename Kernel::Point_3(p0.x()*c0+p1.x()*c1+p2.x()*c2,
p0.y()*c0+p1.y()*c1+p2.y()*c2,
p0.z()*c0+p1.z()*c1+p2.z()*c2);
}
}
return out;
}
#if defined(CGAL_LINKED_WITH_TBB)
template <class AABB_tree, class PointRange>
struct Distance_computation{
typedef typename PointRange::const_iterator::value_type Point_3;
const AABB_tree& tree;
const PointRange& sample_points;
Point_3 initial_hint;
double distance;
//constructor
Distance_computation(
const AABB_tree& tree,
const Point_3& p,
const PointRange& sample_points)
: tree(tree)
, sample_points(sample_points)
, initial_hint(p)
, distance(-1)
{}
//split constructor
Distance_computation(Distance_computation& s, tbb::split )
: tree(s.tree)
, sample_points(s.sample_points)
, initial_hint(s.initial_hint)
, distance(-1)
{}
void
operator()(const tbb::blocked_range<std::size_t>& range)
{
Point_3 hint = initial_hint;
double hdist = 0;
for( std::size_t i = range.begin(); i != range.end(); ++i)
{
hint = tree.closest_point(*(sample_points.begin() + i), hint);
typename Kernel_traits<Point_3>::Kernel::Compute_squared_distance_3 squared_distance;
double d = to_double(CGAL::approximate_sqrt( squared_distance(hint,*(sample_points.begin() + i)) ));
if(d > hdist)
hdist=d;
}
if(hdist > distance)
distance = hdist;
}
void join( Distance_computation& rhs ) {distance = (std::max)(rhs.distance, distance); }
};
#endif
template <class Concurrency_tag,
class Kernel,
class PointRange,
class AABBTree>
double approximate_Hausdorff_distance_impl(
const PointRange& sample_points,
const AABBTree& tree,
typename Kernel::Point_3 hint)
{
#if !defined(CGAL_LINKED_WITH_TBB)
CGAL_static_assertion_msg (!(boost::is_convertible<Concurrency_tag, Parallel_tag>::value),
"Parallel_tag is enabled but TBB is unavailable.");
#else
if(boost::is_convertible<Concurrency_tag,Parallel_tag>::value)
{
std::atomic<double> distance;
distance=0;
Distance_computation<AABBTree, PointRange> f(tree, hint, sample_points);
tbb::parallel_reduce(tbb::blocked_range<std::size_t>(0, sample_points.size()), f);
return f.distance;
}
else
#endif
{
double hdist = 0;
for(const typename Kernel::Point_3& pt : sample_points)
{
hint = tree.closest_point(pt, hint);
typename Kernel::Compute_squared_distance_3 squared_distance;
typename Kernel::FT dist = squared_distance(hint,pt);
double d = to_double(CGAL::approximate_sqrt(dist));
if(d>hdist)
hdist=d;
}
return hdist;
}
}
template<typename PointOutputIterator,
typename GeomTraits,
typename NamedParameters,
typename TriangleIterator,
typename Randomizer,
typename Creator,
typename Derived>
struct Triangle_structure_sampler_base
{
const NamedParameters np;
GeomTraits gt;
PointOutputIterator& out;
Triangle_structure_sampler_base(PointOutputIterator& out,
const NamedParameters& np)
: np(np), out(out)
{}
void sample_points();
double get_minimum_edge_length();
template<typename Tr>
double get_tr_area(const Tr&);
template<typename Tr>
std::array<typename GeomTraits::Point_3, 3> get_tr_points(const Tr& tr);
void ms_edges_sample(const std::size_t& nb_points_per_edge,
const std::size_t& nb_pts_l_u);
void ru_edges_sample();
void internal_sample_triangles(double, bool, bool);
Randomizer get_randomizer();
std::pair<TriangleIterator, TriangleIterator> get_range();
std::size_t get_points_size();
void procede()
{
using parameters::choose_parameter;
using parameters::get_parameter;
using parameters::is_default_parameter;
gt = choose_parameter<GeomTraits>(get_parameter(np, internal_np::geom_traits));
bool use_rs = choose_parameter(get_parameter(np, internal_np::random_uniform_sampling), true);
bool use_gs = choose_parameter(get_parameter(np, internal_np::grid_sampling), false);
bool use_ms = choose_parameter(get_parameter(np, internal_np::monte_carlo_sampling), false);
if(use_gs || use_ms)
if(is_default_parameter(get_parameter(np, internal_np::random_uniform_sampling)))
use_rs = false;
bool smpl_vrtcs = choose_parameter(get_parameter(np, internal_np::do_sample_vertices), true);
bool smpl_dgs = choose_parameter(get_parameter(np, internal_np::do_sample_edges), true);
bool smpl_fcs = choose_parameter(get_parameter(np, internal_np::do_sample_faces), true);
double nb_pts_a_u = choose_parameter(get_parameter(np, internal_np::nb_points_per_area_unit), 0.);
double nb_pts_l_u = choose_parameter(get_parameter(np, internal_np::nb_points_per_distance_unit), 0.);
// sample vertices
if(smpl_vrtcs)
static_cast<Derived*>(this)->sample_points();
// grid sampling
if(use_gs)
{
double grid_spacing_ = choose_parameter(get_parameter(np, internal_np::grid_spacing), 0.);
if(grid_spacing_ == 0.)
{
// set grid spacing to the shortest edge length
grid_spacing_ = static_cast<Derived*>(this)->get_minimum_edge_length();
}
static_cast<Derived*>(this)->internal_sample_triangles(grid_spacing_, smpl_fcs, smpl_dgs);
}
// monte carlo sampling
if(use_ms)
{
double min_sq_edge_length = (std::numeric_limits<double>::max)();
std::size_t nb_points_per_face =
choose_parameter(get_parameter(np, internal_np::number_of_points_per_face), 0);
std::size_t nb_points_per_edge =
choose_parameter(get_parameter(np, internal_np::number_of_points_per_edge), 0);
if((nb_points_per_face == 0 && nb_pts_a_u == 0.) ||
(nb_points_per_edge == 0 && nb_pts_l_u == 0.))
{
min_sq_edge_length = static_cast<Derived*>(this)->get_minimum_edge_length();
}
// sample faces
if(smpl_fcs)
{
// set default value
if(nb_points_per_face == 0 && nb_pts_a_u == 0.)
nb_pts_a_u = 2. / min_sq_edge_length;
for(const auto& tr : make_range(static_cast<Derived*>(this)->get_range()))
{
std::size_t nb_points = nb_points_per_face;
if(nb_points == 0)
{
nb_points = (std::max)(
static_cast<std::size_t>(
std::ceil(static_cast<Derived*>(this)->get_tr_area(tr))
*nb_pts_a_u), std::size_t(1));
}
// extract triangle face points
std::array<typename GeomTraits::Point_3, 3>points = static_cast<Derived*>(this)->get_tr_points(tr);
Random_points_in_triangle_3<typename GeomTraits::Point_3, Creator> g(points[0], points[1], points[2]);
out = std::copy_n(g, nb_points, out);
}
}
// sample edges
if(smpl_dgs)
static_cast<Derived*>(this)->ms_edges_sample(nb_points_per_edge, nb_pts_l_u);
}
// random uniform sampling
if(use_rs)
{
// sample faces
if(smpl_fcs)
{
std::size_t nb_points
= choose_parameter(get_parameter(np, internal_np::number_of_points_on_faces), 0);
typename Derived::Randomizer g = static_cast<Derived*>(this)->get_randomizer();
if(nb_points == 0)
{
if(nb_pts_a_u == 0.)
nb_points = static_cast<Derived*>(this)->get_points_size();
else
nb_points = static_cast<std::size_t>(std::ceil(g.sum_of_weights()*nb_pts_a_u));
}
out = std::copy_n(g, nb_points, out);
}
// sample edges
if(smpl_dgs)
static_cast<Derived*>(this)->ru_edges_sample(nb_pts_l_u,nb_pts_a_u);
}
}
};
} // namespace internal
template <class Kernel,
class FaceRange,
class TriangleMesh,
class VertexPointMap,
class PointOutputIterator>
PointOutputIterator
sample_triangles(const FaceRange& triangles,
const TriangleMesh& tm,
VertexPointMap vpm,
double distance,
PointOutputIterator out,
bool sample_faces,
bool sample_edges,
bool add_vertices)
{
typedef typename boost::property_traits<VertexPointMap>::reference Point_ref;
typedef typename Kernel::Vector_3 Vector_3;
typedef boost::graph_traits<TriangleMesh> GT;
typedef typename GT::face_descriptor face_descriptor;
typedef typename GT::halfedge_descriptor halfedge_descriptor;
boost::unordered_set<typename GT::edge_descriptor> sampled_edges;
boost::unordered_set<typename GT::vertex_descriptor> endpoints;
for(face_descriptor fd : triangles)
{
// sample edges but skip endpoints
halfedge_descriptor hd = halfedge(fd, tm);
for(int i=0;i<3; ++i)
{
if(sample_edges && sampled_edges.insert(edge(hd, tm)).second )
{
Point_ref p0 = get(vpm, source(hd, tm));
Point_ref p1 = get(vpm, target(hd, tm));
typename Kernel::Compute_squared_distance_3 squared_distance;
const double d_p0p1 = to_double(approximate_sqrt(squared_distance(p0, p1)));
const double nb_pts = std::ceil( d_p0p1 / distance );
const Vector_3 step_vec = typename Kernel::Construct_scaled_vector_3()(
typename Kernel::Construct_vector_3()(p0, p1),
typename Kernel::FT(1)/typename Kernel::FT(nb_pts));
for(double i=1; i<nb_pts; ++i)
{
*out++=typename Kernel::Construct_translated_point_3()(p0,
typename Kernel::Construct_scaled_vector_3()(step_vec ,
typename Kernel::FT(i)));
}
}
//add endpoints once
if(add_vertices && endpoints.insert(target(hd, tm)).second)
*out++ = get(vpm, target(hd, tm));
hd = next(hd, tm);
}
// sample triangles
if(sample_faces)
{
Point_ref p0 = get(vpm, source(hd, tm));
Point_ref p1 = get(vpm, target(hd, tm));
Point_ref p2 = get(vpm, target(next(hd, tm), tm));
out = internal::triangle_grid_sampling<Kernel>(p0, p1, p2, distance, out);
}
}
return out;
}
namespace internal {
template<typename Mesh,
typename PointOutputIterator,
typename GeomTraits,
typename Creator,
typename Vpm,
typename NamedParameters>
struct Triangle_structure_sampler_for_triangle_mesh
: Triangle_structure_sampler_base<PointOutputIterator,
GeomTraits,
NamedParameters,
typename boost::graph_traits<Mesh>::face_iterator,
Random_points_in_triangle_mesh_3<Mesh, Vpm, Creator>,
Creator,
Triangle_structure_sampler_for_triangle_mesh<Mesh,
PointOutputIterator,
GeomTraits,
Creator,
Vpm,
NamedParameters> >
{
typedef Triangle_structure_sampler_for_triangle_mesh<Mesh,
PointOutputIterator,
GeomTraits,
Creator, Vpm,
NamedParameters> Self;
typedef Triangle_structure_sampler_base<PointOutputIterator,
GeomTraits,
NamedParameters,
typename boost::graph_traits<Mesh>::face_iterator,
Random_points_in_triangle_mesh_3<Mesh, Vpm, Creator>,
Creator,
Self> Base;
typedef boost::graph_traits<Mesh> GT;
typedef typename GT::halfedge_descriptor halfedge_descriptor;
typedef typename GT::edge_descriptor edge_descriptor;
typedef typename GT::face_descriptor face_descriptor;
typedef Random_points_in_triangle_mesh_3<Mesh, Vpm,Creator> Randomizer;
typedef typename boost::graph_traits<Mesh>::face_iterator TriangleIterator;
Vpm pmap;
double min_sq_edge_length;
const Mesh& tm;
Triangle_structure_sampler_for_triangle_mesh(const Mesh& m,
PointOutputIterator& out,
const NamedParameters& np)
: Base(out, np), tm(m)
{
using parameters::choose_parameter;
using parameters::get_parameter;
pmap = choose_parameter(get_parameter(np, internal_np::vertex_point),
get_const_property_map(vertex_point, tm));
min_sq_edge_length = (std::numeric_limits<double>::max)();
}
std::pair<TriangleIterator, TriangleIterator> get_range()
{
return std::make_pair(faces(tm).begin(), faces(tm).end());
}
void sample_points()
{
Property_map_to_unary_function<Vpm> unary(pmap);
this->out = std::copy(boost::make_transform_iterator(boost::begin(vertices(tm)), unary),
boost::make_transform_iterator(boost::end(vertices(tm)), unary),
this->out);
}
double get_minimum_edge_length()
{
typedef typename boost::graph_traits<Mesh>::edge_descriptor edge_descriptor;
if(min_sq_edge_length != (std::numeric_limits<double>::max)())
return min_sq_edge_length;
for(edge_descriptor ed : edges(tm))
{
const double sq_el = CGAL::to_double(
typename GeomTraits::Compute_squared_distance_3()(get(pmap, source(ed, tm)),
get(pmap, target(ed, tm))));
if(sq_el > 0. && sq_el < min_sq_edge_length)
min_sq_edge_length = sq_el;
}
return min_sq_edge_length;
}
double get_tr_area(const typename boost::graph_traits<Mesh>::face_descriptor& tr)
{
return to_double(face_area(tr,tm,parameters::geom_traits(this->gt)));
}
template<typename Tr>//tr = face_descriptor here
std::array<typename GeomTraits::Point_3, 3> get_tr_points(const Tr& tr)
{
std::array<typename GeomTraits::Point_3, 3> points;
halfedge_descriptor hd(halfedge(tr,tm));
for(int i=0; i<3; ++i)
{
points[i] = get(pmap, target(hd, tm));
hd = next(hd, tm);
}
return points;
}
void ms_edges_sample(std::size_t nb_points_per_edge,
double nb_pts_l_u)
{
typename GeomTraits::Compute_squared_distance_3 squared_distance = this->gt.compute_squared_distance_3_object();
if(nb_points_per_edge == 0 && nb_pts_l_u == 0.)
nb_pts_l_u = 1. / CGAL::sqrt(min_sq_edge_length);
for(edge_descriptor ed : edges(tm))
{
std::size_t nb_points = nb_points_per_edge;
if(nb_points == 0)
{
nb_points = (std::max)(
static_cast<std::size_t>(std::ceil(std::sqrt(to_double(
squared_distance(get(pmap, source(ed, tm)),
get(pmap, target(ed, tm))))) * nb_pts_l_u)),
std::size_t(1));
}
// now do the sampling of the edge
Random_points_on_segment_3<typename GeomTraits::Point_3, Creator>
g(get(pmap, source(ed,tm)), get(pmap, target(ed, tm)));
this->out = std::copy_n(g, nb_points, this->out);
}
}
void ru_edges_sample(double nb_pts_l_u,
double nb_pts_a_u)
{
using parameters::choose_parameter;
using parameters::get_parameter;
std::size_t nb_points = choose_parameter(get_parameter(this->np, internal_np::number_of_points_on_edges), 0);
Random_points_on_edge_list_graph_3<Mesh, Vpm, Creator> g(tm, pmap);
if(nb_points == 0)
{
if(nb_pts_l_u == 0)
nb_points = num_vertices(tm);
else
nb_points = static_cast<std::size_t>(std::ceil(g.mesh_length() * nb_pts_a_u));
}
this->out = std::copy_n(g, nb_points, this->out);
}
Randomizer get_randomizer()
{
return Randomizer(tm, pmap);
}
void internal_sample_triangles(double grid_spacing_, bool smpl_fcs, bool smpl_dgs)
{
this->out = sample_triangles<GeomTraits>(faces(tm), tm, pmap, grid_spacing_, this->out, smpl_fcs, smpl_dgs, false);
}
std::size_t get_points_size()
{
return num_vertices(tm);
}
};
template<typename PointRange,
typename TriangleRange,
typename PointOutputIterator,
typename GeomTraits,
typename Creator,
typename NamedParameters>
struct Triangle_structure_sampler_for_triangle_soup
: Triangle_structure_sampler_base<PointOutputIterator,
GeomTraits,
NamedParameters,
typename TriangleRange::const_iterator,
Random_points_in_triangle_soup<PointRange,
typename TriangleRange::value_type,
Creator>,
Creator,
Triangle_structure_sampler_for_triangle_soup<PointRange,
TriangleRange,
PointOutputIterator,
GeomTraits,
Creator,
NamedParameters> >
{
typedef typename TriangleRange::value_type TriangleType;
typedef Triangle_structure_sampler_for_triangle_soup<PointRange,
TriangleRange,
PointOutputIterator,
GeomTraits,
Creator,
NamedParameters> Self;
typedef Triangle_structure_sampler_base<PointOutputIterator,
GeomTraits,
NamedParameters,
typename TriangleRange::const_iterator,
Random_points_in_triangle_soup<PointRange, TriangleType, Creator>,
Creator,
Self> Base;
typedef typename GeomTraits::Point_3 Point_3;
typedef Random_points_in_triangle_soup<PointRange, TriangleType, Creator> Randomizer;
typedef typename TriangleRange::const_iterator TriangleIterator;
double min_sq_edge_length;
const PointRange& points;
const TriangleRange& triangles;
Triangle_structure_sampler_for_triangle_soup(const PointRange& pts,
const TriangleRange& trs,
PointOutputIterator& out,
const NamedParameters& np)
: Base(out, np), points(pts), triangles(trs)
{
min_sq_edge_length = (std::numeric_limits<double>::max)();
}
std::pair<TriangleIterator, TriangleIterator> get_range()
{
return std::make_pair(triangles.begin(), triangles.end());
}
void sample_points()
{
this->out = std::copy(points.begin(), points.end(), this->out);
}
double get_minimum_edge_length()
{
if(min_sq_edge_length != (std::numeric_limits<double>::max)())
return min_sq_edge_length;
for(const auto& tr : triangles)
{
for(std::size_t i = 0; i< 3; ++i)
{
const Point_3& a = points[tr[i]];
const Point_3& b = points[tr[(i+1)%3]];
const double sq_el = CGAL::to_double(typename GeomTraits::Compute_squared_distance_3()(a, b));
if(sq_el > 0. && sq_el < min_sq_edge_length)
min_sq_edge_length = sq_el;
}
}
return min_sq_edge_length;
}
template<typename Tr>
double get_tr_area(const Tr& tr)
{
return to_double(approximate_sqrt(
this->gt.compute_squared_area_3_object()(
points[tr[0]], points[tr[1]], points[tr[2]])));
}
template<typename Tr>
std::array<Point_3, 3> get_tr_points(const Tr& tr)
{
std::array<Point_3, 3> points;
for(int i=0; i<3; ++i)
{
points[i] = this->points[tr[i]];
}
return points;
}
void ms_edges_sample(std::size_t, double)
{
// don't sample edges in soup.
}
void ru_edges_sample(double, double)
{
// don't sample edges in soup.
}
Randomizer get_randomizer()
{
return Randomizer(triangles, points);
}
void internal_sample_triangles(double distance, bool, bool)
{
for(const auto& tr : triangles)
{
const Point_3& p0 = points[tr[0]];
const Point_3& p1 = points[tr[1]];
const Point_3& p2 = points[tr[2]];
this->out = internal::triangle_grid_sampling<GeomTraits>(p0, p1, p2, distance, this->out);
}
}
std::size_t get_points_size()
{
return points.size();
}
};
} // namespace internal
/** \ingroup PMP_distance_grp
*
* generates points on `tm` and outputs them to `out`; the sampling method
* is selected using named parameters.
*
* @tparam TriangleMesh a model of the concepts `EdgeListGraph` and `FaceListGraph`
* @tparam PointOutputIterator a model of `OutputIterator`
* holding objects of the same point type as
* the value type of the point type associated to the mesh `tm`, i.e. the value type of the vertex
* point map property map, if provided, or the value type of the internal point property map otherwise
* @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
*
* @param tm the triangle mesh to be sampled
* @param out output iterator to be filled with sample points
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamNBegin{vertex_point_map}
* \cgalParamDescription{a property map associating points to the vertices of `tm`}
* \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
* as key type and `%Point_3` as value type}
* \cgalParamDefault{`boost::get(CGAL::vertex_point, tm)`}
* \cgalParamExtra{If this parameter is omitted, an internal property map for `CGAL::vertex_point_t`
* must be available in `TriangleMesh`.}
* \cgalParamNEnd
*
* \cgalParamNBegin{geom_traits}
* \cgalParamDescription{an instance of a geometric traits class}
* \cgalParamType{a class model of `PMPDistanceTraits`}
* \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
* \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
* \cgalParamNEnd
*
* \cgalParamNBegin{use_random_uniform_sampling}
* \cgalParamDescription{If `true` is passed, points are generated in a random and uniform way
* on the surface of `tm`, and/or on edges of `tm`.}
* \cgalParamType{Boolean}
* \cgalParamType{`true`}
* \cgalParamExtra{For faces, the number of sample points is the value passed to the named
* parameter `number_of_points_on_faces`. If not set,
* the value passed to the named parameter `number_of_points_per_area_unit`
* is multiplied by the area of `tm` to get the number of sample points.
* If none of these parameters is set, the number of points sampled is `num_vertices(tm)`.
* For edges, the number of the number of sample points is the value passed to the named
* parameter `number_of_points_on_edges`. If not set,
* the value passed to the named parameter `number_of_points_per_distance_unit`
* is multiplied by the sum of the length of edges of `tm` to get the number of sample points.
* If none of these parameters is set, the number of points sampled is `num_vertices(tm)`.}
* \cgalParamNEnd
*
* \cgalParamNBegin{use_grid_sampling}
* \cgalParamDescription{If `true` is passed, points are generated on a grid in each triangle,
* with a minimum of one point per triangle.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`false`}
* \cgalParamExtra{The distance between two consecutive points in the grid is that of the length
* of the smallest non-null edge of `tm` or the value passed to the named parameter
* `grid_spacing`. Edges are also split using the same distance, if requested.}
* \cgalParamNEnd
*
* \cgalParamNBegin{use_monte_carlo_sampling}
* \cgalParamDescription{if `true` is passed, points are generated randomly in each triangle and/or on each edge.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`false`}
* \cgalParamExtra{For faces, the number of points per triangle is the value passed to the named
* parameter `number_of_points_per_face`. If not set, the value passed
* to the named parameter `number_of_points_per_area_unit` is
* used to pick a number of points per face proportional to the triangle
* area with a minimum of one point per face. If none of these parameters
* is set, 2 divided by the square of the length of the smallest non-null
* edge of `tm` is used as if it was passed to
* `number_of_points_per_area_unit`.
* For edges, the number of points per edge is the value passed to the named
* parameter `number_of_points_per_edge`. If not set, the value passed
* to the named parameter `number_of_points_per_distance_unit` is
* used to pick a number of points per edge proportional to the length of
* the edge with a minimum of one point per face. If none of these parameters
* is set, 1 divided by the length of the smallest non-null edge of `tm`
* is used as if it was passed to `number_of_points_per_distance_unit`.}
* \cgalParamNEnd
*
* \cgalParamNBegin{sample_vertices}
* \cgalParamDescription{If `true` is passed, the vertices of `tm` are part of the sample.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`true`}
* \cgalParamNEnd
*
* \cgalParamNBegin{sample_edges}
* \cgalParamDescription{If `true` is passed, edges of `tm` are sampled.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`true`}
* \cgalParamNEnd
*
* \cgalParamNBegin{sample_faces}
* \cgalParamDescription{If `true` is passed, faces of `tm` are sampled.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`true`}
* \cgalParamNEnd
*
* \cgalParamNBegin{grid_spacing}
* \cgalParamDescription{a value used as the grid spacing for the grid sampling method}
* \cgalParamType{double}
* \cgalParamDefault{the length of the shortest, non-degenerate edge of `tm`}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_on_edges}
* \cgalParamDescription{a value used for the random sampling method as the number of points to pick exclusively on edges}
* \cgalParamType{unsigned int}
* \cgalParamDefault{`num_vertices(tm)` or a value based on `nb_points_per_distance_unit`, if it is defined}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_on_faces}
* \cgalParamDescription{a value used for the random sampling method as the number of points to pick on the surface}
* \cgalParamType{unsigned int}
* \cgalParamDefault{`num_vertices(tm)` or a value based on `nb_points_per_area_unit`, if it is defined}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_per_distance_unit}
* \cgalParamDescription{a value used for the random sampling and the Monte Carlo sampling methods to
* respectively determine the total number of points on edges and the number of points per edge}
* \cgalParamType{double}
* \cgalParamDefault{`1` divided by the length of the shortest, non-degenerate edge of `tm`}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_per_edge}
* \cgalParamDescription{a value used by the Monte-Carlo sampling method as the number of points per edge to pick}
* \cgalParamType{unsigned int}
* \cgalParamDefault{`0`}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_per_area_unit}
* \cgalParamDescription{a value used for the random sampling and the Monte Carlo sampling methods to
* respectively determine the total number of points inside faces and the number of points per face}
* \cgalParamType{double}
* \cgalParamDefault{`2` divided by the squared length of the shortest, non-degenerate edge of `tm`}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_per_face}
* \cgalParamDescription{a value used by the Monte-Carlo sampling method as the number of points per face to pick}
* \cgalParamType{unsigned int}
* \cgalParamDefault{`0`}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* @see `CGAL::Polygon_mesh_processing::sample_triangle_soup()`
*/
template<class PointOutputIterator, class TriangleMesh, class NamedParameters>
PointOutputIterator
sample_triangle_mesh(const TriangleMesh& tm,
PointOutputIterator out,
const NamedParameters& np)
{
typedef typename GetGeomTraits<TriangleMesh, NamedParameters>::type GeomTraits;
typedef typename GetVertexPointMap<TriangleMesh, NamedParameters>::const_type Vpm;
internal::Triangle_structure_sampler_for_triangle_mesh<TriangleMesh,
PointOutputIterator,
GeomTraits,
Creator_uniform_3<typename GeomTraits::FT,
typename GeomTraits::Point_3>,
Vpm,
NamedParameters> performer(tm, out, np);
performer.procede();
return performer.out;
}
/** \ingroup PMP_distance_grp
*
* generates points on a triangle soup and puts them to `out`; the sampling method
* is selected using named parameters.
*
* @tparam PointRange a model of the concept `RandomAccessContainer` whose value type is the point type.
* @tparam TriangleRange a model of the concept `RandomAccessContainer`
* whose value_type is itself a model of the concept `RandomAccessContainer`
* whose value_type is an unsigned integral value.
* @tparam PointOutputIterator a model of `OutputIterator` holding objects of the same type as `PointRange`'s value type
* @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
*
* @param points the points of the soup
* @param triangles a `TriangleRange` containing the triangles of the soup to be sampled
* @param out output iterator to be filled with sample points
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamNBegin{geom_traits}
* \cgalParamDescription{an instance of a geometric traits class}
* \cgalParamType{a class model of `PMPDistanceTraits`}
* \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
* \cgalParamExtra{The geometric traits class must be compatible with the point range's point type.}
* \cgalParamNEnd
*
* \cgalParamNBegin{use_random_uniform_sampling}
* \cgalParamDescription{If `true` is passed, points are generated in a random and uniform way
* over the triangles of the soup.}
* \cgalParamType{Boolean}
* \cgalParamType{`true`}
* \cgalParamExtra{The number of sample points is the value passed to the named
* parameter `number_of_points_on_faces`. If not set,
* the value passed to the named parameter `number_of_points_per_area_unit`
* is multiplied by the area of the soup to get the number of sample points.
* If none of these parameters is set, the number of points sampled is `points.size()`.}
* \cgalParamNEnd
*
* \cgalParamNBegin{use_grid_sampling}
* \cgalParamDescription{If `true` is passed, points are generated on a grid in each triangle,
* with a minimum of one point per triangle.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`false`}
* \cgalParamExtra{The distance between two consecutive points in the grid is that of the length
* of the smallest non-null edge of the soup or the value passed to the named parameter
* `grid_spacing`.}
* \cgalParamNEnd
* * \cgalParamNBegin{use_monte_carlo_sampling}
* \cgalParamDescription{if `true` is passed, points are generated randomly in each triangle.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`false`}
* \cgalParamExtra{The number of points per triangle is the value passed to the named
* parameter `number_of_points_per_face`. If not set, the value passed
* to the named parameter `number_of_points_per_area_unit` is
* used to pick a number of points per face proportional to the triangle
* area with a minimum of one point per face. If none of these parameters
* is set, the number of points per area unit is set to 2 divided
* by the square of the length of the smallest non-null edge of the soup.}
* \cgalParamNEnd
*
* \cgalParamNBegin{sample_vertices}
* \cgalParamDescription{If `true` is passed, the points of `points` are part of the sample.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`true`}
* \cgalParamNEnd
*
* \cgalParamNBegin{sample_faces}
* \cgalParamDescription{If `true` is passed, faces of the soup are sampled.}
* \cgalParamType{Boolean}
* \cgalParamDefault{`true`}
* \cgalParamNEnd
*
* \cgalParamNBegin{grid_spacing}
* \cgalParamDescription{a value used as the grid spacing for the grid sampling method}
* \cgalParamType{double}
* \cgalParamDefault{the length of the shortest, non-degenerate edge of the soup}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_on_faces}
* \cgalParamDescription{a value used for the random sampling method as the number of points to pick on the surface}
* \cgalParamType{unsigned int}
* \cgalParamDefault{`points.size()` or a value based on `nb_points_per_area_unit`, if it is defined}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_per_face}
* \cgalParamDescription{a value used by the Monte-Carlo sampling method as the number of points per face to pick}
* \cgalParamType{unsigned int}
* \cgalParamDefault{`0`}
* \cgalParamNEnd
*
* \cgalParamNBegin{number_of_points_per_area_unit}
* \cgalParamDescription{a value used for the random sampling and the Monte Carlo sampling methods to
* respectively determine the total number of points inside faces and the number of points per face}
* \cgalParamType{double}
* \cgalParamDefault{`2` divided by the squared length of the shortest, non-degenerate edge of the soup}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* \attention Contrary to `sample_triangle_mesh()`, this method does not allow to sample edges.
*
* @see `CGAL::Polygon_mesh_processing::sample_triangle_mesh()`
*/
template<class PointOutputIterator,
class TriangleRange,
class PointRange,
class NamedParameters>
PointOutputIterator
sample_triangle_soup(const PointRange& points,
const TriangleRange& triangles,
PointOutputIterator out,
const NamedParameters& np)
{
typedef typename PointRange::value_type Point_3;
typedef typename Kernel_traits<Point_3>::Kernel GeomTraits;
static_assert(std::is_same<Point_3, typename GeomTraits::Point_3>::value, "Wrong point type.");
internal::Triangle_structure_sampler_for_triangle_soup<PointRange,
TriangleRange,
PointOutputIterator,
GeomTraits,
Creator_uniform_3<typename GeomTraits::FT,
typename GeomTraits::Point_3>,
NamedParameters> performer(points, triangles, out, np);
performer.procede();
return performer.out;
}
template<class PointOutputIterator, class TriangleMesh>
PointOutputIterator
sample_triangle_mesh(const TriangleMesh& tm,
PointOutputIterator out)
{
return sample_triangle_mesh(tm, out, parameters::all_default());
}
template<class PointOutputIterator,
class TriangleRange,
class PointRange>
PointOutputIterator
sample_triangle_soup(const PointRange& points,
const TriangleRange& triangles,
PointOutputIterator out)
{
return sample_triangle_soup(points, triangles, out, parameters::all_default());
}
template <class Concurrency_tag,
class Kernel,
class PointRange,
class TriangleMesh,
class VertexPointMap>
double approximate_Hausdorff_distance(
const PointRange& original_sample_points,
const TriangleMesh& tm,
VertexPointMap vpm)
{
CGAL_assertion_code( bool is_triangle = is_triangle_mesh(tm) );
CGAL_assertion_msg (is_triangle,
"Mesh is not triangulated. Distance computing impossible.");
#ifdef CGAL_HAUSDORFF_DEBUG
std::cout << "Nb sample points " << sample_points.size() << "\n";
#endif
typedef typename Kernel::Point_3 Point_3;
std::vector<Point_3> sample_points
(boost::begin(original_sample_points), boost::end(original_sample_points) );
spatial_sort(sample_points.begin(), sample_points.end());
typedef AABB_face_graph_triangle_primitive<TriangleMesh> Primitive;
typedef AABB_tree< AABB_traits<Kernel, Primitive> > Tree;
Tree tree( faces(tm).first, faces(tm).second, tm);
tree.build();
Point_3 hint = get(vpm, *vertices(tm).first);
return internal::approximate_Hausdorff_distance_impl<Concurrency_tag, Kernel>
(original_sample_points, tree, hint);
}
template <class Concurrency_tag, class Kernel, class TriangleMesh,
class NamedParameters,
class VertexPointMap >
double approximate_Hausdorff_distance(
const TriangleMesh& tm1,
const TriangleMesh& tm2,
const NamedParameters& np,
VertexPointMap vpm_2)
{
std::vector<typename Kernel::Point_3> sample_points;
sample_triangle_mesh(tm1, std::back_inserter(sample_points), np);
return approximate_Hausdorff_distance<Concurrency_tag, Kernel>(sample_points, tm2, vpm_2);
}
// documented functions
/**
* \ingroup PMP_distance_grp
* computes the approximate Hausdorff distance from `tm1` to `tm2` by returning
* the distance of the farthest point from `tm2` amongst a sampling of `tm1`
* generated with the function `sample_triangle_mesh()` with
* `tm1` and `np1` as parameter.
*
* A parallel version is provided and requires the executable to be
* linked against the <a href="https://www.threadingbuildingblocks.org">Intel TBB library</a>.
* To control the number of threads used, the user may use the `tbb::task_scheduler_init` class.
* See the <a href="https://www.threadingbuildingblocks.org/documentation">TBB documentation</a>
* for more details.
*
* @tparam Concurrency_tag enables sequential versus parallel algorithm.
* Possible values are `Sequential_tag`, `Parallel_tag`, and `Parallel_if_available_tag`.
* @tparam TriangleMesh a model of the concepts `EdgeListGraph` and `FaceListGraph`
* @tparam NamedParameters1 a sequence of \ref bgl_namedparameters "Named Parameters" for `tm1`
* @tparam NamedParameters2 a sequence of \ref bgl_namedparameters "Named Parameters" for `tm2`
*
* @param tm1 the triangle mesh that will be sampled
* @param tm2 the triangle mesh to compute the distance to
* @param np1 an optional sequence of \ref bgl_namedparameters "Named Parameters" forwarded to `sample_triangle_mesh()`
*
* @param np2 an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamNBegin{vertex_point_map}
* \cgalParamDescription{a property map associating points to the vertices of `tm2`}
* \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
* as key type and `%Point_3` as value type}
* \cgalParamDefault{`boost::get(CGAL::vertex_point, tm2)`}
* \cgalParamExtra{If this parameter is omitted, an internal property map for `CGAL::vertex_point_t`
* must be available in `TriangleMesh`.}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*
* The function `CGAL::parameters::all_default()` can be used to indicate to use the default values
* for `np1` and specify custom values for `np2`.
*/
template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters1,
class NamedParameters2>
double approximate_Hausdorff_distance( const TriangleMesh& tm1,
const TriangleMesh& tm2,
const NamedParameters1& np1,
const NamedParameters2& np2)
{
typedef typename GetGeomTraits<TriangleMesh,
NamedParameters1>::type GeomTraits;
return approximate_Hausdorff_distance<Concurrency_tag, GeomTraits>(
tm1, tm2, np1, parameters::choose_parameter(parameters::get_parameter(np2, internal_np::vertex_point),
get_const_property_map(vertex_point, tm2)));
}
/**
* \ingroup PMP_distance_grp
* computes the approximate symmetric Hausdorff distance between `tm1` and `tm2`.
* It returns the maximum of `approximate_Hausdorff_distance(tm1, tm2, np1, np2)`
* and `approximate_Hausdorff_distance(tm2, tm1, np2, np1)`.
*/
template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters1,
class NamedParameters2>
double approximate_symmetric_Hausdorff_distance(
const TriangleMesh& tm1,
const TriangleMesh& tm2,
const NamedParameters1& np1,
const NamedParameters2& np2)
{
return (std::max)(
approximate_Hausdorff_distance<Concurrency_tag>(tm1,tm2,np1,np2),
approximate_Hausdorff_distance<Concurrency_tag>(tm2,tm1,np2,np1)
);
}
/**
* \ingroup PMP_distance_grp
* returns the distance to `tm` of the point from `points` that is the furthest from `tm`.
*
* @tparam PointRange a range of `Point_3`, model of `Range`. Its iterator type is `RandomAccessIterator`.
* @tparam TriangleMesh a model of the concepts `EdgeListGraph` and `FaceListGraph`
* @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
*
* @param points the range of points of interest
* @param tm the triangle mesh to compute the distance to
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamNBegin{vertex_point_map}
* \cgalParamDescription{a property map associating points to the vertices of `tm`}
* \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
* as key type and `%Point_3` as value type}
* \cgalParamDefault{`boost::get(CGAL::vertex_point, tm)`}
* \cgalParamExtra{If this parameter is omitted, an internal property map for `CGAL::vertex_point_t`
* must be available in `TriangleMesh`.}
* \cgalParamNEnd
*
* \cgalParamNBegin{geom_traits}
* \cgalParamDescription{an instance of a geometric traits class}
* \cgalParamType{a class model of `PMPDistanceTraits`}
* \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
* \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*/
template< class Concurrency_tag,
class TriangleMesh,
class PointRange,
class NamedParameters>
double max_distance_to_triangle_mesh(const PointRange& points,
const TriangleMesh& tm,
const NamedParameters& np)
{
typedef typename GetGeomTraits<TriangleMesh,
NamedParameters>::type GeomTraits;
return approximate_Hausdorff_distance<Concurrency_tag, GeomTraits>
(points,tm,parameters::choose_parameter(parameters::get_parameter(np, internal_np::vertex_point),
get_const_property_map(vertex_point, tm)));
}
/*!
*\ingroup PMP_distance_grp
* returns an approximation of the distance between `points` and the point lying on `tm` that is the farthest from `points`
*
* @tparam PointRange a range of `Point_3`, model of `Range`.
* @tparam TriangleMesh a model of the concept `FaceListGraph`
* @tparam NamedParameters a sequence of \ref bgl_namedparameters "Named Parameters"
*
* @param tm a triangle mesh
* @param points a range of points
* @param precision for each triangle of `tm`, the distance of its farthest point from `points` is bounded.
* A triangle is subdivided into sub-triangles so that the difference of its distance bounds
* is smaller than `precision`. `precision` must be strictly positive to avoid infinite loops.
* @param np an optional sequence of \ref bgl_namedparameters "Named Parameters" among the ones listed below
*
* \cgalNamedParamsBegin
* \cgalParamNBegin{vertex_point_map}
* \cgalParamDescription{a property map associating points to the vertices of `tm`}
* \cgalParamType{a class model of `ReadablePropertyMap` with `boost::graph_traits<TriangleMesh>::%vertex_descriptor`
* as key type and `%Point_3` as value type}
* \cgalParamDefault{`boost::get(CGAL::vertex_point, tm)`}
* \cgalParamExtra{If this parameter is omitted, an internal property map for `CGAL::vertex_point_t`
* must be available in `TriangleMesh`.}
* \cgalParamNEnd
*
* \cgalParamNBegin{geom_traits}
* \cgalParamDescription{an instance of a geometric traits class}
* \cgalParamType{a class model of `PMPDistanceTraits`}
* \cgalParamDefault{a \cgal Kernel deduced from the point type, using `CGAL::Kernel_traits`}
* \cgalParamExtra{The geometric traits class must be compatible with the vertex point type.}
* \cgalParamNEnd
* \cgalNamedParamsEnd
*/
template< class TriangleMesh,
class PointRange,
class NamedParameters>
double approximate_max_distance_to_point_set(const TriangleMesh& tm,
const PointRange& points,
const double precision,
const NamedParameters& np)
{
typedef typename GetGeomTraits<TriangleMesh,
NamedParameters>::type GeomTraits;
typedef boost::graph_traits<TriangleMesh> GT;
typedef Orthogonal_k_neighbor_search<Search_traits_3<GeomTraits> > Knn;
typedef typename Knn::Tree Tree;
Tree tree(points.begin(), points.end());
CRefiner<GeomTraits> ref;
for(typename GT::face_descriptor f : faces(tm))
{
typename GeomTraits::Point_3 points[3];
typename GT::halfedge_descriptor hd(halfedge(f,tm));
for(int i=0; i<3; ++i)
{
points[i] = get(parameters::choose_parameter(parameters::get_parameter(np, internal_np::vertex_point),
get_const_property_map(vertex_point, tm)),
target(hd, tm));
hd = next(hd, tm);
}
ref.add(points[0], points[1], points[2], tree);
}
return to_double(ref.refine(precision, tree));
}
// convenience functions with default parameters
template< class Concurrency_tag,
class TriangleMesh,
class PointRange>
double max_distance_to_triangle_mesh(const PointRange& points,
const TriangleMesh& tm)
{
return max_distance_to_triangle_mesh<Concurrency_tag,
TriangleMesh,
PointRange>
(points, tm, parameters::all_default());
}
template< class TriangleMesh,
class PointRange>
double approximate_max_distance_to_point_set(const TriangleMesh& tm,
const PointRange& points,
const double precision)
{
return approximate_max_distance_to_point_set(tm, points, precision,
parameters::all_default());
}
template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters>
double approximate_Hausdorff_distance(const TriangleMesh& tm1,
const TriangleMesh& tm2,
const NamedParameters& np)
{
return approximate_Hausdorff_distance<Concurrency_tag>(
tm1, tm2, np, parameters::all_default());
}
template< class Concurrency_tag,
class TriangleMesh>
double approximate_Hausdorff_distance(const TriangleMesh& tm1,
const TriangleMesh& tm2)
{
return approximate_Hausdorff_distance<Concurrency_tag>(
tm1, tm2, parameters::all_default(), parameters::all_default());
}
template< class Concurrency_tag,
class TriangleMesh,
class NamedParameters>
double approximate_symmetric_Hausdorff_distance(const TriangleMesh& tm1,
const TriangleMesh& tm2,
const NamedParameters& np)
{
return approximate_symmetric_Hausdorff_distance<Concurrency_tag>(
tm1, tm2, np, parameters::all_default());
}
template< class Concurrency_tag,
class TriangleMesh>
double approximate_symmetric_Hausdorff_distance(const TriangleMesh& tm1,
const TriangleMesh& tm2)
{
return approximate_symmetric_Hausdorff_distance<Concurrency_tag>(
tm1, tm2, parameters::all_default(), parameters::all_default());
}
}
} // end of namespace CGAL::Polygon_mesh_processing
#endif //CGAL_POLYGON_MESH_PROCESSING_DISTANCE_H