1544 lines
64 KiB
C
1544 lines
64 KiB
C
|
// Copyright (c) 1997 ETH Zurich (Switzerland).
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org).
|
||
|
//
|
||
|
// $URL: https://github.com/CGAL/cgal/blob/v5.1/Polyhedron/include/CGAL/Polyhedron_3.h $
|
||
|
// $Id: Polyhedron_3.h 0779373 2020-03-26T13:31:46+01:00 Sébastien Loriot
|
||
|
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
|
||
|
//
|
||
|
//
|
||
|
// Author(s) : Lutz Kettner <kettner@mpi-sb.mpg.de>)
|
||
|
|
||
|
#ifndef CGAL_POLYHEDRON_3_H
|
||
|
#define CGAL_POLYHEDRON_3_H 1
|
||
|
|
||
|
#include <CGAL/license/Polyhedron.h>
|
||
|
|
||
|
#include <CGAL/Polyhedron_3_fwd.h>
|
||
|
#include <CGAL/basic.h>
|
||
|
#include <algorithm>
|
||
|
#include <cstddef>
|
||
|
|
||
|
#include <CGAL/HalfedgeDS_iterator.h>
|
||
|
#include <CGAL/Iterator_project.h>
|
||
|
#include <CGAL/function_objects.h>
|
||
|
#include <CGAL/N_step_adaptor_derived.h>
|
||
|
#include <CGAL/Polyhedron_items_3.h>
|
||
|
#include <CGAL/HalfedgeDS_default.h>
|
||
|
#include <CGAL/HalfedgeDS_const_decorator.h>
|
||
|
#include <CGAL/HalfedgeDS_decorator.h>
|
||
|
#include <CGAL/Modifier_base.h>
|
||
|
#include <CGAL/IO/Verbose_ostream.h>
|
||
|
#include <CGAL/Polyhedron_traits_3.h>
|
||
|
|
||
|
|
||
|
namespace CGAL {
|
||
|
|
||
|
template <class VertexBase>
|
||
|
class I_Polyhedron_vertex : public VertexBase {
|
||
|
public:
|
||
|
typedef VertexBase Base;
|
||
|
//typedef typename Base::HalfedgeDS HDS;
|
||
|
typedef typename Base::Point Point;
|
||
|
typedef Point Point_3;
|
||
|
|
||
|
// Handles have to explicitly repeated, although they are derived
|
||
|
typedef typename Base::Vertex_handle Vertex_handle;
|
||
|
typedef typename Base::Halfedge_handle Halfedge_handle;
|
||
|
typedef typename Base::Face_handle Face_handle;
|
||
|
typedef typename Base::Face_handle Facet_handle;
|
||
|
typedef typename Base::Vertex_const_handle Vertex_const_handle;
|
||
|
typedef typename Base::Halfedge_const_handle Halfedge_const_handle;
|
||
|
typedef typename Base::Face_const_handle Face_const_handle;
|
||
|
typedef typename Base::Face_const_handle Facet_const_handle;
|
||
|
typedef typename Base::Halfedge Halfedge;
|
||
|
typedef typename Base::Face Face;
|
||
|
typedef typename Base::Face Facet;
|
||
|
|
||
|
// Supported options by HDS.
|
||
|
typedef typename Base::Supports_vertex_halfedge
|
||
|
Supports_vertex_halfedge;
|
||
|
typedef typename Base::Supports_vertex_point Supports_vertex_point;
|
||
|
|
||
|
// Circulator category.
|
||
|
typedef typename Halfedge::Supports_halfedge_prev Supports_prev;
|
||
|
|
||
|
public:
|
||
|
// Circulator category.
|
||
|
typedef HalfedgeDS_circulator_traits<Supports_prev> Ctr;
|
||
|
typedef typename Ctr::iterator_category circulator_category;
|
||
|
|
||
|
// Circulators around a vertex and around a facet.
|
||
|
typedef I_HalfedgeDS_facet_circ< Halfedge_handle, circulator_category>
|
||
|
Halfedge_around_facet_circulator;
|
||
|
|
||
|
typedef I_HalfedgeDS_vertex_circ< Halfedge_handle, circulator_category>
|
||
|
Halfedge_around_vertex_circulator;
|
||
|
|
||
|
typedef I_HalfedgeDS_facet_circ<
|
||
|
Halfedge_const_handle,
|
||
|
circulator_category> Halfedge_around_facet_const_circulator;
|
||
|
|
||
|
typedef I_HalfedgeDS_vertex_circ<
|
||
|
Halfedge_const_handle,
|
||
|
circulator_category> Halfedge_around_vertex_const_circulator;
|
||
|
|
||
|
|
||
|
|
||
|
typedef typename Halfedge_around_vertex_circulator::size_type
|
||
|
size_type;
|
||
|
typedef typename Halfedge_around_vertex_circulator::difference_type
|
||
|
difference_type;
|
||
|
|
||
|
public:
|
||
|
// We need to repeat the constructors here.
|
||
|
I_Polyhedron_vertex() {}
|
||
|
I_Polyhedron_vertex( const VertexBase& b) : VertexBase(b) {}
|
||
|
I_Polyhedron_vertex( const Point_3& p) : VertexBase(p) {}
|
||
|
|
||
|
// New Access Functions (not provided in VertexBase).
|
||
|
|
||
|
Halfedge_around_vertex_circulator vertex_begin() {
|
||
|
// a circulator of halfedges around the vertex (clockwise).
|
||
|
return Halfedge_around_vertex_circulator( this->halfedge());
|
||
|
}
|
||
|
Halfedge_around_vertex_const_circulator vertex_begin() const {
|
||
|
// a circulator of halfedges around the vertex (clockwise).
|
||
|
return Halfedge_around_vertex_const_circulator( this->halfedge());
|
||
|
}
|
||
|
|
||
|
// the degree of the vertex, i.e., edges emanating from this vertex
|
||
|
std::size_t vertex_degree() const {
|
||
|
return this->halfedge()->vertex_degree();
|
||
|
}
|
||
|
size_type degree() const { return vertex_degree(); } //backwards compatible
|
||
|
|
||
|
// returns true if the vertex has exactly two incident edges
|
||
|
bool is_bivalent() const { return this->halfedge()->is_bivalent(); }
|
||
|
|
||
|
// returns true if the vertex has exactly three incident edges
|
||
|
bool is_trivalent() const { return this->halfedge()->is_trivalent(); }
|
||
|
|
||
|
// No longer hidden. Now the restricted version with precondition.
|
||
|
// sets incident halfedge to h. Precondition: h is incident, i.e.,
|
||
|
// h->vertex() == v.
|
||
|
void set_halfedge( Halfedge_handle hh) {
|
||
|
CGAL_assertion( &*(hh->vertex()) == this);
|
||
|
Base::set_halfedge(hh);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// A halfedge is an oriented edge. Both orientations exist, i.e.
|
||
|
// an edge is represented by two opposite halfedges. The geometric
|
||
|
// relations are as follows:
|
||
|
//
|
||
|
// _ _ _ .
|
||
|
// / |\.
|
||
|
// | \.
|
||
|
// / \ next half
|
||
|
// \ edge
|
||
|
// / \.
|
||
|
//
|
||
|
// | O incident vertex
|
||
|
// facet ,
|
||
|
// | /| |
|
||
|
// / | | opposite
|
||
|
// \ | | half edge
|
||
|
// half | |
|
||
|
// \ edge | | /
|
||
|
// | |/
|
||
|
// \_ _ _ _ _ _ '
|
||
|
//
|
||
|
|
||
|
template <class HalfedgeBase>
|
||
|
class I_Polyhedron_halfedge : public HalfedgeBase {
|
||
|
public:
|
||
|
typedef HalfedgeBase Base;
|
||
|
typedef typename Base::HalfedgeDS HDS;
|
||
|
|
||
|
// Handles have to explicitly repeated, although they are derived
|
||
|
typedef typename Base::Vertex_handle Vertex_handle;
|
||
|
typedef typename Base::Halfedge_handle Halfedge_handle;
|
||
|
typedef typename Base::Face_handle Face_handle;
|
||
|
typedef typename Base::Face_handle Facet_handle;
|
||
|
typedef typename Base::Vertex_const_handle Vertex_const_handle;
|
||
|
typedef typename Base::Halfedge_const_handle Halfedge_const_handle;
|
||
|
typedef typename Base::Face_const_handle Face_const_handle;
|
||
|
typedef typename Base::Face_const_handle Facet_const_handle;
|
||
|
|
||
|
typedef typename Base::Vertex Vertex;
|
||
|
typedef typename Base::Face Face;
|
||
|
typedef typename Base::Face Facet;
|
||
|
|
||
|
// Supported options by HDS.
|
||
|
typedef typename Base::Supports_halfedge_prev Supports_halfedge_prev;
|
||
|
typedef typename Base::Supports_halfedge_vertex
|
||
|
Supports_halfedge_vertex;
|
||
|
typedef typename Base::Supports_halfedge_face Supports_halfedge_face;
|
||
|
|
||
|
// Circulator category.
|
||
|
typedef typename Base::Supports_halfedge_prev Supports_prev;
|
||
|
|
||
|
public:
|
||
|
// Circulator category.
|
||
|
typedef HalfedgeDS_circulator_traits<Supports_prev> Ctr;
|
||
|
typedef typename Ctr::iterator_category circulator_category;
|
||
|
|
||
|
// Circulators around a vertex and around a facet.
|
||
|
typedef I_HalfedgeDS_facet_circ< Halfedge_handle, circulator_category>
|
||
|
Halfedge_around_facet_circulator;
|
||
|
|
||
|
typedef I_HalfedgeDS_vertex_circ< Halfedge_handle, circulator_category>
|
||
|
Halfedge_around_vertex_circulator;
|
||
|
|
||
|
typedef I_HalfedgeDS_facet_circ<
|
||
|
Halfedge_const_handle,
|
||
|
circulator_category> Halfedge_around_facet_const_circulator;
|
||
|
|
||
|
typedef I_HalfedgeDS_vertex_circ<
|
||
|
Halfedge_const_handle,
|
||
|
circulator_category> Halfedge_around_vertex_const_circulator;
|
||
|
|
||
|
|
||
|
|
||
|
public:
|
||
|
I_Polyhedron_halfedge() {}
|
||
|
I_Polyhedron_halfedge( const HalfedgeBase& b) : HalfedgeBase(b) {}
|
||
|
|
||
|
// New Access Functions (not provided in HalfedgeBase).
|
||
|
|
||
|
// Change semantic of prev: it is always available at this level.
|
||
|
// If the HDS does not provide a prev-function, the previous
|
||
|
// halfedge will be searched around the incident facet.
|
||
|
private:
|
||
|
Halfedge_handle find_prev( Halfedge_handle, Tag_true) {
|
||
|
return Base::prev();
|
||
|
}
|
||
|
Halfedge_const_handle find_prev( Halfedge_const_handle, Tag_true) const {
|
||
|
return Base::prev();
|
||
|
}
|
||
|
Halfedge_handle find_prev( Halfedge_handle h, Tag_false) const {
|
||
|
CGAL_precondition( &*h != this); // we have at least 2-gons
|
||
|
while ( &*(h->next()) != this)
|
||
|
h = h->next();
|
||
|
return h;
|
||
|
}
|
||
|
Halfedge_const_handle find_prev( Halfedge_const_handle h, Tag_false) const{
|
||
|
CGAL_precondition( &*h != this); // we have at least 2-gons
|
||
|
while ( &*(h->next()) != this)
|
||
|
h = h->next();
|
||
|
return h;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
Halfedge_handle prev() {
|
||
|
return find_prev( this->next(), Supports_halfedge_prev());
|
||
|
}
|
||
|
Halfedge_const_handle prev() const {
|
||
|
return find_prev( this->next(), Supports_halfedge_prev());
|
||
|
}
|
||
|
|
||
|
// Make face-functions also available as facet-functions.
|
||
|
Face_handle facet() { return this->face();}
|
||
|
Face_const_handle facet() const { return this->face();}
|
||
|
|
||
|
|
||
|
// the next halfedge around the vertex (clockwise). This is equal to
|
||
|
// `h.next()->opposite()'.
|
||
|
Halfedge_handle next_on_vertex() { return this->next()->opposite(); }
|
||
|
Halfedge_const_handle next_on_vertex() const {
|
||
|
return this->next()->opposite();
|
||
|
}
|
||
|
|
||
|
// the previous halfedge around the vertex (counterclockwise). Is
|
||
|
// equal to `h.opposite()->prev()'.
|
||
|
Halfedge_handle prev_on_vertex() { return this->opposite()->prev(); }
|
||
|
Halfedge_const_handle prev_on_vertex() const {
|
||
|
return this->opposite()->prev();
|
||
|
}
|
||
|
|
||
|
bool is_border_edge() const {
|
||
|
// is true if `h' or `h.opposite()' is a border halfedge.
|
||
|
return (this->opposite()->is_border() || this->is_border());
|
||
|
}
|
||
|
|
||
|
// a circulator of halfedges around the vertex (clockwise).
|
||
|
Halfedge_around_vertex_circulator vertex_begin() {
|
||
|
return Halfedge_around_vertex_circulator(
|
||
|
HDS::halfedge_handle(this));
|
||
|
}
|
||
|
Halfedge_around_vertex_const_circulator vertex_begin() const {
|
||
|
return Halfedge_around_vertex_const_circulator(
|
||
|
HDS::halfedge_handle(this));
|
||
|
}
|
||
|
|
||
|
// a circulator of halfedges around the facet (counterclockwise).
|
||
|
Halfedge_around_facet_circulator facet_begin() {
|
||
|
return Halfedge_around_facet_circulator(
|
||
|
HDS::halfedge_handle(this));
|
||
|
}
|
||
|
Halfedge_around_facet_const_circulator facet_begin() const {
|
||
|
return Halfedge_around_facet_const_circulator(
|
||
|
HDS::halfedge_handle(this));
|
||
|
}
|
||
|
|
||
|
// the degree of the incident vertex, i.e., edges emanating from this
|
||
|
// vertex
|
||
|
std::size_t vertex_degree() const {
|
||
|
return circulator_size( vertex_begin());
|
||
|
}
|
||
|
|
||
|
// the degree of the incident facet, i.e., edges on the boundary of this
|
||
|
// facet
|
||
|
std::size_t facet_degree() const {
|
||
|
return circulator_size( facet_begin());
|
||
|
}
|
||
|
|
||
|
// returns true if the incident vertex has exactly two incident edges
|
||
|
bool is_bivalent() const {
|
||
|
CGAL_precondition( this != &* (this->next()->opposite()));
|
||
|
return (this == &* (this->next()->opposite()->next()->opposite()));
|
||
|
}
|
||
|
|
||
|
// returns true if the incident vertex has exactly three incident edges
|
||
|
bool is_trivalent() const {
|
||
|
CGAL_precondition( this != &* (this->next()->opposite()));
|
||
|
return ( this != &* (this->next()->opposite()->next()->opposite())
|
||
|
&& this == &* (this->next()->opposite()->next()->opposite()
|
||
|
->next()->opposite()));
|
||
|
}
|
||
|
|
||
|
// returns true if the incident facet is a triangle.
|
||
|
bool is_triangle() const {
|
||
|
CGAL_precondition( this != &* (this->next()));
|
||
|
CGAL_precondition( this != &* (this->next()->next()));
|
||
|
return (this == &* (this->next()->next()->next()));
|
||
|
}
|
||
|
|
||
|
// returns true if the incident facet is a quadrilateral.
|
||
|
bool is_quad() const {
|
||
|
CGAL_precondition( this != &* (this->next()));
|
||
|
CGAL_precondition( this != &* (this->next()->next()));
|
||
|
return (this == &* (this->next()->next()->next()->next()));
|
||
|
}
|
||
|
|
||
|
|
||
|
private:
|
||
|
// Hide some other functions of H.
|
||
|
void set_next( Halfedge_handle hh) { Base::set_next(hh);}
|
||
|
void set_prev( Halfedge_handle hh) { Base::set_prev(hh);}
|
||
|
void set_vertex( Vertex_handle vv) { Base::set_vertex(vv);}
|
||
|
void set_face( Face_handle ff) { Base::set_face(ff);}
|
||
|
void set_facet( Face_handle ff) { set_face(ff);}
|
||
|
};
|
||
|
|
||
|
|
||
|
template <class FacetBase>
|
||
|
class I_Polyhedron_facet : public FacetBase {
|
||
|
public:
|
||
|
typedef FacetBase Base;
|
||
|
//typedef typename Base::HalfedgeDS HDS;
|
||
|
typedef typename Base::Plane Plane;
|
||
|
typedef Plane Plane_3;
|
||
|
|
||
|
// Handles have to explicitly repeated, although they are derived
|
||
|
typedef typename Base::Vertex_handle Vertex_handle;
|
||
|
typedef typename Base::Halfedge_handle Halfedge_handle;
|
||
|
typedef typename Base::Face_handle Face_handle;
|
||
|
typedef typename Base::Face_handle Facet_handle;
|
||
|
typedef typename Base::Vertex_const_handle Vertex_const_handle;
|
||
|
typedef typename Base::Halfedge_const_handle Halfedge_const_handle;
|
||
|
typedef typename Base::Face_const_handle Face_const_handle;
|
||
|
typedef typename Base::Face_const_handle Facet_const_handle;
|
||
|
typedef typename Base::Vertex Vertex;
|
||
|
typedef typename Base::Halfedge Halfedge;
|
||
|
|
||
|
// Supported options by HDS.
|
||
|
typedef typename Base::Supports_face_halfedge Supports_face_halfedge;
|
||
|
typedef typename Base::Supports_face_plane Supports_face_plane;
|
||
|
|
||
|
// No longer required.
|
||
|
typedef Tag_false Supports_face_normal;
|
||
|
|
||
|
// Circulator category.
|
||
|
typedef typename Halfedge::Supports_halfedge_prev Supports_prev;
|
||
|
|
||
|
public:
|
||
|
// Circulator category.
|
||
|
typedef HalfedgeDS_circulator_traits<Supports_prev> Ctr;
|
||
|
typedef typename Ctr::iterator_category circulator_category;
|
||
|
|
||
|
// Circulators around a vertex and around a facet.
|
||
|
typedef I_HalfedgeDS_facet_circ< Halfedge_handle, circulator_category>
|
||
|
Halfedge_around_facet_circulator;
|
||
|
|
||
|
typedef I_HalfedgeDS_vertex_circ< Halfedge_handle, circulator_category>
|
||
|
Halfedge_around_vertex_circulator;
|
||
|
|
||
|
typedef I_HalfedgeDS_facet_circ<
|
||
|
Halfedge_const_handle,
|
||
|
circulator_category> Halfedge_around_facet_const_circulator;
|
||
|
|
||
|
typedef I_HalfedgeDS_vertex_circ<
|
||
|
Halfedge_const_handle,
|
||
|
circulator_category> Halfedge_around_vertex_const_circulator;
|
||
|
|
||
|
|
||
|
|
||
|
typedef typename Halfedge_around_vertex_circulator::size_type
|
||
|
size_type;
|
||
|
typedef typename Halfedge_around_vertex_circulator::difference_type
|
||
|
difference_type;
|
||
|
|
||
|
public:
|
||
|
// We need to repeat the constructors here.
|
||
|
I_Polyhedron_facet() {}
|
||
|
I_Polyhedron_facet( const FacetBase& b) : FacetBase(b) {}
|
||
|
|
||
|
// New Access Functions (not provided in FacetBase).
|
||
|
|
||
|
Halfedge_around_facet_circulator facet_begin() {
|
||
|
// a circulator of halfedges around the facet (counterclockwise).
|
||
|
return Halfedge_around_facet_circulator( this->halfedge());
|
||
|
}
|
||
|
Halfedge_around_facet_const_circulator facet_begin() const {
|
||
|
// a circulator of halfedges around the facet (counterclockwise).
|
||
|
return Halfedge_around_facet_const_circulator( this->halfedge());
|
||
|
}
|
||
|
|
||
|
// the degree of the incident facet, i.e., edges on the boundary of this
|
||
|
// facet
|
||
|
std::size_t facet_degree() const {return this->halfedge()->facet_degree();}
|
||
|
size_type size() const { return facet_degree(); } // backwards compatible
|
||
|
|
||
|
// returns true if the facet is a triangle.
|
||
|
bool is_triangle() const { return this->halfedge()->is_triangle(); }
|
||
|
|
||
|
// returns true if the facet is a quadrilateral.
|
||
|
bool is_quad() const { return this->halfedge()->is_quad(); }
|
||
|
|
||
|
// No longer hidden. Now the restricted version with precondition.
|
||
|
// sets incident halfedge to h. Precondition: h is incident, i.e.,
|
||
|
// h->face() == v.
|
||
|
void set_halfedge( Halfedge_handle hh) {
|
||
|
CGAL_assertion( &*(hh->facet()) == this);
|
||
|
Base::set_halfedge(hh);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
template < class Items>
|
||
|
class I_Polyhedron_derived_items_3 {
|
||
|
public:
|
||
|
template < class Refs, class Traits>
|
||
|
class Vertex_wrapper {
|
||
|
public:
|
||
|
typedef typename Items::template Vertex_wrapper<Refs,Traits> VWrap;
|
||
|
typedef typename VWrap::Vertex Vertex_base;
|
||
|
typedef I_Polyhedron_vertex< Vertex_base> Vertex;
|
||
|
};
|
||
|
template < class Refs, class Traits>
|
||
|
class Halfedge_wrapper {
|
||
|
public:
|
||
|
typedef typename Items::template Halfedge_wrapper<Refs,Traits> HWrap;
|
||
|
typedef typename HWrap::Halfedge Halfedge_base;
|
||
|
typedef I_Polyhedron_halfedge< Halfedge_base> Halfedge;
|
||
|
};
|
||
|
template < class Refs, class Traits>
|
||
|
class Face_wrapper {
|
||
|
public:
|
||
|
typedef typename Items::template Face_wrapper<Refs,Traits> FWrap;
|
||
|
typedef typename FWrap::Face Face_base;
|
||
|
typedef I_Polyhedron_facet< Face_base> Face;
|
||
|
};
|
||
|
};
|
||
|
|
||
|
|
||
|
template < class PolyhedronTraits_3,
|
||
|
class PolyhedronItems_3,
|
||
|
template < class T, class I, class A>
|
||
|
class T_HDS,
|
||
|
class Alloc>
|
||
|
class Polyhedron_3 {
|
||
|
//
|
||
|
// DEFINITION
|
||
|
//
|
||
|
// The boundary representation of a 3d-polyhedron P of the type
|
||
|
// Polyhedron consists of vertices, edges and facets. The
|
||
|
// vertices are points in space. The edges are straight line
|
||
|
// segments. The facets are planar polygons. We restrict here
|
||
|
// the facets to be simple planar polygons without holes and the
|
||
|
// boundary of the polyhedron to be an oriented 2-manifold. Thus
|
||
|
// facets are consistently oriented and an edge is incident to
|
||
|
// exactly two facets. We restrict the representation further
|
||
|
// that an edge has two distinct incident endpoints and
|
||
|
// following duality that an edge has two distinct incident
|
||
|
// facets. The class Polyhedron is able to guarantee
|
||
|
// the combinatorial properties, but not all geometric
|
||
|
// properties. Support functions are provided for testing
|
||
|
// geometric properties, e.g. test for self intersections which
|
||
|
// is too expensive to be guaranteed as a class invariant.
|
||
|
public:
|
||
|
typedef Polyhedron_3< PolyhedronTraits_3, PolyhedronItems_3, T_HDS, Alloc>
|
||
|
Self;
|
||
|
typedef PolyhedronTraits_3 Traits;
|
||
|
typedef PolyhedronItems_3 Items;
|
||
|
typedef I_Polyhedron_derived_items_3<Items> Derived_items;
|
||
|
typedef T_HDS< Traits, Derived_items, Alloc> HDS;
|
||
|
typedef HDS HalfedgeDS;
|
||
|
|
||
|
// portability with older CGAL release
|
||
|
typedef HDS Halfedge_data_structure;
|
||
|
|
||
|
typedef Alloc Allocator;
|
||
|
typedef Alloc allocator_type; // STL name
|
||
|
|
||
|
// Container stuff.
|
||
|
typedef typename HDS::size_type size_type;
|
||
|
typedef typename HDS::difference_type difference_type;
|
||
|
typedef typename HDS::iterator_category iterator_category;
|
||
|
typedef typename HDS::Supports_removal Supports_removal;
|
||
|
|
||
|
// Geometry
|
||
|
typedef typename Traits::Point_3 Point_3;
|
||
|
typedef Point_3 Point;
|
||
|
typedef typename Traits::Plane_3 Plane_3;
|
||
|
// No longer required.
|
||
|
//typedef typename Traits::Normal Normal;
|
||
|
|
||
|
// Items
|
||
|
typedef typename HDS::Vertex Vertex;
|
||
|
typedef typename HDS::Halfedge Halfedge;
|
||
|
typedef typename HDS::Face Face;
|
||
|
|
||
|
typedef typename Vertex::Base VBase;
|
||
|
typedef typename Halfedge::Base HBase;
|
||
|
typedef typename Face::Base FBase;
|
||
|
|
||
|
// Handles and Iterators
|
||
|
typedef typename HDS::Vertex_handle Vertex_handle;
|
||
|
typedef typename HDS::Halfedge_handle Halfedge_handle;
|
||
|
typedef typename HDS::Face_handle Face_handle;
|
||
|
typedef typename HDS::Vertex_iterator Vertex_iterator;
|
||
|
typedef typename HDS::Halfedge_iterator Halfedge_iterator;
|
||
|
typedef typename HDS::Face_iterator Face_iterator;
|
||
|
|
||
|
typedef typename HDS::Vertex_const_handle Vertex_const_handle;
|
||
|
typedef typename HDS::Halfedge_const_handle Halfedge_const_handle;
|
||
|
typedef typename HDS::Face_const_handle Face_const_handle;
|
||
|
typedef typename HDS::Vertex_const_iterator Vertex_const_iterator;
|
||
|
typedef typename HDS::Halfedge_const_iterator Halfedge_const_iterator;
|
||
|
typedef typename HDS::Face_const_iterator Face_const_iterator;
|
||
|
|
||
|
// Auxiliary iterators for convenience
|
||
|
typedef Project_point<Vertex> Proj_point;
|
||
|
typedef Iterator_project<Vertex_iterator, Proj_point>
|
||
|
Point_iterator;
|
||
|
typedef Iterator_project<Vertex_const_iterator, Proj_point,
|
||
|
const Point_3&, const Point_3*> Point_const_iterator;
|
||
|
|
||
|
typedef Project_plane<Face> Proj_plane;
|
||
|
typedef Iterator_project<Face_iterator, Proj_plane>
|
||
|
Plane_iterator;
|
||
|
typedef Iterator_project<Face_const_iterator, Proj_plane,
|
||
|
const Plane_3&, const Plane_3*> Plane_const_iterator;
|
||
|
|
||
|
typedef typename HDS::Edge_iterator Edge_iterator;
|
||
|
typedef typename HDS::Edge_const_iterator Edge_const_iterator;
|
||
|
/*
|
||
|
typedef N_step_adaptor_derived<Halfedge_iterator, 2>
|
||
|
Edge_iterator;
|
||
|
typedef N_step_adaptor_derived<Halfedge_const_iterator, 2>
|
||
|
Edge_const_iterator;
|
||
|
*/
|
||
|
|
||
|
// All face related types get a related facet type name.
|
||
|
typedef Face Facet;
|
||
|
typedef Face_handle Facet_handle;
|
||
|
typedef Face_iterator Facet_iterator;
|
||
|
typedef Face_const_handle Facet_const_handle;
|
||
|
typedef Face_const_iterator Facet_const_iterator;
|
||
|
|
||
|
// Supported options by HDS.
|
||
|
typedef typename VBase::Supports_vertex_halfedge
|
||
|
Supports_vertex_halfedge;
|
||
|
typedef typename HBase::Supports_halfedge_prev Supports_halfedge_prev;
|
||
|
typedef typename HBase::Supports_halfedge_prev Supports_prev;
|
||
|
typedef typename HBase::Supports_halfedge_vertex
|
||
|
Supports_halfedge_vertex;
|
||
|
typedef typename HBase::Supports_halfedge_face Supports_halfedge_face;
|
||
|
typedef typename FBase::Supports_face_halfedge Supports_face_halfedge;
|
||
|
|
||
|
// Supported options especially for Polyhedron_3.
|
||
|
typedef typename VBase::Supports_vertex_point Supports_vertex_point;
|
||
|
typedef typename FBase::Supports_face_plane Supports_face_plane;
|
||
|
|
||
|
// No longer required.
|
||
|
typedef Tag_false Supports_face_normal;
|
||
|
|
||
|
// Renamed versions for facet
|
||
|
typedef Supports_halfedge_face Supports_halfedge_facet;
|
||
|
typedef Supports_face_halfedge Supports_facet_halfedge;
|
||
|
typedef Supports_face_plane Supports_facet_plane;
|
||
|
// No longer required.
|
||
|
typedef Supports_face_normal Supports_facet_normal;
|
||
|
|
||
|
public:
|
||
|
// Circulator category.
|
||
|
typedef HalfedgeDS_circulator_traits<Supports_prev> Ctr;
|
||
|
typedef typename Ctr::iterator_category circulator_category;
|
||
|
|
||
|
// Circulators around a vertex and around a facet.
|
||
|
typedef I_HalfedgeDS_facet_circ< Halfedge_handle, circulator_category>
|
||
|
Halfedge_around_facet_circulator;
|
||
|
|
||
|
typedef I_HalfedgeDS_vertex_circ< Halfedge_handle, circulator_category>
|
||
|
Halfedge_around_vertex_circulator;
|
||
|
|
||
|
typedef I_HalfedgeDS_facet_circ<
|
||
|
Halfedge_const_handle,
|
||
|
circulator_category> Halfedge_around_facet_const_circulator;
|
||
|
|
||
|
typedef I_HalfedgeDS_vertex_circ<
|
||
|
Halfedge_const_handle,
|
||
|
circulator_category> Halfedge_around_vertex_const_circulator;
|
||
|
|
||
|
|
||
|
|
||
|
protected:
|
||
|
HDS hds_; // the boundary representation.
|
||
|
Traits m_traits;
|
||
|
|
||
|
public:
|
||
|
HDS& hds() { return hds_; }
|
||
|
const HDS& hds() const { return hds_; }
|
||
|
|
||
|
// CREATION
|
||
|
public:
|
||
|
|
||
|
Polyhedron_3( const Traits& trts = Traits()) : m_traits(trts) {}
|
||
|
// the empty polyhedron `P'.
|
||
|
|
||
|
Polyhedron_3( size_type v, size_type h, size_type f,
|
||
|
const Traits& traits = Traits())
|
||
|
: hds_(v,h,f), m_traits(traits) {}
|
||
|
// a polyhedron `P' with storage reserved for v vertices, h
|
||
|
// halfedges, and f facets. The reservation sizes are a hint for
|
||
|
// optimizing storage allocation.
|
||
|
|
||
|
void reserve( size_type v, size_type h, size_type f) {
|
||
|
// reserve storage for v vertices, h halfedges, and f facets. The
|
||
|
// reservation sizes are a hint for optimizing storage allocation.
|
||
|
// If the `capacity' is already greater than the requested size
|
||
|
// nothing happens. If the `capacity' changes all iterators and
|
||
|
// circulators invalidates.
|
||
|
hds_.reserve(v,h,f);
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
Halfedge_handle
|
||
|
make_triangle( Vertex_handle v1, Vertex_handle v2, Vertex_handle v3) {
|
||
|
HalfedgeDS_decorator<HDS> decorator(hds_);
|
||
|
Halfedge_handle h = hds_.edges_push_back( Halfedge(), Halfedge());
|
||
|
h->HBase::set_next( hds_.edges_push_back( Halfedge(), Halfedge()));
|
||
|
h->next()->HBase::set_next( hds_.edges_push_back( Halfedge(),
|
||
|
Halfedge()));
|
||
|
h->next()->next()->HBase::set_next( h);
|
||
|
decorator.set_prev( h, h->next()->next());
|
||
|
decorator.set_prev( h->next(), h);
|
||
|
decorator.set_prev( h->next()->next(), h->next());
|
||
|
h->opposite()->HBase::set_next( h->next()->next()->opposite());
|
||
|
h->next()->opposite()->HBase::set_next( h->opposite());
|
||
|
h->next()->next()->opposite()->HBase::set_next(
|
||
|
h->next()->opposite());
|
||
|
decorator.set_prev( h->opposite(), h->next()->opposite());
|
||
|
decorator.set_prev( h->next()->opposite(),
|
||
|
h->next()->next()->opposite());
|
||
|
decorator.set_prev( h->next()->next()->opposite(), h->opposite());
|
||
|
// the vertices
|
||
|
decorator.set_vertex( h, v1);
|
||
|
decorator.set_vertex( h->next(), v2);
|
||
|
decorator.set_vertex( h->next()->next(), v3);
|
||
|
decorator.set_vertex( h->opposite(), v3);
|
||
|
decorator.set_vertex( h->next()->opposite(), v1);
|
||
|
decorator.set_vertex( h->next()->next()->opposite(), v2);
|
||
|
decorator.set_vertex_halfedge( h);
|
||
|
decorator.set_vertex_halfedge( h->next());
|
||
|
decorator.set_vertex_halfedge( h->next()->next());
|
||
|
// the facet
|
||
|
Facet_handle f = decorator.faces_push_back( Facet());
|
||
|
decorator.set_face( h, f);
|
||
|
decorator.set_face( h->next(), f);
|
||
|
decorator.set_face( h->next()->next(), f);
|
||
|
decorator.set_face_halfedge( h);
|
||
|
return h;
|
||
|
}
|
||
|
|
||
|
Halfedge_handle
|
||
|
make_tetrahedron( Vertex_handle v1,
|
||
|
Vertex_handle v2,
|
||
|
Vertex_handle v3,
|
||
|
Vertex_handle v4) {
|
||
|
HalfedgeDS_decorator<HDS> decorator(hds_);
|
||
|
Halfedge_handle h = make_triangle(v1,v2,v3);
|
||
|
// The remaining tip.
|
||
|
Halfedge_handle g = hds_.edges_push_back( Halfedge(), Halfedge());
|
||
|
decorator.insert_tip( g->opposite(), h->opposite());
|
||
|
decorator.close_tip( g);
|
||
|
decorator.set_vertex( g, v4);
|
||
|
Halfedge_handle e = hds_.edges_push_back( Halfedge(), Halfedge());
|
||
|
Halfedge_handle d = hds_.edges_push_back( Halfedge(), Halfedge());
|
||
|
decorator.insert_tip( e->opposite(), h->next()->opposite());
|
||
|
decorator.insert_tip( e, g);
|
||
|
decorator.insert_tip( d->opposite(),h->next()->next()->opposite());
|
||
|
decorator.insert_tip( d, e);
|
||
|
decorator.set_vertex_halfedge( g);
|
||
|
// facets
|
||
|
Facet_handle f = decorator.faces_push_back( Facet());
|
||
|
decorator.set_face( h->opposite(), f);
|
||
|
decorator.set_face( g, f);
|
||
|
decorator.set_face( e->opposite(), f);
|
||
|
decorator.set_face_halfedge( g);
|
||
|
f = decorator.faces_push_back( Facet());
|
||
|
decorator.set_face( h->next()->opposite(), f);
|
||
|
decorator.set_face( e, f);
|
||
|
decorator.set_face( d->opposite(), f);
|
||
|
decorator.set_face_halfedge( e);
|
||
|
f = decorator.faces_push_back( Facet());
|
||
|
decorator.set_face( h->next()->next()->opposite(), f);
|
||
|
decorator.set_face( d, f);
|
||
|
decorator.set_face( g->opposite(), f);
|
||
|
decorator.set_face_halfedge( d);
|
||
|
return h;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
Halfedge_handle make_tetrahedron() {
|
||
|
// the combinatorial structure of a tetrahedron is added to the
|
||
|
// actual polyhedral surface. Returns an arbitrary halfedge of
|
||
|
// this structure.
|
||
|
reserve( 4 + size_of_vertices(),
|
||
|
12 + size_of_halfedges(),
|
||
|
4 + size_of_facets());
|
||
|
HalfedgeDS_decorator<HDS> decorator(hds_);
|
||
|
return make_tetrahedron( decorator.vertices_push_back( Vertex()),
|
||
|
decorator.vertices_push_back( Vertex()),
|
||
|
decorator.vertices_push_back( Vertex()),
|
||
|
decorator.vertices_push_back( Vertex()));
|
||
|
}
|
||
|
|
||
|
Halfedge_handle make_tetrahedron( const Point_3& p1,
|
||
|
const Point_3& p2,
|
||
|
const Point_3& p3,
|
||
|
const Point_3& p4) {
|
||
|
reserve( 4 + size_of_vertices(),
|
||
|
12 + size_of_halfedges(),
|
||
|
4 + size_of_facets());
|
||
|
HalfedgeDS_decorator<HDS> decorator(hds_);
|
||
|
return make_tetrahedron( decorator.vertices_push_back( Vertex(p1)),
|
||
|
decorator.vertices_push_back( Vertex(p2)),
|
||
|
decorator.vertices_push_back( Vertex(p3)),
|
||
|
decorator.vertices_push_back( Vertex(p4)));
|
||
|
|
||
|
}
|
||
|
|
||
|
Halfedge_handle make_triangle() {
|
||
|
// the combinatorial structure of a single triangle with border
|
||
|
// edges is added to the actual polyhedral surface. Returns an
|
||
|
// arbitrary halfedge of this structure.
|
||
|
reserve( 3 + size_of_vertices(),
|
||
|
6 + size_of_halfedges(),
|
||
|
1 + size_of_facets());
|
||
|
HalfedgeDS_decorator<HDS> decorator(hds_);
|
||
|
return make_triangle( decorator.vertices_push_back( Vertex()),
|
||
|
decorator.vertices_push_back( Vertex()),
|
||
|
decorator.vertices_push_back( Vertex()));
|
||
|
}
|
||
|
|
||
|
Halfedge_handle make_triangle( const Point_3& p1,
|
||
|
const Point_3& p2,
|
||
|
const Point_3& p3) {
|
||
|
// the single triangle p_1, p_2, p_3 with border edges is added to
|
||
|
// the actual polyhedral surface. Returns an arbitrary halfedge of
|
||
|
// this structure.
|
||
|
reserve( 3 + size_of_vertices(),
|
||
|
6 + size_of_halfedges(),
|
||
|
1 + size_of_facets());
|
||
|
HalfedgeDS_decorator<HDS> decorator(hds_);
|
||
|
return make_triangle( decorator.vertices_push_back( Vertex(p1)),
|
||
|
decorator.vertices_push_back( Vertex(p2)),
|
||
|
decorator.vertices_push_back( Vertex(p3)));
|
||
|
}
|
||
|
|
||
|
// Access Member Functions
|
||
|
|
||
|
allocator_type get_allocator() const { return hds_.get_allocator(); }
|
||
|
|
||
|
size_type size_of_vertices() const { return hds_.size_of_vertices();}
|
||
|
// number of vertices.
|
||
|
|
||
|
size_type size_of_halfedges() const { return hds_.size_of_halfedges();}
|
||
|
// number of all halfedges (including border halfedges).
|
||
|
|
||
|
size_type size_of_facets() const { return hds_.size_of_faces();}
|
||
|
// number of facets.
|
||
|
|
||
|
bool empty() const { return size_of_halfedges() == 0; }
|
||
|
|
||
|
bool is_empty() const { return size_of_halfedges() == 0; }
|
||
|
|
||
|
size_type capacity_of_vertices() const {
|
||
|
// space reserved for vertices.
|
||
|
return hds_.capacity_of_vertices();
|
||
|
}
|
||
|
|
||
|
size_type capacity_of_halfedges() const {
|
||
|
// space reserved for halfedges.
|
||
|
return hds_.capacity_of_halfedges();
|
||
|
}
|
||
|
|
||
|
size_type capacity_of_facets() const {
|
||
|
// space reserved for facets.
|
||
|
return hds_.capacity_of_faces();
|
||
|
}
|
||
|
|
||
|
std::size_t bytes() const {
|
||
|
// bytes used for the polyhedron.
|
||
|
return sizeof(Self) - sizeof(HDS) + hds_.bytes();
|
||
|
}
|
||
|
|
||
|
std::size_t bytes_reserved() const {
|
||
|
// bytes reserved for the polyhedron.
|
||
|
return sizeof(Self) - sizeof(HDS) + hds_.bytes_reserved();
|
||
|
}
|
||
|
|
||
|
Vertex_iterator vertices_begin() { return hds_.vertices_begin();}
|
||
|
// iterator over all vertices.
|
||
|
|
||
|
Vertex_iterator vertices_end() { return hds_.vertices_end();}
|
||
|
|
||
|
Halfedge_iterator halfedges_begin() { return hds_.halfedges_begin();}
|
||
|
// iterator over all halfedges
|
||
|
|
||
|
Halfedge_iterator halfedges_end() { return hds_.halfedges_end();}
|
||
|
|
||
|
Facet_iterator facets_begin() { return hds_.faces_begin();}
|
||
|
// iterator over all facets
|
||
|
|
||
|
Facet_iterator facets_end() { return hds_.faces_end();}
|
||
|
|
||
|
// The constant iterators and circulators.
|
||
|
|
||
|
Vertex_const_iterator vertices_begin() const {
|
||
|
return hds_.vertices_begin();
|
||
|
}
|
||
|
Vertex_const_iterator vertices_end() const {
|
||
|
return hds_.vertices_end();
|
||
|
}
|
||
|
|
||
|
Halfedge_const_iterator halfedges_begin() const {
|
||
|
return hds_.halfedges_begin();
|
||
|
}
|
||
|
Halfedge_const_iterator halfedges_end() const {
|
||
|
return hds_.halfedges_end();
|
||
|
}
|
||
|
Facet_const_iterator facets_begin() const { return hds_.faces_begin();}
|
||
|
Facet_const_iterator facets_end() const { return hds_.faces_end();}
|
||
|
|
||
|
// Auxiliary iterators for convinience
|
||
|
Point_iterator points_begin() { return vertices_begin();}
|
||
|
Point_iterator points_end() { return vertices_end();}
|
||
|
|
||
|
Point_const_iterator points_begin() const { return vertices_begin();}
|
||
|
Point_const_iterator points_end() const { return vertices_end();}
|
||
|
|
||
|
Plane_iterator planes_begin() { return facets_begin();}
|
||
|
Plane_iterator planes_end() { return facets_end();}
|
||
|
|
||
|
Plane_const_iterator planes_begin() const { return facets_begin();}
|
||
|
Plane_const_iterator planes_end() const { return facets_end();}
|
||
|
|
||
|
Edge_iterator edges_begin() { return halfedges_begin();}
|
||
|
// iterator over all edges. The iterator refers to halfedges, but
|
||
|
// enumerates only one of the two corresponding opposite
|
||
|
// halfedges.
|
||
|
Edge_iterator edges_end() { return halfedges_end();}
|
||
|
// end of the range over all edges.
|
||
|
|
||
|
Edge_const_iterator edges_begin() const { return halfedges_begin();}
|
||
|
Edge_const_iterator edges_end() const { return halfedges_end();}
|
||
|
|
||
|
Traits& traits() { return m_traits; }
|
||
|
const Traits& traits() const { return m_traits; }
|
||
|
|
||
|
|
||
|
// Combinatorial Predicates
|
||
|
|
||
|
bool is_closed() const {
|
||
|
for ( Halfedge_const_iterator i = halfedges_begin();
|
||
|
i != halfedges_end(); ++i) {
|
||
|
if ( i->is_border())
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
bool is_pure_bivalent( Tag_true) const {
|
||
|
for ( Vertex_const_iterator i = vertices_begin();
|
||
|
i != vertices_end(); ++i)
|
||
|
if ( ! i->is_bivalent())
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
bool is_pure_bivalent( Tag_false) const {
|
||
|
for ( Halfedge_const_iterator i = halfedges_begin();
|
||
|
i != halfedges_end(); ++i)
|
||
|
if ( ! i->is_bivalent())
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
// returns true if all vertices have exactly two incident edges
|
||
|
bool is_pure_bivalent() const {
|
||
|
return is_pure_bivalent( Supports_vertex_halfedge());
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
bool is_pure_trivalent( Tag_true) const {
|
||
|
for ( Vertex_const_iterator i = vertices_begin();
|
||
|
i != vertices_end(); ++i)
|
||
|
if ( ! i->is_trivalent())
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
bool is_pure_trivalent( Tag_false) const {
|
||
|
for ( Halfedge_const_iterator i = halfedges_begin();
|
||
|
i != halfedges_end(); ++i)
|
||
|
if ( ! i->is_trivalent())
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
// returns true if all vertices have exactly three incident edges
|
||
|
bool is_pure_trivalent() const {
|
||
|
return is_pure_trivalent( Supports_vertex_halfedge());
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
bool is_pure_triangle( Tag_true) const {
|
||
|
for ( Facet_const_iterator i = facets_begin();
|
||
|
i != facets_end(); ++i)
|
||
|
if ( ! i->is_triangle())
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
bool is_pure_triangle( Tag_false) const {
|
||
|
for ( Halfedge_const_iterator i = halfedges_begin();
|
||
|
i != halfedges_end(); ++i)
|
||
|
if ( ! i->is_border() && ! i->is_triangle())
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
// returns true if all facets are triangles
|
||
|
bool is_pure_triangle() const {
|
||
|
return is_pure_triangle( Supports_facet_halfedge());
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
bool is_pure_quad( Tag_true) const {
|
||
|
for ( Facet_const_iterator i = facets_begin();
|
||
|
i != facets_end(); ++i)
|
||
|
if ( ! i->is_quad())
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
bool is_pure_quad( Tag_false) const {
|
||
|
for ( Halfedge_const_iterator i = halfedges_begin();
|
||
|
i != halfedges_end(); ++i)
|
||
|
if ( ! i->is_border() && ! i->is_quad())
|
||
|
return false;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
// returns true if all facets are quadrilaterals
|
||
|
bool is_pure_quad() const {
|
||
|
return is_pure_quad( Supports_facet_halfedge());
|
||
|
}
|
||
|
|
||
|
|
||
|
// Geometric Predicates
|
||
|
|
||
|
bool
|
||
|
is_triangle( Halfedge_const_handle h1) const {
|
||
|
Halfedge_const_handle h2 = h1->next();
|
||
|
Halfedge_const_handle h3 = h1->next()->next();
|
||
|
// check halfedge combinatorics.
|
||
|
// exact two edges at vertices 1, 2, 3.
|
||
|
if ( h1->opposite()->next() != h3->opposite()) return false;
|
||
|
if ( h2->opposite()->next() != h1->opposite()) return false;
|
||
|
if ( h3->opposite()->next() != h2->opposite()) return false;
|
||
|
// The facet is a triangle.
|
||
|
if ( h1->next()->next()->next() != h1) return false;
|
||
|
|
||
|
if ( check_tag( Supports_halfedge_face())
|
||
|
&& ! h1->is_border_edge())
|
||
|
return false; // implies h2 and h3
|
||
|
CGAL_assertion( ! h1->is_border() || ! h1->opposite()->is_border());
|
||
|
|
||
|
// Assert consistency.
|
||
|
CGAL_assertion( h1 != h2);
|
||
|
CGAL_assertion( h1 != h3);
|
||
|
CGAL_assertion( h3 != h2);
|
||
|
|
||
|
// check prev pointer.
|
||
|
CGAL_assertion_code( HalfedgeDS_items_decorator<HDS> D;)
|
||
|
CGAL_assertion(D.get_prev(h1) == Halfedge_handle() ||
|
||
|
D.get_prev(h1) == h3);
|
||
|
CGAL_assertion(D.get_prev(h2) == Halfedge_handle() ||
|
||
|
D.get_prev(h2) == h1);
|
||
|
CGAL_assertion(D.get_prev(h3) == Halfedge_handle() ||
|
||
|
D.get_prev(h3) == h2);
|
||
|
|
||
|
// check vertices.
|
||
|
CGAL_assertion( D.get_vertex(h1) == D.get_vertex( h2->opposite()));
|
||
|
CGAL_assertion( D.get_vertex(h2) == D.get_vertex( h3->opposite()));
|
||
|
CGAL_assertion( D.get_vertex(h3) == D.get_vertex( h1->opposite()));
|
||
|
|
||
|
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
|
||
|
D.get_vertex(h1) != D.get_vertex(h2));
|
||
|
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
|
||
|
D.get_vertex(h1) != D.get_vertex(h3));
|
||
|
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
|
||
|
D.get_vertex(h2) != D.get_vertex(h3));
|
||
|
|
||
|
// check facets.
|
||
|
CGAL_assertion( D.get_face(h1) == D.get_face(h2));
|
||
|
CGAL_assertion( D.get_face(h1) == D.get_face(h3));
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool
|
||
|
is_tetrahedron( Halfedge_const_handle h1) const {
|
||
|
Halfedge_const_handle h2 = h1->next();
|
||
|
Halfedge_const_handle h3 = h1->next()->next();
|
||
|
Halfedge_const_handle h4 = h1->opposite()->next();
|
||
|
Halfedge_const_handle h5 = h2->opposite()->next();
|
||
|
Halfedge_const_handle h6 = h3->opposite()->next();
|
||
|
// check halfedge combinatorics.
|
||
|
// at least three edges at vertices 1, 2, 3.
|
||
|
if ( h4 == h3->opposite()) return false;
|
||
|
if ( h5 == h1->opposite()) return false;
|
||
|
if ( h6 == h2->opposite()) return false;
|
||
|
// exact three edges at vertices 1, 2, 3.
|
||
|
if ( h4->opposite()->next() != h3->opposite()) return false;
|
||
|
if ( h5->opposite()->next() != h1->opposite()) return false;
|
||
|
if ( h6->opposite()->next() != h2->opposite()) return false;
|
||
|
// three edges at v4.
|
||
|
if ( h4->next()->opposite() != h5) return false;
|
||
|
if ( h5->next()->opposite() != h6) return false;
|
||
|
if ( h6->next()->opposite() != h4) return false;
|
||
|
// All facets are triangles.
|
||
|
if ( h1->next()->next()->next() != h1) return false;
|
||
|
if ( h4->next()->next()->next() != h4) return false;
|
||
|
if ( h5->next()->next()->next() != h5) return false;
|
||
|
if ( h6->next()->next()->next() != h6) return false;
|
||
|
// all edges are non-border edges.
|
||
|
if ( h1->is_border()) return false; // implies h2 and h3
|
||
|
CGAL_assertion( ! h2->is_border());
|
||
|
CGAL_assertion( ! h3->is_border());
|
||
|
if ( h4->is_border()) return false;
|
||
|
if ( h5->is_border()) return false;
|
||
|
if ( h6->is_border()) return false;
|
||
|
|
||
|
// Assert consistency.
|
||
|
CGAL_assertion( h1 != h2);
|
||
|
CGAL_assertion( h1 != h3);
|
||
|
CGAL_assertion( h3 != h2);
|
||
|
CGAL_assertion( h4 != h5);
|
||
|
CGAL_assertion( h5 != h6);
|
||
|
CGAL_assertion( h6 != h4);
|
||
|
|
||
|
// check prev pointer.
|
||
|
CGAL_assertion_code( HalfedgeDS_items_decorator<HDS> D;)
|
||
|
CGAL_assertion(D.get_prev(h1) == Halfedge_handle() ||
|
||
|
D.get_prev(h1) == h3);
|
||
|
CGAL_assertion(D.get_prev(h2) == Halfedge_handle() ||
|
||
|
D.get_prev(h2) == h1);
|
||
|
CGAL_assertion(D.get_prev(h3) == Halfedge_handle() ||
|
||
|
D.get_prev(h3) == h2);
|
||
|
CGAL_assertion(D.get_prev(h4) == Halfedge_handle() ||
|
||
|
D.get_prev(h4) == h1->opposite());
|
||
|
CGAL_assertion(D.get_prev(h5) == Halfedge_handle() ||
|
||
|
D.get_prev(h5) == h2->opposite());
|
||
|
CGAL_assertion(D.get_prev(h6) == Halfedge_handle() ||
|
||
|
D.get_prev(h6) == h3->opposite());
|
||
|
|
||
|
// check vertices.
|
||
|
CGAL_assertion( D.get_vertex(h1) == D.get_vertex( h2->opposite()));
|
||
|
CGAL_assertion( D.get_vertex(h1) == D.get_vertex( h5->opposite()));
|
||
|
CGAL_assertion( D.get_vertex(h2) == D.get_vertex( h3->opposite()));
|
||
|
CGAL_assertion( D.get_vertex(h2) == D.get_vertex( h6->opposite()));
|
||
|
CGAL_assertion( D.get_vertex(h3) == D.get_vertex( h1->opposite()));
|
||
|
CGAL_assertion( D.get_vertex(h3) == D.get_vertex( h4->opposite()));
|
||
|
CGAL_assertion( D.get_vertex(h4) == D.get_vertex( h5));
|
||
|
CGAL_assertion( D.get_vertex(h4) == D.get_vertex( h6));
|
||
|
|
||
|
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
|
||
|
D.get_vertex(h1) != D.get_vertex(h2));
|
||
|
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
|
||
|
D.get_vertex(h1) != D.get_vertex(h3));
|
||
|
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
|
||
|
D.get_vertex(h1) != D.get_vertex(h4));
|
||
|
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
|
||
|
D.get_vertex(h2) != D.get_vertex(h3));
|
||
|
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
|
||
|
D.get_vertex(h2) != D.get_vertex(h4));
|
||
|
CGAL_assertion( ! check_tag( Supports_halfedge_vertex()) ||
|
||
|
D.get_vertex(h3) != D.get_vertex(h4));
|
||
|
|
||
|
// check facets.
|
||
|
CGAL_assertion( D.get_face(h1) == D.get_face(h2));
|
||
|
CGAL_assertion( D.get_face(h1) == D.get_face(h3));
|
||
|
CGAL_assertion( D.get_face(h4) == D.get_face(h4->next()));
|
||
|
CGAL_assertion( D.get_face(h4) == D.get_face(h1->opposite()));
|
||
|
CGAL_assertion( D.get_face(h5) == D.get_face(h5->next()));
|
||
|
CGAL_assertion( D.get_face(h5) == D.get_face(h2->opposite()));
|
||
|
CGAL_assertion( D.get_face(h6) == D.get_face(h6->next()));
|
||
|
CGAL_assertion( D.get_face(h6) == D.get_face(h3->opposite()));
|
||
|
|
||
|
CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
|
||
|
D.get_face(h1) != D.get_face(h4));
|
||
|
CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
|
||
|
D.get_face(h1) != D.get_face(h5));
|
||
|
CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
|
||
|
D.get_face(h1) != D.get_face(h6));
|
||
|
CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
|
||
|
D.get_face(h4) != D.get_face(h5));
|
||
|
CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
|
||
|
D.get_face(h4) != D.get_face(h6));
|
||
|
CGAL_assertion( ! check_tag( Supports_halfedge_face()) ||
|
||
|
D.get_face(h5) != D.get_face(h6));
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Euler Operators (Combinatorial Modifications)
|
||
|
//
|
||
|
// The following Euler operations modify consistently the combinatorial
|
||
|
// structure of the polyhedral surface. The geometry remains unchanged.
|
||
|
|
||
|
Halfedge_handle split_facet( Halfedge_handle h, Halfedge_handle g) {
|
||
|
// split the facet incident to `h' and `g' into two facets with
|
||
|
// new diagonal between the two vertices denoted by `h' and `g'
|
||
|
// respectively. The second (new) facet is a copy of the first
|
||
|
// facet. It returns the new diagonal. The time is proportional to
|
||
|
// the distance from `h' to `g' around the facet. Precondition:
|
||
|
// `h' and `g' are incident to the same facet. `h != g' (no
|
||
|
// loops). `h->next() != g' and `g->next() != h' (no multi-edges).
|
||
|
reserve( size_of_vertices(),
|
||
|
2 + size_of_halfedges(),
|
||
|
1 + size_of_facets());
|
||
|
HalfedgeDS_decorator<HDS> D(hds_);
|
||
|
CGAL_precondition( D.get_face(h) == D.get_face(g));
|
||
|
CGAL_precondition( h != g);
|
||
|
CGAL_precondition( h != g->next());
|
||
|
CGAL_precondition( h->next() != g);
|
||
|
return D.split_face( h, g);
|
||
|
}
|
||
|
|
||
|
Halfedge_handle join_facet( Halfedge_handle h) {
|
||
|
// join the two facets incident to h. The facet incident to
|
||
|
// `h->opposite()' gets removed. Both facets might be holes.
|
||
|
// Returns the predecessor of h. The invariant `join_facet(
|
||
|
// split_facet( h, g))' returns h and keeps the polyhedron
|
||
|
// unchanged. The time is proportional to the size of the facet
|
||
|
// removed and the time to compute `h.prev()'. Precondition:
|
||
|
// `HDS' supports removal of facets. The degree of both
|
||
|
// vertices incident to h is at least three (no antennas).
|
||
|
HalfedgeDS_decorator<HDS> D(hds_);
|
||
|
CGAL_precondition( circulator_size(h->vertex_begin())
|
||
|
>= size_type(3));
|
||
|
CGAL_precondition( circulator_size(h->opposite()->vertex_begin())
|
||
|
>= size_type(3));
|
||
|
return D.join_face(h);
|
||
|
}
|
||
|
|
||
|
Halfedge_handle split_vertex( Halfedge_handle h, Halfedge_handle g) {
|
||
|
// split the vertex incident to `h' and `g' into two vertices and
|
||
|
// connects them with a new edge. The second (new) vertex is a
|
||
|
// copy of the first vertex. It returns the new edge. The time is
|
||
|
// proportional to the distance from `h' to `g' around the vertex.
|
||
|
// Precondition: `h' and `g' are incident to the same vertex. `h
|
||
|
// != g' (no antennas). `h->next() != g' and `g->next() != h'.
|
||
|
reserve( 1 + size_of_vertices(),
|
||
|
2 + size_of_halfedges(),
|
||
|
size_of_facets());
|
||
|
HalfedgeDS_decorator<HDS> D(hds_);
|
||
|
CGAL_precondition( D.get_vertex(h) == D.get_vertex(g));
|
||
|
CGAL_precondition( h != g);
|
||
|
return D.split_vertex( h, g);
|
||
|
}
|
||
|
|
||
|
Halfedge_handle join_vertex( Halfedge_handle h) {
|
||
|
// join the two vertices incident to h. The vertex denoted by
|
||
|
// `h->opposite()' gets removed. Returns the predecessor of h. The
|
||
|
// invariant `join_vertex( split_vertex( h, g))' returns h and
|
||
|
// keeps the polyhedron unchanged. The time is proportional to
|
||
|
// the degree of the vertex removed and the time to compute
|
||
|
// `h.prev()'.
|
||
|
// Precondition: `HDS' supports removal of vertices. The size of
|
||
|
// both facets incident to h is at least four (no multi-edges)
|
||
|
HalfedgeDS_decorator<HDS> D(hds_);
|
||
|
CGAL_precondition( circulator_size( h->facet_begin())
|
||
|
>= size_type(4));
|
||
|
CGAL_precondition( circulator_size( h->opposite()->facet_begin())
|
||
|
>= size_type(4));
|
||
|
return D.join_vertex(h);
|
||
|
}
|
||
|
|
||
|
Halfedge_handle split_edge( Halfedge_handle h) {
|
||
|
return split_vertex( h->prev(), h->opposite())->opposite();
|
||
|
}
|
||
|
|
||
|
Halfedge_handle flip_edge( Halfedge_handle h) {
|
||
|
HalfedgeDS_items_decorator<HDS> D;
|
||
|
return D.flip_edge(h);
|
||
|
}
|
||
|
|
||
|
Halfedge_handle create_center_vertex( Halfedge_handle h) {
|
||
|
HalfedgeDS_decorator<HDS> D(hds_);
|
||
|
CGAL_assertion( circulator_size( h->facet_begin())
|
||
|
>= size_type(3));
|
||
|
return D.create_center_vertex(h);
|
||
|
}
|
||
|
|
||
|
Halfedge_handle erase_center_vertex( Halfedge_handle h) {
|
||
|
HalfedgeDS_decorator<HDS> D(hds_);
|
||
|
return D.erase_center_vertex(h);
|
||
|
}
|
||
|
|
||
|
// Euler Operators Modifying Genus
|
||
|
|
||
|
Halfedge_handle split_loop( Halfedge_handle h,
|
||
|
Halfedge_handle i,
|
||
|
Halfedge_handle j) {
|
||
|
// cut the polyhedron into two parts along the cycle (h,i,j).
|
||
|
// Three copies of the vertices and two new triangles will be
|
||
|
// created. h,i,j will be incident to the first new triangle. The
|
||
|
// returnvalue will be an halfedge iterator denoting the new
|
||
|
// halfegdes of the second new triangle which was h beforehand.
|
||
|
// Precondition: h,i,j are distinct, consecutive vertices of the
|
||
|
// polyhedron and form a cycle: i.e. `h->vertex() == i->opposite()
|
||
|
// ->vertex()', ..., `j->vertex() == h->opposite()->vertex()'. The
|
||
|
// six facets incident to h,i,j are all distinct.
|
||
|
reserve( 3 + size_of_vertices(),
|
||
|
6 + size_of_halfedges(),
|
||
|
2 + size_of_facets());
|
||
|
HalfedgeDS_decorator<HDS> D(hds_);
|
||
|
CGAL_precondition( h != i);
|
||
|
CGAL_precondition( h != j);
|
||
|
CGAL_precondition( i != j);
|
||
|
CGAL_precondition( D.get_vertex(h) == D.get_vertex(i->opposite()));
|
||
|
CGAL_precondition( D.get_vertex(i) == D.get_vertex(j->opposite()));
|
||
|
CGAL_precondition( D.get_vertex(j) == D.get_vertex(h->opposite()));
|
||
|
CGAL_precondition( D.get_face(h) == Facet_handle() ||
|
||
|
D.get_face(h) != D.get_face(i));
|
||
|
CGAL_precondition( D.get_face(h) == Facet_handle() ||
|
||
|
D.get_face(h) != D.get_face(j));
|
||
|
CGAL_precondition( D.get_face(i) == Facet_handle() ||
|
||
|
D.get_face(i) != D.get_face(j));
|
||
|
CGAL_precondition( D.get_face(h) == Facet_handle() ||
|
||
|
D.get_face(h) != D.get_face(h->opposite()));
|
||
|
CGAL_precondition( D.get_face(h) == Facet_handle() ||
|
||
|
D.get_face(h) != D.get_face(i->opposite()));
|
||
|
CGAL_precondition( D.get_face(h) == Facet_handle() ||
|
||
|
D.get_face(h) != D.get_face(j->opposite()));
|
||
|
CGAL_precondition( D.get_face(i) == Facet_handle() ||
|
||
|
D.get_face(i) != D.get_face(h->opposite()));
|
||
|
CGAL_precondition( D.get_face(i) == Facet_handle() ||
|
||
|
D.get_face(i) != D.get_face(i->opposite()));
|
||
|
CGAL_precondition( D.get_face(i) == Facet_handle() ||
|
||
|
D.get_face(i) != D.get_face(j->opposite()));
|
||
|
CGAL_precondition( D.get_face(j) == Facet_handle() ||
|
||
|
D.get_face(j) != D.get_face(h->opposite()));
|
||
|
CGAL_precondition( D.get_face(j) == Facet_handle() ||
|
||
|
D.get_face(j) != D.get_face(i->opposite()));
|
||
|
CGAL_precondition( D.get_face(j) == Facet_handle() ||
|
||
|
D.get_face(j) != D.get_face(j->opposite()));
|
||
|
CGAL_precondition( D.get_face(h->opposite()) == Facet_handle() ||
|
||
|
D.get_face(h->opposite()) != D.get_face(i->opposite()));
|
||
|
CGAL_precondition( D.get_face(h->opposite()) == Facet_handle() ||
|
||
|
D.get_face(h->opposite()) != D.get_face(j->opposite()));
|
||
|
CGAL_precondition( D.get_face(i->opposite()) == Facet_handle() ||
|
||
|
D.get_face(i->opposite()) != D.get_face(j->opposite()));
|
||
|
return D.split_loop( h, i, j);
|
||
|
}
|
||
|
|
||
|
Halfedge_handle join_loop( Halfedge_handle h, Halfedge_handle g) {
|
||
|
// glues the boundary of two facets together. Both facets and the
|
||
|
// vertices of g gets removed. Returns an halfedge iterator for h.
|
||
|
// The invariant `join_loop( h, split_loop( h, i, j))' returns h
|
||
|
// and keeps the polyhedron unchanged. Precondition: `HDS'
|
||
|
// supports removal of vertices and facets. The facets denoted by
|
||
|
// h and g have equal size.
|
||
|
HalfedgeDS_decorator<HDS> D(hds_);
|
||
|
CGAL_precondition( D.get_face(h) == Facet_handle() ||
|
||
|
D.get_face(h) != D.get_face(g));
|
||
|
CGAL_precondition( circulator_size( h->facet_begin())
|
||
|
>= size_type(3));
|
||
|
CGAL_precondition( circulator_size( h->facet_begin())
|
||
|
== circulator_size( g->facet_begin()));
|
||
|
return D.join_loop( h, g);
|
||
|
}
|
||
|
|
||
|
// Modifying Facets and Holes
|
||
|
|
||
|
Halfedge_handle make_hole( Halfedge_handle h) {
|
||
|
// removes incident facet and makes all halfedges incident to the
|
||
|
// facet to border edges. Returns h. Precondition: `HDS'
|
||
|
// supports removal of facets. `! h.is_border()'.
|
||
|
HalfedgeDS_decorator<HDS> D(hds_);
|
||
|
return D.make_hole(h);
|
||
|
}
|
||
|
|
||
|
Halfedge_handle fill_hole( Halfedge_handle h) {
|
||
|
// fill a hole with a new created facet. Makes all border
|
||
|
// halfedges of the hole denoted by h incident to the new facet.
|
||
|
// Returns h. Precondition: `h.is_border()'.
|
||
|
reserve( size_of_vertices(),
|
||
|
size_of_halfedges(),
|
||
|
1 + size_of_facets());
|
||
|
HalfedgeDS_decorator<HDS> D(hds_);
|
||
|
return D.fill_hole(h);
|
||
|
}
|
||
|
|
||
|
Halfedge_handle add_vertex_and_facet_to_border( Halfedge_handle h,
|
||
|
Halfedge_handle g) {
|
||
|
// creates a new facet within the hole incident to h and g by
|
||
|
// connecting the tip of g with the tip of h with two new
|
||
|
// halfedges and a new vertex and filling this separated part of
|
||
|
// the hole with a new facet. Returns the new halfedge incident to
|
||
|
// the new facet and the new vertex. Precondition: `h->is_border(
|
||
|
// )', `g->is_border()', `h != g', and g can be reached along the
|
||
|
// same hole starting with h.
|
||
|
CGAL_precondition( h != g);
|
||
|
reserve( 1 + size_of_vertices(),
|
||
|
4 + size_of_halfedges(),
|
||
|
1 + size_of_facets());
|
||
|
HalfedgeDS_decorator<HDS> D(hds_);
|
||
|
Halfedge_handle hh = D.add_face_to_border( h, g);
|
||
|
CGAL_assertion( hh == g->next());
|
||
|
D.split_vertex( g, hh->opposite());
|
||
|
return g->next();
|
||
|
}
|
||
|
|
||
|
Halfedge_handle add_facet_to_border( Halfedge_handle h,
|
||
|
Halfedge_handle g) {
|
||
|
// creates a new facet within the hole incident to h and g by
|
||
|
// connecting the tip of g with the tip of h with a new halfedge
|
||
|
// and filling this separated part of the hole with a new facet.
|
||
|
// Returns the new halfedge incident to the new facet.
|
||
|
// Precondition: `h->is_border()', `g->is_border()', `h != g',
|
||
|
// `h->next() != g', and g can be reached along the same hole
|
||
|
// starting with h.
|
||
|
CGAL_precondition( h != g);
|
||
|
CGAL_precondition( h->next() != g);
|
||
|
reserve( size_of_vertices(),
|
||
|
2 + size_of_halfedges(),
|
||
|
1 + size_of_facets());
|
||
|
HalfedgeDS_decorator<HDS> D(hds_);
|
||
|
return D.add_face_to_border( h, g);
|
||
|
}
|
||
|
|
||
|
// Erasing
|
||
|
|
||
|
void erase_facet( Halfedge_handle h) {
|
||
|
// removes the incident facet of h and changes all halfedges
|
||
|
// incident to the facet into border edges or removes them from
|
||
|
// the polyhedral surface if they were already border edges. See
|
||
|
// `make_hole(h)' for a more specialized variant. Precondition:
|
||
|
// `Traits' supports removal.
|
||
|
HalfedgeDS_decorator<HDS> D(hds_);
|
||
|
D.erase_face(h);
|
||
|
}
|
||
|
|
||
|
void erase_connected_component( Halfedge_handle h) {
|
||
|
// removes the vertices, halfedges, and facets that belong to the
|
||
|
// connected component of h. Precondition: `Traits' supports
|
||
|
// removal.
|
||
|
HalfedgeDS_decorator<HDS> D(hds_);
|
||
|
D.erase_connected_component(h);
|
||
|
}
|
||
|
|
||
|
/// Erases the small connected components and the isolated vertices.
|
||
|
///
|
||
|
/// @commentheading Preconditions:
|
||
|
/// supports vertices, halfedges, and removal operation.
|
||
|
///
|
||
|
/// @commentheading Template Parameters:
|
||
|
/// @param nb_components_to_keep the number of large connected components to keep.
|
||
|
///
|
||
|
/// @return the number of connected components erased (ignoring isolated vertices).
|
||
|
unsigned int keep_largest_connected_components(unsigned int nb_components_to_keep)
|
||
|
{
|
||
|
HalfedgeDS_decorator<HDS> D(hds_);
|
||
|
return D.keep_largest_connected_components(nb_components_to_keep);
|
||
|
}
|
||
|
|
||
|
void clear() { hds_.clear(); }
|
||
|
// removes all vertices, halfedges, and facets.
|
||
|
|
||
|
void erase_all() { clear(); }
|
||
|
// equivalent to `clear()'. Depricated.
|
||
|
|
||
|
// Special Operations on Polyhedral Surfaces
|
||
|
|
||
|
void delegate( Modifier_base<HDS>& modifier) {
|
||
|
// calls the `operator()' of the `modifier'. Precondition: The
|
||
|
// `modifier' returns a consistent representation.
|
||
|
modifier( hds_);
|
||
|
CGAL_expensive_postcondition( is_valid());
|
||
|
}
|
||
|
|
||
|
// Operations with Border Halfedges
|
||
|
|
||
|
size_type size_of_border_halfedges() const {
|
||
|
// number of border halfedges. An edge with no incident facet
|
||
|
// counts as two border halfedges. Precondition: `normalize_border
|
||
|
// ()' has been called and no halfedge insertion or removal and no
|
||
|
// change in border status of the halfedges have occurred since
|
||
|
// then.
|
||
|
return hds_.size_of_border_halfedges();
|
||
|
}
|
||
|
|
||
|
size_type size_of_border_edges() const {
|
||
|
// number of border edges. If `size_of_border_edges() ==
|
||
|
// size_of_border_halfedges()' all border edges are incident to a
|
||
|
// facet on one side and to a hole on the other side.
|
||
|
// Precondition: `normalize_border()' has been called and no
|
||
|
// halfedge insertion or removal and no change in border status of
|
||
|
// the halfedges have occurred since then.
|
||
|
return hds_.size_of_border_edges();
|
||
|
}
|
||
|
|
||
|
Halfedge_iterator border_halfedges_begin() {
|
||
|
// halfedge iterator starting with the border edges. The range [
|
||
|
// `halfedges_begin(), border_halfedges_begin()') denotes all
|
||
|
// non-border edges. The range [`border_halfedges_begin(),
|
||
|
// halfedges_end()') denotes all border edges. Precondition:
|
||
|
// `normalize_border()' has been called and no halfedge insertion
|
||
|
// or removal and no change in border status of the halfedges have
|
||
|
// occurred since then.
|
||
|
return hds_.border_halfedges_begin();
|
||
|
}
|
||
|
Halfedge_const_iterator border_halfedges_begin() const {
|
||
|
return hds_.border_halfedges_begin();
|
||
|
}
|
||
|
|
||
|
// Convenient edge iterator
|
||
|
Edge_iterator border_edges_begin() { return border_halfedges_begin(); }
|
||
|
Edge_const_iterator border_edges_begin() const {
|
||
|
return border_halfedges_begin();
|
||
|
}
|
||
|
|
||
|
bool normalized_border_is_valid( bool verbose = false) const {
|
||
|
// checks whether all non-border edges precedes the border edges.
|
||
|
HalfedgeDS_const_decorator<HDS> decorator(hds_);
|
||
|
bool valid = decorator.normalized_border_is_valid( verbose);
|
||
|
for ( Halfedge_const_iterator i = border_halfedges_begin();
|
||
|
valid && (i != halfedges_end()); (++i, ++i)) {
|
||
|
if ( i->is_border()) {
|
||
|
Verbose_ostream verr(verbose);
|
||
|
verr << " both halfedges of an edge are border "
|
||
|
"halfedges." << std::endl;
|
||
|
valid = false;
|
||
|
}
|
||
|
}
|
||
|
return valid;
|
||
|
}
|
||
|
|
||
|
void normalize_border() {
|
||
|
// sorts halfedges such that the non-border edges precedes the
|
||
|
// border edges.
|
||
|
hds_.normalize_border();
|
||
|
CGAL_postcondition( normalized_border_is_valid());
|
||
|
}
|
||
|
|
||
|
protected: // Supports_face_plane
|
||
|
void inside_out_geometry( Tag_false) {}
|
||
|
void inside_out_geometry( Tag_true) {
|
||
|
typename Traits::Construct_opposite_plane_3 opp
|
||
|
= traits().construct_opposite_plane_3_object();
|
||
|
std::transform( planes_begin(), planes_end(), planes_begin(), opp);
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
void inside_out() {
|
||
|
// reverse facet orientation.
|
||
|
HalfedgeDS_decorator<HDS> decorator(hds_);
|
||
|
decorator.inside_out();
|
||
|
inside_out_geometry( Supports_face_plane());
|
||
|
}
|
||
|
|
||
|
bool is_valid( bool verb = false, int level = 0) const {
|
||
|
// checks the combinatorial consistency.
|
||
|
Verbose_ostream verr(verb);
|
||
|
verr << "begin CGAL::Polyhedron_3<...>::is_valid( verb=true, "
|
||
|
"level = " << level << "):" << std::endl;
|
||
|
HalfedgeDS_const_decorator<HDS> D(hds_);
|
||
|
bool valid = D.is_valid( verb, level + 3);
|
||
|
// All halfedges.
|
||
|
Halfedge_const_iterator i = halfedges_begin();
|
||
|
Halfedge_const_iterator end = halfedges_end();
|
||
|
size_type n = 0;
|
||
|
for( ; valid && (i != end); ++i) {
|
||
|
verr << "halfedge " << n << std::endl;
|
||
|
// At least triangular facets and distinct geometry.
|
||
|
valid = valid && ( i->next() != i);
|
||
|
valid = valid && ( i->next()->next() != i);
|
||
|
valid = valid && ( ! check_tag( Supports_halfedge_vertex()) ||
|
||
|
D.get_vertex(i) != D.get_vertex(i->opposite()));
|
||
|
valid = valid && ( ! check_tag( Supports_halfedge_vertex()) ||
|
||
|
D.get_vertex(i) != D.get_vertex(i->next()));
|
||
|
valid = valid && ( ! check_tag( Supports_halfedge_vertex()) ||
|
||
|
D.get_vertex(i) != D.get_vertex(i->next()->next()));
|
||
|
if ( ! valid) {
|
||
|
verr << " incident facet is not at least a triangle."
|
||
|
<< std::endl;
|
||
|
break;
|
||
|
}
|
||
|
// Distinct facets on each side of an halfegde.
|
||
|
valid = valid && ( ! check_tag( Supports_halfedge_face()) ||
|
||
|
D.get_face(i) != D.get_face(i->opposite()));
|
||
|
if ( ! valid) {
|
||
|
verr << " both incident facets are equal." << std::endl;
|
||
|
break;
|
||
|
}
|
||
|
++n;
|
||
|
}
|
||
|
valid = valid && (n == size_of_halfedges());
|
||
|
if ( n != size_of_halfedges())
|
||
|
verr << "counting halfedges failed." << std::endl;
|
||
|
|
||
|
verr << "end of CGAL::Polyhedron_3<...>::is_valid(): structure is "
|
||
|
<< ( valid ? "valid." : "NOT VALID.") << std::endl;
|
||
|
return valid;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} //namespace CGAL
|
||
|
|
||
|
#include <CGAL/boost/graph/graph_traits_Polyhedron_3.h>
|
||
|
|
||
|
#include <CGAL/IO/Polyhedron_iostream.h>
|
||
|
|
||
|
#endif // CGAL_POLYHEDRON_3_H //
|