459 lines
16 KiB
C
459 lines
16 KiB
C
|
// Copyright (c) 1997-2001 ETH Zurich (Switzerland).
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org).
|
||
|
//
|
||
|
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Bounding_volumes/include/CGAL/Approximate_min_ellipsoid_d.h $
|
||
|
// $Id: Approximate_min_ellipsoid_d.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot
|
||
|
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
|
||
|
//
|
||
|
//
|
||
|
// Author(s) : Kaspar Fischer <fischerk@inf.ethz.ch>
|
||
|
|
||
|
#ifndef CGAL_CGAL_APPROX_MIN_ELL_D_H
|
||
|
#define CGAL_CGAL_APPROX_MIN_ELL_D_H
|
||
|
|
||
|
#include <CGAL/license/Bounding_volumes.h>
|
||
|
|
||
|
|
||
|
#include <cstdlib>
|
||
|
#include <cmath>
|
||
|
#include <vector>
|
||
|
#include <iostream>
|
||
|
|
||
|
#include <CGAL/Simple_cartesian.h>
|
||
|
#include <CGAL/Approximate_min_ellipsoid_d/Khachiyan_approximation.h>
|
||
|
|
||
|
namespace CGAL {
|
||
|
|
||
|
template<class Traits>
|
||
|
class Approximate_min_ellipsoid_d
|
||
|
// An instance of class Approximate_min_ellipsoid_d represents an
|
||
|
// eps-approximation of the smallest enclosing ellipsoid of the
|
||
|
// point set P in R^d, that is, an ellipsoid E satisfying
|
||
|
//
|
||
|
// (i) E contains P,
|
||
|
//
|
||
|
// (ii) the volume of E is at most (1+eps) times larger than the
|
||
|
// volume of the smallest enclosing ellipsoid of P.
|
||
|
{
|
||
|
public: // types:
|
||
|
typedef typename Traits::FT FT;
|
||
|
typedef typename Traits::Point Point;
|
||
|
typedef typename Traits::Cartesian_const_iterator Cartesian_const_iterator;
|
||
|
|
||
|
private:
|
||
|
typedef std::vector<Point> Point_list;
|
||
|
typedef typename Traits::Cartesian_const_iterator C_it;
|
||
|
|
||
|
protected: // member variables:
|
||
|
Traits tco; // traits class object
|
||
|
const Point_list P; // the input points in R^d
|
||
|
int d; // dimension of the input points
|
||
|
const double eps; // the desired epsilon
|
||
|
double e_eps; // (see below)
|
||
|
|
||
|
// We obtain our eps-approximating ellipsoid by embedding the input
|
||
|
// points P into R^{d+1} by mapping p to (p,1). Then we compute in
|
||
|
// R^{d+1} an (1+e_eps)-approximating centrally symmetric ellipsoid E for
|
||
|
// the embedded points from which the desired (1+eps)-approximating
|
||
|
// ellipsoid of the original points can be obtained by projection. The
|
||
|
// following variable E represents the e_eps-approximating centrally
|
||
|
// symmetric ellipsoid in R^{d+1}:
|
||
|
Khachiyan_approximation<true,Traits> *E;
|
||
|
|
||
|
// When the input points do not affinely span the whole space
|
||
|
// (i.e., if dim(aff(P)) < d), then the smallest enclosing
|
||
|
// ellipsoid of P has no volume in R^d and so the points are
|
||
|
// called "degnerate" (see is_degenerate()) below.
|
||
|
|
||
|
// As discussed below (before (*)), the centrally symmetric ellipsoid
|
||
|
// E':= sqrt{(1+a_eps)(d+1)} E contains (under exact arithmetic) the
|
||
|
// embedded points. (Here, a_eps is the value obtained by
|
||
|
// achieved_epsilon().) Denote by M the defining matrix of E; we
|
||
|
// then have
|
||
|
//
|
||
|
// p^T M p <= alpha,
|
||
|
//
|
||
|
// for all p in E and alpha = (1+a_eps)(d+1). Since this is equivalent
|
||
|
// to
|
||
|
//
|
||
|
// p^T M/alpha p <= 1, (***)
|
||
|
//
|
||
|
// we see that E' = sqrt{alpha} E has M/alpha as its defining
|
||
|
// matrix. Consequently, when we return M in the routines
|
||
|
// defining_matrix(), defining_vector(), and defining_scalar() below,
|
||
|
// these numbers need to be scaled (by the user) with the factor
|
||
|
// 1/alpha. (We do not perform the scaling ourselves because we cannot do
|
||
|
// it exactly in double arithmetic.)
|
||
|
|
||
|
public: // construction & destruction:
|
||
|
|
||
|
template<typename InputIterator>
|
||
|
Approximate_min_ellipsoid_d(double eps,
|
||
|
InputIterator first,InputIterator last,
|
||
|
const Traits& traits = Traits())
|
||
|
// Given a range [first,last) of n points P, constructs an
|
||
|
// (1+eps)-approximation of the smallest enclosing ellipsoid of P.
|
||
|
: tco(traits), P(first,last), eps(eps),
|
||
|
has_center(false), has_axes(false)
|
||
|
{
|
||
|
CGAL_APPEL_LOG("appel",
|
||
|
"Entering Approximate_min_ellpsoid_d." << std::endl);
|
||
|
|
||
|
// fetch ambient dimension:
|
||
|
d = tco.dimension(P[0]);
|
||
|
CGAL_APPEL_ASSERT(d >= 2 || eps >= 0.0);
|
||
|
|
||
|
|
||
|
// The ellipsoid E produced by Khachiyan's algorithm has the
|
||
|
// property that E':= sqrt{(1+e_eps) (d+1)} E contains all
|
||
|
// embedded points e_P and has volume bounded by
|
||
|
//
|
||
|
// vol(E') <= (1+e_eps)^{(d+1)/2} vol(E_emb*), (*)
|
||
|
//
|
||
|
// where E_emb* is the smallest centrally symmetric enclosing
|
||
|
// ellipsoid of the embedded points e_P. By requiring that (1+eps)
|
||
|
// <= (1+e_eps)^{(d+1)/2}, we get
|
||
|
//
|
||
|
// e_eps <= (1+eps)^{2/(d+1)} - 1 (**)
|
||
|
//
|
||
|
// and with this e_eps, we have vol(E') <= (1+eps) vol(E_emb*).
|
||
|
// An argument by Khachiyan (see "Rounding of polytopes in the
|
||
|
// real number model of computation", eq. (4.1)) then guarantees
|
||
|
// that the intersection E_int of E' with the hyperplane { (x,y)
|
||
|
// in R^{d+1} | y = 1} is an ellipsoid satisfying vol(E_int) <=
|
||
|
// (1+eps) vol(E*), where E* is the smallest enclosing ellipsoid
|
||
|
// of the original points P. According to (**) we thus set e_eps
|
||
|
// to (a lower bound on) (1+eps)^{2/(d+1)} - 1:
|
||
|
FPU_CW_t old = FPU_get_and_set_cw(CGAL_FE_TOWARDZERO); // round to zero
|
||
|
e_eps = std::exp(2.0/(d+1)*std::log(1.0+eps))-1.0;
|
||
|
FPU_set_cw(old); // restore
|
||
|
// rounding mode
|
||
|
|
||
|
// Find e (1+e_eps)-approximation for the embedded points. This
|
||
|
// only works when the points affinely span R^{d+1}.
|
||
|
E = new Khachiyan_approximation<true,Traits>(d, static_cast<int>(P.size()),tco);
|
||
|
const bool is_deg = !E->add(P.begin(),P.end(),e_eps);
|
||
|
|
||
|
// debugging:
|
||
|
CGAL_APPEL_ASSERT(is_deg == E->is_degenerate());
|
||
|
CGAL_APPEL_LOG("appel",
|
||
|
" Input points are " << (is_deg? "" : "not ") <<
|
||
|
"degnerate." << std::endl);
|
||
|
|
||
|
if (is_deg)
|
||
|
find_lower_dimensional_approximation();
|
||
|
|
||
|
CGAL_APPEL_LOG("appel",
|
||
|
"Leaving Approximate_min_ellipsoid_d." << std::endl);
|
||
|
}
|
||
|
|
||
|
~Approximate_min_ellipsoid_d()
|
||
|
{
|
||
|
// dispose of approximation:
|
||
|
if (E != static_cast<Khachiyan_approximation<true,Traits> *>(0))
|
||
|
delete E;
|
||
|
}
|
||
|
|
||
|
public: // access:
|
||
|
|
||
|
unsigned int number_of_points() const
|
||
|
// Returns the number of points, i.e., |P|.
|
||
|
{
|
||
|
return P.size();
|
||
|
}
|
||
|
|
||
|
bool is_empty() const
|
||
|
// Returns true iff the approximate ellipsoid is empty (which
|
||
|
// implies degeneracy). This is the case iff the number of input
|
||
|
// points was zero at construction time.
|
||
|
{
|
||
|
return P.size() == 0;
|
||
|
}
|
||
|
|
||
|
private: // access:
|
||
|
bool is_degenerate() const
|
||
|
// Returns true iff the approximate ellipsoid is degenerate, i.e.,
|
||
|
// iff the dimension of the affine hull of S doesn't match the
|
||
|
// dimension of the ambient space.
|
||
|
{
|
||
|
return E->is_degenerate();
|
||
|
}
|
||
|
|
||
|
public: // access:
|
||
|
|
||
|
// Here's how the routines defining_matrix(), defining_vector(),
|
||
|
// and defining_scalar() are implemented. From (***) we know that
|
||
|
// the ellipsoid E' = sqrt{alpha} E
|
||
|
//
|
||
|
// (a) encloses all embedded points (p,1), p in P,
|
||
|
// (b) has defining matrix M/alpha, i.e.,
|
||
|
//
|
||
|
// E' = { x | x^T M/alpha x <= 1 },
|
||
|
//
|
||
|
// where alpha = (1+a_eps)(d+1) with a_eps the return value
|
||
|
// of achieved_epsilon().
|
||
|
//
|
||
|
// The ellipsoid E* we actuallly want is the intersection of E' with
|
||
|
// the hyperplane { (y,z) in R^{d+1} | y = 1}. Writing
|
||
|
//
|
||
|
// [ M' m ] [ y ]
|
||
|
// M = [ m^T nu ] and x = [ 1 ] (*****)
|
||
|
//
|
||
|
// we thus obtain
|
||
|
//
|
||
|
// x^T M/alpha x = y^T y alpha/M + 2/alpha y^Tm + nu/alpha.
|
||
|
//
|
||
|
// It follows
|
||
|
//
|
||
|
// E* = { y | y^T M'/alpha y + 2/alpha y^Tm + (nu/alpha-1) <= 0 }. (****)
|
||
|
//
|
||
|
// This is what the routines defining_matrix(), defining_vector(),
|
||
|
// and defining_scalar() implement.
|
||
|
|
||
|
bool is_full_dimensional() const
|
||
|
// Returns !is_degenerate().
|
||
|
{
|
||
|
return !is_degenerate();
|
||
|
}
|
||
|
|
||
|
FT defining_matrix(int i,int j) const
|
||
|
// Returns the entry M(i,j) of the symmetric matrix M in the
|
||
|
// representation
|
||
|
//
|
||
|
// E* = { x | x^T M x + x^T m + mu <= 0 }
|
||
|
//
|
||
|
// of the computed approximation. More precisely, the routine does not
|
||
|
// return M(i,j) but the number (1+achieved_epsilon())*(d+1)*M(i,j).
|
||
|
//
|
||
|
// Precondition: !is_degenerate() && 0<=i<d && 0<=j<d
|
||
|
{
|
||
|
|
||
|
CGAL_APPEL_ASSERT(!is_degenerate() && 0<=i && i<d && 0<=j && j<d);
|
||
|
return E->matrix(i,j);
|
||
|
}
|
||
|
|
||
|
FT defining_vector(int i) const
|
||
|
// Returns the entry m(i) of the vector m in the representation
|
||
|
//
|
||
|
// E* = { x | x^T M x + x^T m + mu <= 0 }
|
||
|
//
|
||
|
// of the computed approximation. More precisely, the routine does not
|
||
|
// return m(i) but the number (1+achieved_epsilon())*(d+1)*m(i).
|
||
|
//
|
||
|
// Precondition: !is_degenerate() && 0<=i<d
|
||
|
{
|
||
|
CGAL_APPEL_ASSERT(!is_degenerate() && 0<=i && i<d);
|
||
|
return FT(2)*E->matrix(d,i); // Note: if FT is double, the
|
||
|
// multiplication by 2.0 is exact.
|
||
|
}
|
||
|
|
||
|
FT defining_scalar() const
|
||
|
// Returns the number mu in the representation
|
||
|
//
|
||
|
// E* = { x | x^T M x + x^T m + mu <= 0}
|
||
|
//
|
||
|
// of the computed approximation. More precisely, the routine does not
|
||
|
// return mu but the number (1+achieved_epsilon())*(d+1)*(mu+1).
|
||
|
//
|
||
|
// Precondition: !is_degenerate()
|
||
|
{
|
||
|
CGAL_APPEL_ASSERT(!is_degenerate());
|
||
|
return E->matrix(d,d);
|
||
|
}
|
||
|
|
||
|
double achieved_epsilon() const
|
||
|
// Returns the approximation ratio; more precisely, this returns a
|
||
|
// number r such that the computed ellipsoid is a (1+r)-approximation
|
||
|
// of MEL(P).
|
||
|
//
|
||
|
// Precondition: !is_degenerate()
|
||
|
{
|
||
|
CGAL_APPEL_ASSERT(!is_degenerate());
|
||
|
|
||
|
// From (*) we known that Khachian's algorithm produces a
|
||
|
// centrally-symmetric ellipsoid in R^{d+1} fulfilling
|
||
|
//
|
||
|
// vol(E') <= (1+k_eps)^{(d+1)/2} vol(E_emb*),
|
||
|
//
|
||
|
// where k_eps = E->exact_epsilon(). The projecting argument
|
||
|
// mentioned after (**) says that these approximation ratio also
|
||
|
// applies to the projected (d-dimensional) ellipsoids, and so the
|
||
|
// actual approximation ratio we obtain is
|
||
|
//
|
||
|
// ratio:= (1+k_eps)^{(d+1)/2}.
|
||
|
//
|
||
|
// So all we need to do is compute the smallest (let's say: a small)
|
||
|
// double number larger or equal to ratio.
|
||
|
//
|
||
|
// Todo: make the calculation below more stable, numerically?
|
||
|
const double k_eps = E->exact_epsilon();
|
||
|
FPU_CW_t old = FPU_get_and_set_cw(CGAL_FE_UPWARD); // round up
|
||
|
const double sum = 1.0 + k_eps;
|
||
|
double tmp = sum;
|
||
|
for (int i=0; i<d; ++i)
|
||
|
tmp *= sum;
|
||
|
const double eps = std::sqrt(tmp)-1.0;
|
||
|
FPU_set_cw(old); // restore
|
||
|
|
||
|
CGAL_APPEL_ASSERT(eps >= 0.0);
|
||
|
return eps;
|
||
|
}
|
||
|
|
||
|
Traits traits() const
|
||
|
{
|
||
|
return tco;
|
||
|
}
|
||
|
|
||
|
|
||
|
int dimension() const
|
||
|
{
|
||
|
return d;
|
||
|
}
|
||
|
|
||
|
public: // miscellaneous:
|
||
|
|
||
|
bool is_valid(bool verbose) const
|
||
|
// Returns true if and only if the computed ellipsoid is indeed an
|
||
|
// approximate ellipsoid, that is ... Todo.
|
||
|
{
|
||
|
return E->is_valid(verbose);
|
||
|
}
|
||
|
|
||
|
public: // miscellaneous 2D/3D support:
|
||
|
|
||
|
typedef std::vector<double>::const_iterator Center_coordinate_iterator;
|
||
|
typedef std::vector<double>::const_iterator Axes_lengths_iterator;
|
||
|
typedef std::vector<double>::const_iterator
|
||
|
Axes_direction_coordinate_iterator;
|
||
|
|
||
|
Center_coordinate_iterator center_cartesian_begin()
|
||
|
// Returns a STL random-access iterator pointing to the first of the d
|
||
|
// Cartesian coordinates of the computed ellipsoid's center. The center
|
||
|
// described in this way is a floating-point approximation to the
|
||
|
// ellipsoid's exact center; no guarantee is given w.r.t. the involved
|
||
|
// relative error.
|
||
|
//
|
||
|
// Precondition: !is_degenerate()
|
||
|
{
|
||
|
CGAL_APPEL_ASSERT(!is_degenerate());
|
||
|
if (!has_center)
|
||
|
compute_center();
|
||
|
|
||
|
return center_.begin();
|
||
|
}
|
||
|
|
||
|
Center_coordinate_iterator center_cartesian_end()
|
||
|
// Returns the past-the-end iterator corresponding to
|
||
|
// center_cartesian_begin().
|
||
|
//
|
||
|
// Precondition: !is_degenerate()
|
||
|
{
|
||
|
CGAL_APPEL_ASSERT(!is_degenerate());
|
||
|
if (!has_center)
|
||
|
compute_center();
|
||
|
|
||
|
return center_.end();
|
||
|
}
|
||
|
|
||
|
Axes_lengths_iterator axes_lengths_begin()
|
||
|
// Returns a STL random-access iterator to the first of the d lengths of
|
||
|
// the computed ellipsoid's axes. The d lengths are floating-point
|
||
|
// approximations to the exact axes-lengths of the computed ellipsoid; no
|
||
|
// guarantee is given w.r.t. the involved relative error. (See also method
|
||
|
// axes_direction_cartesian_begin().) The elements of the iterator are
|
||
|
// sorted descending.
|
||
|
//
|
||
|
// Precondition: !is_degenerate() && (d==2 || d==3)
|
||
|
{
|
||
|
CGAL_APPEL_ASSERT(!is_degenerate() && (d==2 || d==3));
|
||
|
if (!has_axes)
|
||
|
compute_axes_2_3();
|
||
|
|
||
|
return lengths_.begin();
|
||
|
}
|
||
|
|
||
|
Axes_lengths_iterator axes_lengths_end()
|
||
|
// Returns the past-the-end iterator corresponding to
|
||
|
// axes_lengths_begin().
|
||
|
//
|
||
|
// Precondition: !is_degenerate() && (d==2 || d==3)
|
||
|
{
|
||
|
CGAL_APPEL_ASSERT(!is_degenerate() && (d==2 || d==3));
|
||
|
if (!has_axes)
|
||
|
compute_axes_2_3();
|
||
|
|
||
|
return lengths_.end();
|
||
|
}
|
||
|
|
||
|
Axes_direction_coordinate_iterator axis_direction_cartesian_begin(int i)
|
||
|
// Returns a STL random-access iterator pointing to the first of the d
|
||
|
// Cartesian coordinates of the computed ellipsoid's i-th axis direction
|
||
|
// (i.e., unit vector in direction of the ellipsoid's i-th axis). The
|
||
|
// direction described by this iterator is a floating-point approximation
|
||
|
// to the exact axis direction of the computed ellipsoid; no guarantee is
|
||
|
// given w.r.t. the involved relative error. An approximation to the
|
||
|
// length of axis i is given by the i-th entry of axes_lengths_begin().
|
||
|
//
|
||
|
// Precondition: !is_degenerate() && (d==2 || d==3) && (0 <= i < d)
|
||
|
{
|
||
|
CGAL_APPEL_ASSERT(!is_degenerate() && (d==2 || d==3) &&
|
||
|
0 <= i && i < d);
|
||
|
if (!has_axes)
|
||
|
compute_axes_2_3();
|
||
|
|
||
|
return directions_[i].begin();
|
||
|
}
|
||
|
|
||
|
Axes_direction_coordinate_iterator axis_direction_cartesian_end(int i)
|
||
|
// Returns the past-the-end iterator corresponding to
|
||
|
// axis_direction_cartesian_begin().
|
||
|
//
|
||
|
// Precondition: !is_degenerate() && (d==2 || d==3) && (0 <= i < d)
|
||
|
{
|
||
|
CGAL_APPEL_ASSERT(!is_degenerate() && (d==2 || d==3) &&
|
||
|
0 <= i && i < d);
|
||
|
if (!has_axes)
|
||
|
compute_axes_2_3();
|
||
|
|
||
|
return directions_[i].end();
|
||
|
}
|
||
|
|
||
|
public: // internal members for 2D/3D axis/center computation:
|
||
|
|
||
|
bool has_center, has_axes; // true iff the center or axes-directions and
|
||
|
// -lengths, respectively, have already been
|
||
|
// computed
|
||
|
std::vector<double> center_;
|
||
|
std::vector<double> lengths_;
|
||
|
std::vector< std::vector<double> > directions_;
|
||
|
std::vector<double> mi; // contains M^{-1} (see (*****)
|
||
|
// above) iff has_center is true;
|
||
|
// mi[i+d*j] is entry (i,j) of
|
||
|
// M^{-1}
|
||
|
|
||
|
void compute_center();
|
||
|
void compute_axes_2_3();
|
||
|
void compute_axes_2(const double alpha, const double factor);
|
||
|
void compute_axes_3(const double alpha, const double factor);
|
||
|
|
||
|
public: // "debugging" routines:
|
||
|
|
||
|
void write_eps(const std::string& name);
|
||
|
// Writes the and the point set P to an EPS file. Returned is the
|
||
|
// id under which the file was stored (filename 'id.eps').
|
||
|
//
|
||
|
// Precondition: d==2 && !is_degenerate().
|
||
|
|
||
|
private: // internal routines:
|
||
|
|
||
|
void find_lower_dimensional_approximation(); // (does nothing right now)
|
||
|
};
|
||
|
|
||
|
}
|
||
|
|
||
|
#include <CGAL/Approximate_min_ellipsoid_d/Approximate_min_ellipsoid_d_impl.h>
|
||
|
|
||
|
#endif // CGAL_CGAL_APPROX_MIN_ELL_D_H
|