dust3d/thirdparty/cgal/CGAL-5.1/include/CGAL/Homogeneous/Aff_transformationH2.h

1131 lines
32 KiB
C
Raw Normal View History

2020-10-13 12:44:25 +00:00
// Copyright (c) 1999
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
2020-10-13 12:44:25 +00:00
// and Tel-Aviv University (Israel). All rights reserved.
//
2020-10-13 12:44:25 +00:00
// This file is part of CGAL (www.cgal.org)
//
2020-10-13 12:44:25 +00:00
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Homogeneous_kernel/include/CGAL/Homogeneous/Aff_transformationH2.h $
// $Id: Aff_transformationH2.h 9a3e038 2020-05-18T12:24:25+02:00 Laurent Rineau
// SPDX-License-Identifier: LGPL-3.0-or-later OR LicenseRef-Commercial
//
//
// Author(s) : Stefan Schirra
#ifndef CGAL_AFF_TRANSFORMATIONH2_H
#define CGAL_AFF_TRANSFORMATIONH2_H
#include <CGAL/Handle_for_virtual.h>
#include <CGAL/rational_rotation.h>
#include <CGAL/Origin.h>
namespace CGAL {
template <class R>
class Aff_transformationH2;
template <class R>
class Aff_transformation_repH2;
template <class R>
Aff_transformationH2<R>
_general_transformation_composition( Aff_transformation_repH2<R> l,
Aff_transformation_repH2<R> r);
template <class R>
class Aff_transformation_rep_baseH2 : public Ref_counted_virtual
{
public:
typedef typename R::RT RT;
typedef typename R::FT FT;
typedef typename R::Point_2 Point_2;
typedef typename R::Vector_2 Vector_2;
typedef typename R::Direction_2 Direction_2;
virtual ~Aff_transformation_rep_baseH2(){}
virtual Point_2
transform(const Point_2& p) const = 0;
virtual Vector_2
transform(const Vector_2& v) const = 0;
virtual Direction_2
transform(const Direction_2& d) const = 0;
virtual Aff_transformationH2<R>
inverse() const = 0;
virtual Aff_transformation_repH2<R>
general_form() const = 0;
virtual bool is_even() const = 0;
virtual RT homogeneous(int i, int j) const = 0;
virtual FT cartesian(int i, int j) const = 0;
};
template < class R >
class Aff_transformation_repH2 : public Aff_transformation_rep_baseH2<R>
{
public:
typedef typename R::RT RT;
typedef typename R::FT FT;
typedef typename R::Point_2 Point_2;
typedef typename R::Vector_2 Vector_2;
typedef typename R::Direction_2 Direction_2;
Aff_transformation_repH2()
{}
Aff_transformation_repH2(const RT& m00, const RT& m01, const RT& m02,
const RT& m10, const RT& m11, const RT& m12,
const RT& m22)
: a(m00), b(m01), c(m02), d(m10), e(m11), f(m12), g(m22)
{}
virtual ~Aff_transformation_repH2()
{}
virtual Point_2
transform(const Point_2& p) const
{
return Point_2( a * p.hx() + b * p.hy() + c * p.hw(),
d * p.hx() + e * p.hy() + f * p.hw(),
g * p.hw() );
}
virtual Vector_2
transform(const Vector_2& v) const
{
return Vector_2( a * v.hx() + b * v.hy(),
d * v.hx() + e * v.hy(),
g * v.hw() );
}
virtual Direction_2
transform(const Direction_2& dir) const
{
if ( g > RT(0) )
return Direction_2( a * dir.x() + b * dir.y(),
d * dir.x() + e * dir.y() );
else
return - Direction_2(a * dir.x() + b * dir.y(),
d * dir.x() + e * dir.y() );
}
virtual Aff_transformationH2<R>
inverse() const
{
RT ai = e*g;
RT bi = - b*g;
RT ci = b*f - e*c;
RT di = - d*g;
RT ei = a*g;
RT fi = d*c - a*f;
RT gi = a*e - b*d;
return Aff_transformationH2<R>( ai, bi, ci,
di, ei, fi,
gi) ;
}
virtual Aff_transformation_repH2<R>
general_form() const
{ return *this; }
virtual bool
is_even() const
{ return CGAL_NTS sign<RT>( (a*e - b*d)*g ) == POSITIVE; }
virtual RT homogeneous(int i, int j) const;
virtual FT cartesian(int i, int j) const;
RT a; // | a b c | | x | | xn |
RT b; // | d e f | * | y | = | yn |
RT c; // | 0 0 g | | w | | wn |
RT d;
RT e;
RT f;
RT g;
friend Aff_transformationH2<R>
_general_transformation_composition <> (
Aff_transformation_repH2<R> l,
Aff_transformation_repH2<R> r);
};
template < class R >
class Identity_repH2 : public Aff_transformation_rep_baseH2<R>
{
public:
typedef typename R::RT RT;
typedef typename R::FT FT;
typedef typename R::Point_2 Point_2;
typedef typename R::Vector_2 Vector_2;
typedef typename R::Direction_2 Direction_2;
Identity_repH2()
{}
virtual ~Identity_repH2()
{}
virtual Point_2
transform(const Point_2 & p) const
{ return p; }
virtual Vector_2
transform(const Vector_2 & v) const
{ return v; }
virtual Direction_2
transform(const Direction_2 & d) const
{ return d; }
virtual Aff_transformationH2<R>
inverse() const
{ return Aff_transformationH2<R>(IDENTITY); }
virtual bool
is_even() const
{ return true; }
virtual Aff_transformation_repH2<R>
general_form() const
{
const RT RT0(0);
const RT RT1(1);
return Aff_transformation_repH2<R>( RT1, RT0, RT0,
RT0, RT1, RT0,
RT1 );
}
virtual RT
homogeneous(int i, int j) const
{ return (i==j) ? RT(1) : RT(0); }
virtual FT
cartesian(int i, int j) const
{ return (i==j) ? FT(1) : FT(0); }
};
template < class R >
class Translation_repH2 : public Aff_transformation_rep_baseH2<R>
{
public:
typedef typename R::RT RT;
typedef typename R::FT FT;
typedef typename R::Point_2 Point_2;
typedef typename R::Vector_2 Vector_2;
typedef typename R::Direction_2 Direction_2;
Translation_repH2()
{}
Translation_repH2(const Vector_2 & tv) : _tv(tv)
{}
virtual ~Translation_repH2()
{}
virtual Point_2
transform(const Point_2 & p) const
{ return (p + _tv); }
virtual Vector_2
transform(const Vector_2 & v) const
{ return (v); }
virtual Direction_2
transform(const Direction_2 & d) const
{ return (d); }
virtual Aff_transformationH2<R>
inverse() const
{ return Aff_transformationH2<R>(TRANSLATION, - _tv); }
virtual bool
is_even() const
{ return true; }
virtual Aff_transformation_repH2<R>
general_form() const
{
return
Aff_transformation_repH2<R>( _tv.hw(), RT(0) , _tv.hx(),
RT(0), _tv.hw(), _tv.hy(),
_tv.hw() );
}
virtual RT homogeneous(int i, int j) const;
virtual FT cartesian(int i, int j) const;
private:
Vector_2 _tv;
};
template < class R >
class Rotation_repH2 : public Aff_transformation_rep_baseH2<R>
{
public:
typedef typename R::RT RT;
typedef typename R::FT FT;
typedef typename R::Point_2 Point_2;
typedef typename R::Vector_2 Vector_2;
typedef typename R::Direction_2 Direction_2;
Rotation_repH2()
{
}
Rotation_repH2(const RT& sin, const RT& cos, const RT& den) :
_sin(sin), _cos(cos), _den(den)
{
if ( den < RT(0) )
{
_sin = - _sin;
_cos = - _cos;
_den = - _den;
};
}
~Rotation_repH2()
{
}
virtual Point_2
transform(const Point_2 & p) const
{
return Point_2( p.hx()*_cos - p.hy()*_sin,
p.hx()*_sin + p.hy()*_cos,
p.hw()*_den );
}
virtual Vector_2
transform(const Vector_2 & v) const
{
return Vector_2( v.hx()*_cos - v.hy()*_sin,
v.hx()*_sin + v.hy()*_cos,
v.hw()*_den );
}
virtual Direction_2
transform(const Direction_2 & d) const
{
return Direction_2( d.x()*_cos - d.y()*_sin,
d.x()*_sin + d.y()*_cos);
}
virtual Aff_transformationH2<R>
inverse() const
{
return Aff_transformationH2<R>(ROTATION,
- _sin, _cos, _den);
}
virtual bool
is_even() const
{
return true;
}
virtual Aff_transformation_repH2<R>
general_form() const
{
return Aff_transformation_repH2<R>(
_cos, - _sin, RT(0) ,
_sin, _cos, RT(0) ,
_den );
}
virtual RT homogeneous(int i, int j) const;
virtual FT cartesian(int i, int j) const;
private:
RT _sin;
RT _cos;
RT _den;
};
template < class R >
class Scaling_repH2 : public Aff_transformation_rep_baseH2<R>
{
public:
typedef typename R::RT RT;
typedef typename R::FT FT;
typedef typename R::Point_2 Point_2;
typedef typename R::Vector_2 Vector_2;
typedef typename R::Direction_2 Direction_2;
Scaling_repH2()
{}
Scaling_repH2(const RT& scaling_numerator,
const RT& scaling_denominator) :
_sf_num(scaling_numerator), _sf_den(scaling_denominator)
{
if ( scaling_denominator < RT(0) )
{
_sf_num = - _sf_num;
_sf_den = - _sf_den;
};
}
virtual ~Scaling_repH2()
{}
virtual Point_2
transform(const Point_2 & p) const
{
return Point_2( p.hx() * _sf_num,
p.hy() * _sf_num,
p.hw() * _sf_den );
}
virtual Vector_2
transform(const Vector_2 & v) const
{
return Vector_2( v.hx() * _sf_num,
v.hy() * _sf_num,
v.hw() * _sf_den );
}
virtual Direction_2
transform(const Direction_2 & d) const
{ return (d); }
virtual Aff_transformationH2<R>
inverse() const
{ return Aff_transformationH2<R>(SCALING, _sf_den, _sf_num); }
virtual bool
is_even() const
{ return true; }
virtual Aff_transformation_repH2<R>
general_form() const
{
return
Aff_transformation_repH2<R>(_sf_num, RT(0) , RT(0) ,
RT(0) , _sf_num, RT(0) ,
_sf_den );
}
virtual RT homogeneous(int i, int j) const;
virtual FT cartesian(int i, int j) const;
private:
RT _sf_num;
RT _sf_den;
};
template < class R >
class Reflection_repH2 : public Aff_transformation_rep_baseH2<R>
{
public:
typedef typename R::RT RT;
typedef typename R::FT FT;
typedef typename R::Point_2 Point_2;
typedef typename R::Vector_2 Vector_2;
typedef typename R::Direction_2 Direction_2;
typedef typename R::Line_2 Line_2;
Reflection_repH2(const Line_2& l_) : l(l_) {}
virtual ~Reflection_repH2()
{}
virtual Point_2
transform(const Point_2 & p) const
{
Point_2 pp = l.projection(p);
return p + (pp - p)*RT(2);
}
virtual Vector_2
transform(const Vector_2 & v) const
{
Line_2 l0( l.a(), l.b(), RT(0));
Point_2 p = ORIGIN + v;
Point_2 pp = l0.projection(p);
return (p + (pp - p)*RT(2)) - ORIGIN;
}
virtual Direction_2
transform(const Direction_2 & d) const
2020-10-13 12:44:25 +00:00
{ return transform( d.vector() ).direction(); }
virtual Aff_transformationH2<R>
inverse() const
{
2020-10-13 12:44:25 +00:00
return Aff_transformationH2<R>(REFLECTION, l);
}
virtual bool
is_even() const
{ return false; }
virtual Aff_transformation_repH2<R>
general_form() const
{
const RT mRT2 = - RT(2);
const RT& a = l.a();
const RT& b = l.b();
const RT& c = l.c();
RT de = a*a + b*b;
RT aa = b*b - a*a;
RT bb = a*a - b*b;
RT ab = a*b* mRT2;
RT ac = a*c* mRT2;
RT bc = b*c* mRT2;
return
Aff_transformation_repH2<R>( aa, ab, ac,
ab, bb, bc,
de );
}
virtual RT homogeneous(int i, int j) const;
virtual FT cartesian(int i, int j) const;
private:
Line_2 l;
};
template < class R_ >
class Aff_transformationH2
: public Handle_for_virtual< Aff_transformation_rep_baseH2<R_> >
{
typedef typename R_::FT FT;
typedef typename R_::RT RT;
typedef typename R_::Point_2 Point_2;
typedef typename R_::Vector_2 Vector_2;
typedef typename R_::Direction_2 Direction_2;
typedef typename R_::Line_2 Line_2;
typedef Handle_for_virtual< Aff_transformation_rep_baseH2<R_> > Base;
using Base::initialize_with;
public:
typedef R_ R;
Aff_transformationH2();
// Identity:
Aff_transformationH2(const Identity_transformation);
// Translation:
Aff_transformationH2(const Translation, const Vector_2& v);
// Scaling:
2020-10-13 12:44:25 +00:00
Aff_transformationH2(const Scaling, const RT& a,
const RT& b = RT(1));
Aff_transformationH2(const Scaling, const RT& xa, const RT& xb,
const RT& ya, const RT& yb);
// Reflection:
Aff_transformationH2(const Reflection, const Line_2& l);
// Rational Rotation:
Aff_transformationH2(const Rotation,
const RT& sine,
const RT& cosine,
const RT& denominator);
Aff_transformationH2(const Rotation,
const Direction_2& dir,
const RT& n,
const RT& d = RT(1));
// Orthogonal Transformation:
Aff_transformationH2(const Vector_2& v,
const RT& sine,
const RT& cosine,
const RT& denominator,
const RT& scaling_numerator = RT(1),
const RT& scaling_denominator = RT(1))
{
Aff_transformationH2<R>
scaling(SCALING,scaling_numerator,scaling_denominator);
Aff_transformationH2<R> combination =
Aff_transformationH2<R>(TRANSLATION, scaling.inverse().transform(-v))
* scaling
* Aff_transformationH2<R>(ROTATION, sine, cosine, denominator)
* Aff_transformationH2<R>(TRANSLATION, v ) ;
*this = combination;
}
// General affine transformation
// | a b c | |x|
// | d e f | * |y|
// | 0 0 g | |w|
Aff_transformationH2(const RT& a, const RT& b, const RT& c,
const RT& d, const RT& e, const RT& f,
const RT& g = RT(1));
Aff_transformationH2(const RT& a, const RT& b,
const RT& d, const RT& e,
const RT& g = RT(1));
Point_2 transform(const Point_2& p) const;
Vector_2 transform(const Vector_2& v) const;
Direction_2 transform(const Direction_2& d) const;
Line_2 transform(const Line_2& l) const;
Aff_transformationH2<R> inverse() const;
bool is_even() const;
bool is_odd() const;
// Access functions for matrix form
FT cartesian(int i, int j) const;
RT homogeneous(int i, int j) const;
FT m(int i, int j) const
{ return cartesian(i,j); }
RT hm(int i, int j) const
{ return homogeneous(i,j); }
Aff_transformation_repH2<R>
general_form() const;
// friend Aff_transformationH2<R>
// operator* <>
// (const Aff_transformationH2<R>& left_argument,
// const Aff_transformationH2<R>& right_argument );
Aff_transformationH2<R>
operator*(const Aff_transformationH2<R>& right_argument ) const;
2020-10-13 12:44:25 +00:00
bool operator==(const Aff_transformationH2 &t)const
{
for(int i=0; i<3; ++i)
for(int j = 0; j< 3; ++j)
if(homogeneous(i,j)!=t.homogeneous(i,j))
return false;
return true;
}
bool operator!=(const Aff_transformationH2 &t)const
{
return !(*this == t);
}
};
template < class R >
Aff_transformationH2<R>::Aff_transformationH2()
{ initialize_with(Aff_transformation_repH2<R>()); }
template < class R >
Aff_transformationH2<R>::
Aff_transformationH2(const Identity_transformation)
{ initialize_with(Identity_repH2<R>()); }
template < class R >
Aff_transformationH2<R>::
Aff_transformationH2(const Translation,
2020-10-13 12:44:25 +00:00
const typename Aff_transformationH2<R>::Vector_2& v)
{ initialize_with(Translation_repH2<R>( v )); }
template < class R >
Aff_transformationH2<R>::
Aff_transformationH2(const Scaling, const RT& a, const RT& b)
{ initialize_with(Scaling_repH2<R>( a, b)); }
template < class R >
Aff_transformationH2<R>::
Aff_transformationH2( const Scaling, const RT& xa, const RT& xb,
const RT& ya, const RT& yb)
{
initialize_with(Aff_transformation_repH2<R>(xa*yb, RT(0), RT(0),
RT(0), ya*xb, RT(0),
xb*yb ));
}
template < class R >
Aff_transformationH2<R>::
Aff_transformationH2(const Reflection,
2020-10-13 12:44:25 +00:00
const typename Aff_transformationH2<R>::Line_2& l)
{ initialize_with(Reflection_repH2<R>( l)); }
template < class R >
Aff_transformationH2<R>::
Aff_transformationH2(const Rotation,
const RT& sine,
const RT& cosine,
const RT& denominator)
{ initialize_with(Rotation_repH2<R>(sine, cosine, denominator)); }
template < class R >
Aff_transformationH2<R>::
Aff_transformationH2(const Rotation,
const typename Aff_transformationH2<R>::Direction_2& dir,
const RT& n,
const RT& d)
{
const RT RTzero = RT(0) ;
CGAL_kernel_precondition( n > RTzero );
CGAL_kernel_precondition( d > RTzero );
RT sin;
RT cos;
RT den;
rational_rotation_approximation(dir.x(), dir.y(), sin, cos, den, n, d);
initialize_with(Rotation_repH2<R>( sin, cos, den ));
}
template < class R >
Aff_transformationH2<R>::
Aff_transformationH2( const RT& a, const RT& b, const RT& c,
const RT& d, const RT& e, const RT& f,
const RT& g)
{
initialize_with(Aff_transformation_repH2<R>( a, b, c,
d, e, f,
g ));
}
template < class R >
Aff_transformationH2<R>::
Aff_transformationH2( const RT& a, const RT& b,
const RT& d, const RT& e,
const RT& g)
{
initialize_with(Aff_transformation_repH2<R>( a, b, RT(0),
d, e, RT(0),
g ));
}
template < class R >
typename Aff_transformationH2<R>::Point_2
Aff_transformationH2<R>::
transform(const typename Aff_transformationH2<R>::Point_2& p) const
{ return this->Ptr()->transform(p); }
template < class R >
typename Aff_transformationH2<R>::Vector_2
Aff_transformationH2<R>::
transform( const typename Aff_transformationH2<R>::Vector_2& v) const
{ return this->Ptr()->transform(v); }
template < class R >
typename Aff_transformationH2<R>::Direction_2
Aff_transformationH2<R>::
transform( const typename Aff_transformationH2<R>::Direction_2& d) const
{ return this->Ptr()->transform(d); }
template < class R >
typename Aff_transformationH2<R>::Line_2
Aff_transformationH2<R>::
transform( const typename Aff_transformationH2<R>::Line_2& l) const
{ return Line_2( transform( l.point(0)), transform( l.point(1)) ); }
template < class R >
Aff_transformationH2<R>
Aff_transformationH2<R>::
inverse() const
{ return this->Ptr()->inverse(); }
template < class R >
bool
Aff_transformationH2<R>::
is_even() const
{ return this->Ptr()->is_even(); }
template < class R >
bool
Aff_transformationH2<R>::
is_odd() const
{ return ! is_even(); }
template < class R >
inline
typename Aff_transformationH2<R>::FT
Aff_transformationH2<R>::
cartesian(int i, int j) const
{ return this->Ptr()->cartesian(i,j); }
template < class R >
inline
typename Aff_transformationH2<R>::RT
Aff_transformationH2<R>::
homogeneous(int i, int j) const
{ return this->Ptr()->homogeneous(i,j); }
template < class R >
Aff_transformation_repH2<R>
Aff_transformationH2<R>::
general_form() const
{ return this->Ptr()->general_form(); }
template <class R>
Aff_transformationH2<R>
//operator*(const Aff_transformationH2<R>& left_argument,
// const Aff_transformationH2<R>& right_argument )
Aff_transformationH2<R>::
operator*(const Aff_transformationH2<R>& right_argument) const
{
return _general_transformation_composition(
this->Ptr()->general_form(),
right_argument.Ptr()->general_form() );
}
2020-10-13 12:44:25 +00:00
template <class R>
std::ostream&
operator<<(std::ostream& out, const Aff_transformationH2<R>& t)
{
typename R::RT RT0(0);
Aff_transformation_repH2<R> r = t.Ptr()->general_form();
return out << "| "<< r.a << ' ' << r.b << ' ' << r.c << " |\n"
<< "| "<< r.d << ' ' << r.e << ' ' << r.f << " |\n"
<< "| "<< RT0 << ' ' << RT0 << ' ' << r.g << " |\n";
}
template <class R>
Aff_transformationH2<R>
_general_transformation_composition( Aff_transformation_repH2<R> l,
Aff_transformation_repH2<R> r )
{
return Aff_transformationH2<R>(
l.a*r.a + l.b*r.d, l.a*r.b + l.b*r.e, l.a*r.c + l.b*r.f + l.c*r.g,
l.d*r.a + l.e*r.d, l.d*r.b + l.e*r.e, l.d*r.c + l.e*r.f + l.f*r.g,
l.g*r.g );
}
template < class R >
typename Aff_transformation_repH2<R>::RT
Aff_transformation_repH2<R>::homogeneous(int i, int j) const
{
CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
switch (i)
{
case 0: switch (j)
{
case 0: return a;
case 1: return b;
case 2: return c;
default: CGAL_assume(false);
}
break;
case 1: switch (j)
{
case 0: return d;
case 1: return e;
case 2: return f;
default: CGAL_assume(false);
}
break;
case 2: switch (j)
{
case 0: return RT(0);
case 1: return RT(0);
case 2: return g;
default: CGAL_assume(false);
}
}
CGAL_assume(false);
return RT(0);
}
template < class R >
typename Aff_transformation_repH2<R>::FT
Aff_transformation_repH2<R>::cartesian(int i, int j) const
{
CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
if ( (i == 2) && (j == 2) ) return FT(1);
return FT(homogeneous(i,j)) / FT(g);
}
template < class R >
typename Translation_repH2<R>::RT
Translation_repH2<R>::homogeneous(int i, int j) const
{
CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
switch (i)
{
case 0: switch (j)
{
case 0: return _tv.hw();
case 1: return RT(0);
case 2: return _tv.hx();
default: CGAL_assume(false);
}
break;
case 1: switch (j)
{
case 0: return RT(0);
case 1: return _tv.hw();
case 2: return _tv.hy();
default: CGAL_assume(false);
}
break;
case 2: switch (j)
{
case 0: return RT(0);
case 1: return RT(0);
case 2: return _tv.hw();
default: CGAL_assume(false);
}
}
CGAL_assume(false);
return RT(0);
}
template < class R >
typename Translation_repH2<R>::FT
Translation_repH2<R>::cartesian(int i, int j) const
{
CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
switch (i)
{
case 0: switch (j)
{
case 0: return FT(1);
case 1: return FT(0);
case 2: return _tv.x();
default: CGAL_assume(false);
}
break;
case 1: switch (j)
{
case 0: return FT(0);
case 1: return FT(1);
case 2: return _tv.y();
default: CGAL_assume(false);
}
break;
case 2: switch (j)
{
case 0: return FT(0);
case 1: return FT(0);
case 2: return FT(1);
default: CGAL_assume(false);
}
}
CGAL_assume(false);
return FT(0);
}
template < class R >
typename Rotation_repH2<R>::RT
Rotation_repH2<R>::
homogeneous(int i, int j) const
{
CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
switch (i)
{
case 0: switch (j)
{
case 0: return _cos;
case 1: return - _sin;
case 2: return RT(0);
default: CGAL_assume(false);
}
break;
case 1: switch (j)
{
case 0: return _sin;
case 1: return _cos;
case 2: return RT(0);
default: CGAL_assume(false);
}
break;
case 2: switch (j)
{
case 0: return RT(0);
case 1: return RT(0);
case 2: return _den;
default: CGAL_assume(false);
}
}
CGAL_assume(false);
return RT(0);
}
template < class R >
typename Rotation_repH2<R>::FT
Rotation_repH2<R>::
cartesian(int i, int j) const
{
CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
switch (i)
{
case 0: switch (j)
{
case 0: return FT(_cos) / FT(_den);
case 1: return - FT(_sin) / FT(_den);
case 2: return FT(0);
default: CGAL_assume(false);
}
break;
case 1: switch (j)
{
case 0: return FT(_sin) / FT(_den);
case 1: return FT(_cos) / FT(_den);
case 2: return FT(0);
default: CGAL_assume(false);
}
break;
case 2: switch (j)
{
case 0: return FT(0);
case 1: return FT(0);
case 2: return FT(1);
default: CGAL_assume(false);
}
}
CGAL_assume(false);
return FT(0);
}
template < class R >
typename Scaling_repH2<R>::RT
Scaling_repH2<R>::
homogeneous(int i, int j) const
{
CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
switch (i)
{
case 0: switch (j)
{
case 0: return _sf_num;
case 1: return RT(0);
case 2: return RT(0);
default: CGAL_assume(false);
}
break;
case 1: switch (j)
{
case 0: return RT(0);
case 1: return _sf_num;
case 2: return RT(0);
default: CGAL_assume(false);
}
break;
case 2: switch (j)
{
case 0: return RT(0);
case 1: return RT(0);
case 2: return _sf_den;
default: CGAL_assume(false);
}
}
CGAL_assume(false);
return RT(0);
}
template <class R>
typename Scaling_repH2<R>::FT
Scaling_repH2<R>::
cartesian(int i, int j) const
{
CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
switch (i)
{
case 0: switch (j)
{
case 0: return FT(_sf_num) / FT(_sf_den);
case 1: return FT(0);
case 2: return FT(0);
default: CGAL_assume(false);
}
break;
case 1: switch (j)
{
case 0: return FT(0);
case 1: return FT(_sf_num) / FT(_sf_den);
case 2: return FT(0);
default: CGAL_assume(false);
}
break;
case 2: switch (j)
{
case 0: return FT(0);
case 1: return FT(0);
case 2: return FT(1);
default: CGAL_assume(false);
}
}
CGAL_assume(false);
return FT(0);
}
template < class R >
typename Reflection_repH2<R>::RT
Reflection_repH2<R>::
homogeneous(int i, int j) const
{
CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
RT mRT2 = -RT(2);
switch (i)
{
case 0: switch (j)
{
case 0: return l.b()*l.b() - l.a()*l.a();
case 1: return l.a()*l.b()*mRT2;
case 2: return l.a()*l.c()*mRT2;
default: CGAL_assume(false);
}
break;
case 1: switch (j)
{
case 0: return l.a()*l.b()*mRT2;
case 1: return l.a()*l.a() - l.b()*l.b();
case 2: return l.b()*l.c()*mRT2;
default: CGAL_assume(false);
}
break;
case 2: switch (j)
{
case 0: return RT(0);
case 1: return RT(0);
case 2: return l.a()*l.a() + l.b()*l.b();
default: CGAL_assume(false);
}
}
CGAL_assume(false);
return RT(0);
}
template <class R>
typename Reflection_repH2<R>::FT
Reflection_repH2<R>::
cartesian(int i, int j) const
{
CGAL_kernel_precondition( (i >= 0) && (i <= 2) && (j >= 0) && (j <= 2) );
FT de = FT( l.a()*l.a() + l.b()*l.b() );
switch (i)
{
case 0: switch (j)
{
case 0: return FT( l.b()-l.a() ) / FT( l.a()+l.b());
case 1: return FT( homogeneous(0,1)) / de;
case 2: return FT( homogeneous(0,2)) / de;
default: CGAL_assume(false);
}
break;
case 1: switch (j)
{
case 0: return FT( homogeneous(1,0)) / de;
case 1: return FT( l.a()-l.b() ) / FT( l.a()+l.b());
case 2: return FT( homogeneous(1,2)) / de;
default: CGAL_assume(false);
}
break;
case 2: switch (j)
{
case 0: return FT(0);
case 1: return FT(0);
case 2: return FT(1);
default: CGAL_assume(false);
}
}
CGAL_assume(false);
return FT(0);
}
} //namespace CGAL
#endif // CGAL_AFF_TRANSFORMATIONH2_H