dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Kernel_d/function_objectsCd.h

816 lines
25 KiB
C
Raw Normal View History

// Copyright (c) 2000,2001
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Michael Seel, Kurt Mehlhorn
#ifndef CGAL_FUNCTION_OBJECTSCD_H
#define CGAL_FUNCTION_OBJECTSCD_H
#include <CGAL/basic.h>
#include <CGAL/enum.h>
#include <CGAL/use.h>
#include <CGAL/Referenced_argument.h>
#undef CGAL_KD_TRACE
#undef CGAL_KD_TRACEN
#undef CGAL_KD_TRACEV
#define CGAL_KD_TRACE(t) std::cerr << t
#define CGAL_KD_TRACEN(t) std::cerr << t << std::endl
#define CGAL_KD_TRACEV(t) std::cerr << #t << " = " << (t) << std::endl
namespace CGAL {
template <typename K>
class Compute_coordinateCd {
typedef typename K::FT FT;
typedef typename K::Point_d Point_d;
public:
typedef FT result_type;
result_type
operator()(const Point_d& p, int i) const
{
return p.cartesian(i);
}
};
template <typename K>
class Point_dimensionCd {
typedef typename K::FT FT;
typedef typename K::Point_d Point_d;
public:
typedef int result_type;
result_type
operator()(const Point_d& p) const
{
return p.dimension();
}
};
template <typename K>
class Less_coordinateCd {
typedef typename K::FT FT;
typedef typename K::Point_d Point_d;
public:
typedef bool result_type;
result_type
operator()(const Point_d& p, const Point_d& q, int i) const
{
return p.cartesian(i)<q.cartesian(i);
}
};
template <class R>
class Lift_to_paraboloidCd
{
typedef typename R::Point_d Point;
typedef typename R::FT FT;
typedef typename R::LA LA;
public:
typedef Point result_type;
result_type operator()(const Point & p) const
{
int d = p.dimension();
typename LA::Vector h(d+1);
FT sum = 0;
for (int i = 0; i<d; i++) {
h[i] = p.cartesian(i);
sum += h[i]*h[i];
}
h[d] = sum;
return Point(d+1,h.begin(),h.end());
}
};
template <class R>
class Project_along_d_axisCd
{
typedef typename R::Point_d Point_d;
typedef typename R::FT FT;
public:
typedef Point_d result_type;
result_type operator()(const Point_d & p) const
{
return Point_d(p.dimension()-1,
p.cartesian_begin(), p.cartesian_end()-1);
}
};
template <class R>
class MidpointCd
{
typedef typename R::Point_d Point_d;
public:
typedef Point_d result_type;
result_type operator()(const Point_d & p, const Point_d & q) const
{
return Point_d(p + (q-p)/2);
}
};
template <class R>
class Center_of_sphereCd
{
typedef typename R::Point_d Point_d;
typedef typename R::FT FT;
typedef typename R::LA LA;
typedef typename LA::Vector Vector;
typedef typename LA::Matrix Matrix;
public:
typedef Point_d result_type;
template <class Forward_iterator>
result_type operator()(Forward_iterator start, Forward_iterator end) const
{
CGAL_USE(end);
CGAL_assertion(start!=end);
int d = start->dimension();
Matrix M(d);
Vector b(d);
Point_d pd = *start++;
for (int i = 0; i < d; ++i) {
// we set up the equation for p_i
Point_d pi = *start++;
b[i] = 0;
for (int j = 0; j < d; ++j) {
M(i,j) = FT(2)*(pi.cartesian(j) - pd.cartesian(j));
b[i] += (pi.cartesian(j) - pd.cartesian(j)) *
(pi.cartesian(j) + pd.cartesian(j));
}
}
FT D;
Vector x;
LA::linear_solver(M,b,x,D);
return Point_d(d, x.begin(), x.end());
}
}; // Center_of_sphereCd
template <class R>
class Squared_distanceCd
{
typedef typename R::Point_d Point;
typedef typename R::Vector_d Vector;
typedef typename R::FT FT;
public:
typedef FT result_type;
result_type operator()(const Point & p, const Point & q) const
{
Vector v = p - q;
return v.squared_length();
}
};
template <class R>
class Position_on_lineCd
{
typedef typename R::Point_d Point;
typedef typename R::LA LA;
typedef typename R::FT FT;
public:
typedef typename R::Boolean result_type;
result_type operator()(const Point & p, const Point & s, const Point & t,
FT & l) const
{
int d = p.dimension();
CGAL_assertion_msg((d==s.dimension())&&(d==t.dimension()&& d>0),
"position_along_line: argument dimensions disagree.");
CGAL_assertion_msg((s!=t),
"Position_on_line_d: line defining points are equal.");
FT lnum = (p.cartesian(0) - s.cartesian(0));
FT lden = (t.cartesian(0) - s.cartesian(0));
FT num(lnum), den(lden), lnum_i, lden_i;
for (int i = 1; i < d; i++) {
lnum_i = (p.cartesian(i) - s.cartesian(i));
lden_i = (t.cartesian(i) - s.cartesian(i));
if (lnum*lden_i != lnum_i*lden)
return false;
if (lden_i != FT(0)) {
den = lden_i;
num = lnum_i;
}
}
l = num / den; return true;
}
};
template <class R>
class Barycentric_coordinatesCd
{
typedef typename R::Point_d Point;
typedef typename R::LA LA;
typedef typename R::FT FT;
public:
template <class ForwardIterator, class OutputIterator>
OutputIterator operator()(ForwardIterator first, ForwardIterator last,
const Point & p, OutputIterator result)
{
TUPLE_DIM_CHECK(first,last,Barycentric_coordinates_d);
//int n = std::distance(first,last); //unused variable
int d = p.dimension();
typename R::Affine_rank_d affine_rank;
CGAL_assertion(affine_rank(first,last)==d);
std::vector< Point > V(first,last);
typename LA::Matrix M(d+1,V.size());
typename LA::Vector b(d+1), x;
int i;
for (i=0; i<d; ++i) {
for (int j=0; j<V.size(); ++j)
M(i,j)=V[j].cartesian(i);
b[i] = p.cartesian(i);
}
for (int j=0; j<V.size(); ++j)
M(d,j) = 1;
b[d] = 1;
FT D;
LA::linear_solver(M,b,x,D);
for (i=0; i < x.dimension(); ++result, ++i) {
*result = x[i];
}
return result;
}
};
template <class R>
class OrientationCd
{
typedef typename R::Point_d Point;
typedef typename R::LA LA;
typedef typename R::Orientation Orientation;
public:
typedef Orientation result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last) const
{
TUPLE_DIM_CHECK(first, last, Orientation_d);
int d = static_cast<int>(std::distance(first,last)) - 1;
// range contains d+1 points of dimension d
CGAL_assertion_msg(first->dimension() == d,
"Orientation_d: needs first->dimension() + 1 many points.");
typename LA::Matrix M(d);
ForwardIterator s = first;
++s;
for( int j = 0; j < d; ++s, ++j )
for( int i = 0; i < d; ++i )
M(i,j) = s->cartesian(i) - first->cartesian(i);
return result_type(LA::sign_of_determinant(M));
}
};
/* This predicates tests the orientation of (k+1) points that span a
* k-dimensional affine subspace of the ambiant d-dimensional space. We
* greedily search for an orthogonal projection on a k-dim axis aligned
* subspace on which the (full k-dim) predicates answers POSITIVE or NEGATIVE.
* If no such subspace is found, return COPLANAR.
* IMPORTANT TODO: Current implementation is VERY bad with filters: if one
* determinant fails in the filtering step, then all the subsequent ones wil be
* in exact arithmetic :-(
* TODO: store the axis-aligned subspace that was found in order to avoid
* re-searching for it for subsequent calls to operator()
*/
template <class R>
class Coaffine_orientationCd
{
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::Orientation Orientation;
public:
typedef Orientation result_type;
// typedef internal::stateful_predicate_tag predicate_category;
typedef std::vector<int> Axes;
struct State
{
Axes axes_;
bool axes_found_;
State(bool b) : axes_(), axes_found_(b) {}
};
mutable State state_;
Coaffine_orientationCd() : state_(false) {}
State & state() { return state_; }
const State & state() const { return state_; }
template < class ForwardIterator >
result_type operator()(ForwardIterator first, ForwardIterator last) const
{
TUPLE_DIM_CHECK(first,last,Coaffine_orientation_d);
// |k| is the dimension of the affine subspace
const int k = std::distance(first,last) - 1;
// |d| is the dimension of the ambiant space
const int d = first->dimension();
CGAL_assertion_msg(k <= d, "Coaffine_orientation_d: needs less that (first->dimension() + 1) points.");
if( false == state_.axes_found_ )
{
state_.axes_.resize(d + 1);
// We start by choosing the first |k| axes to define a plane of projection
int i = 0;
for(; i < k; ++i) state_.axes_[i] = i;
for(; i < d + 1; ++i) state_.axes_[i] = -1;
}
const typename ForwardIterator::value_type & l(*first);
typename LA::Matrix M(k); // quadratic
while( true )
{
ForwardIterator s = first;
++s;
int j(0);
while( s != last )
{
const typename ForwardIterator::value_type & point(*s);
for( int i = 0; i < k; ++i )
M(i,j) = point.cartesian(state_.axes_[i]) - l.cartesian(state_.axes_[i]);
++s;
++j;
}
Orientation o = Orientation(LA::sign_of_determinant(M));
if( ( o != COPLANAR ) || state_.axes_found_ )
{
state_.axes_found_ = true;
return o;
}
// for generating all possible unordered k-uple in the range
// [0 .. d-1]... we go to the next unordered k-uple:
int index = k - 1;
while( (index >= 0) && (state_.axes_[index] == d - k + index) )
--index;
if( index < 0 )
break;
++state_.axes_[index];
for( int i = 1; i < k - index; ++i )
state_.axes_[index + i] = state_.axes_[index] + i;
}
return COPLANAR;
}
};
template <class R>
class Side_of_oriented_sphereCd
{
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::FT FT;
typedef typename R::Oriented_side Oriented_side;
public:
typedef Oriented_side result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last,
const Point_d& x) const
{
TUPLE_DIM_CHECK(first,last,Side_of_oriented_sphere_d);
int d = static_cast<int>(std::distance(first,last)); // |A| contains |d| points
CGAL_assertion_msg((d-1 == first->dimension()),
"Side_of_oriented_sphere_d: needs first->dimension()+1 many input points.");
typename LA::Matrix M(d + 1);
for (int i = 0; i < d; ++first, ++i) {
FT Sum = 0;
M(i,0) = 1;
for (int j = 0; j < d-1; j++) {
FT cj = first->cartesian(j);
M(i,j + 1) = cj; Sum += cj*cj;
}
M(i,d) = Sum;
}
FT Sum = 0;
M(d,0) = 1;
for (int j = 0; j < d-1; j++) {
FT hj = x.cartesian(j);
M(d,j + 1) = hj; Sum += hj*hj;
}
M(d,d) = Sum;
return result_type( - LA::sign_of_determinant(M));
}
};
/* This predicates takes k+1 points defining a k-sphere in d-dim space, and a
* point |x| (assumed to lie in the same affine subspace spanned by the
* k-sphere). It tests wether the point |x| lies in the positive or negative
* side of the k-sphere.
* The parameter |axis| contains the indices of k axis of the canonical base of
* R^d, on which the affine subspace projects homeomorphically. We can thus
* "complete" the k+1 points with d-k other points along the "non-used" axes
* and then call the usual Side_of_oriented_sphereCd predicate.
*/
template < class R >
class Side_of_oriented_subsphereCd
{
typedef typename R::Point_d Point;
typedef typename R::LA LA;
typedef typename R::FT FT;
typedef typename R::Orientation Orientation;
typedef typename R::Oriented_side Oriented_side;
typedef typename R::Side_of_oriented_sphere_d Side_of_oriented_sphere;
typedef typename R::Coaffine_orientation_d Coaffine_orientation;
typedef typename LA::Matrix Matrix;
typedef typename Coaffine_orientation::Axes Axes;
// DATA MEMBERS
mutable Coaffine_orientation ori_;
mutable unsigned int adjust_sign_;
// a square matrix of size (D+1)x(D+1) where D is the ambient dimension
mutable typename LA::Matrix M;
public:
typedef Oriented_side result_type;
// typedef internal::stateless_predicate_tag predicate_category;
// constructor
Side_of_oriented_subsphereCd(const R & r = R())
: ori_(r.coaffine_orientation_d_object()), M(), adjust_sign_(0) { }
template < class ForwardIterator >
result_type operator()(ForwardIterator first, ForwardIterator last, const Point & q) const
{
const int d = first->dimension();
const int k = std::distance(first, last) - 1; // dimension of affine subspace
CGAL_assertion_msg( k <= d, "too much points in range.");
if( k == d )
{
Side_of_oriented_sphere sos;
return sos(first, last, q); // perhaps slap user on the back of the head here?
}
if( M.row_dimension() < d+1 )
M = Matrix(d+1);
if( ! ori_.state().axes_found_ )
{
// the call to ori_(...) will compute a set of axes to complement our base.
Orientation o = ori_(first, last);
if( COPLANAR == o )
{
std::cerr << "\nAffine base is flat (it should have positive orientation) !!";
//return ON_ORIENTED_BOUNDARY;
}
CGAL_assertion( o == POSITIVE );
// Now we can setup the fixed part of the matrix:
int a(0);
int j(k);
typename Axes::iterator axis = ori_.state().axes_.begin();
while( j < d )
{
while( a == *axis )
{
++a; ++axis;
}
adjust_sign_ = ( adjust_sign_ + j + a ) % 2;
int i(0);
for( ; i < a; ++i )
M(i, j) = FT(0);
M(i++, j) = FT(1); // i.e.: M(a, j) = 1
for( ; i < d; ++i )
M(i, j) = FT(0);
++j;
++a;
}
}
typename ForwardIterator::value_type p1 = *first;
FT SumFirst(0); // squared length of first subsphere point, seen as vector.
for( int i = 0; i < d; ++i )
{
FT ci = p1.cartesian(i);
SumFirst += ci * ci;
}
int j(0); // iterates overs columns/subsphere points
++first;
while( first != last )
{
typename ForwardIterator::value_type v = *first;
FT Sum = FT(0);
for( int i = 0; i < d; ++i )
{
FT ci = v.cartesian(i);
M(i, j) = ci - p1.cartesian(i);
Sum += ci * ci;
}
M(d, j) = Sum - SumFirst;
++first;
++j;
}
int a(0);
typename Axes::iterator axis = ori_.state().axes_.begin();
while( j < d )
{
while( a == *axis )
{
++a; ++axis;
}
M(d, j) = FT(1) + FT(2) * p1.cartesian(a);
++j;
++a;
}
FT Sum = FT(0);
for( int i = 0; i < d; ++i )
{
FT ci = q.cartesian(i);
M(i, d) = ci - p1.cartesian(i);
Sum += ci * ci;
}
M(d, d) = Sum - SumFirst;
if( 0 == ( adjust_sign_ % 2 ) )
return result_type( - LA::sign_of_determinant( M ) );
else
return result_type( LA::sign_of_determinant( M ) );
}
};
template <class R>
class Side_of_bounded_sphereCd
{
typedef typename R::Point_d Point_d;
typedef typename R::Orientation_d Orientation_d;
typedef typename R::Side_of_oriented_sphere_d Side_of_oriented_sphere_d;
typedef typename R::Orientation Orientation;
typedef typename R::Oriented_side Oriented_side;
typedef typename R::Bounded_side Bounded_side;
public:
typedef Bounded_side result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last,
const Point_d& p) const
{
TUPLE_DIM_CHECK(first,last,region_of_sphere);
Orientation_d _orientation;
Orientation o = _orientation(first,last);
CGAL_assertion_msg((o != 0), "Side_of_bounded_sphere_d: \
A must be full dimensional.");
Side_of_oriented_sphere_d _side_of_oriented_sphere;
Oriented_side oside = _side_of_oriented_sphere(first,last,p);
if (o == POSITIVE) {
switch (oside) {
case ON_POSITIVE_SIDE : return ON_BOUNDED_SIDE;
case ON_ORIENTED_BOUNDARY: return ON_BOUNDARY;
case ON_NEGATIVE_SIDE : return ON_UNBOUNDED_SIDE;
}
} else {
switch (oside) {
case ON_POSITIVE_SIDE : return ON_UNBOUNDED_SIDE;
case ON_ORIENTED_BOUNDARY: return ON_BOUNDARY;
case ON_NEGATIVE_SIDE : return ON_BOUNDED_SIDE;
}
}
return ON_BOUNDARY; // never reached
}
};
template <class R>
class Contained_in_simplexCd
{
typedef typename R::Point_d Point_d;
typedef typename R::FT FT;
typedef typename R::LA LA;
typedef typename LA::Vector Vector;
typedef typename LA::Matrix Matrix;
public:
typedef typename R::Boolean result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last,
const Point_d& p) const
{
TUPLE_DIM_CHECK(first,last,Contained_in_simplex_d);
int k = static_cast<int>(std::distance(first,last)); // |A| contains |k| points
int d = first->dimension();
CGAL_assertion_code( typename R::Affinely_independent_d check_independence; )
CGAL_assertion_msg(check_independence(first,last),
"Contained_in_simplex_d: A not affinely independent.");
CGAL_assertion(d==p.dimension());
Matrix M(d + 1,k);
Vector b(d +1);
for (int j = 0; j < k; ++first, ++j) {
for (int i = 0; i < d; ++i)
M(i,j) = first->cartesian(i);
M(d,j) = 1;
}
for (int i = 0; i < d; ++i)
b[i] = p.cartesian(i);
b[d] = 1;
FT D;
Vector lambda;
if ( LA::linear_solver(M,b,lambda,D) ) {
for (int j = 0; j < k; j++) {
if (lambda[j] < FT(0)) return false;
}
return true;
}
return false;
}
};
template <class R>
class Contained_in_affine_hullCd
{
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::Boolean Boolean;
public:
typedef Boolean result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last,
const Point_d& p) const
{
TUPLE_DIM_CHECK(first,last,Contained_in_affine_hullCd);
int k = static_cast<int>(std::distance(first,last)); // |A| contains |k| points
int d = first->dimension();
typename LA::Matrix M(d + 1,k);
typename LA::Vector b(d + 1);
for (int j = 0; j < k; ++first, ++j) {
for (int i = 0; i < d; ++i)
M(i,j) = first->cartesian(i);
M(d,j) = 1;
}
for (int i = 0; i < d; ++i)
b[i] = p.cartesian(i);
b[d] = 1;
return LA::is_solvable(M,b);
}
};
template <class R>
class Affine_rankCd
{
typedef typename R::Point_d Point_d;
typedef typename R::Vector_d Vector_d;
typedef typename R::LA LA;
public:
typedef int result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last) const
{
TUPLE_DIM_CHECK(first,last,Affine_rank_d);
int k = static_cast<int>(std::distance(first,last)); // |A| contains |k| points
if (k == 0) return -1;
if (k == 1) return 0;
int d = first->dimension();
typename LA::Matrix M(d,--k);
Point_d p0 = *first; ++first; // first points to second
for (int j = 0; j < k; ++first, ++j) {
Vector_d v = *first - p0;
for (int i = 0; i < d; i++)
M(i,j) = v.cartesian(i);
}
return LA::rank(M);
}
};
template <class R>
class Affinely_independentCd
{
typedef typename R::Point_d Point_d;
typedef typename R::LA LA;
typedef typename R::Affine_rank_d Affine_rank_d;
public:
typedef typename R::Boolean result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last) const
{
Affine_rank_d rank;
int n = static_cast<int>(std::distance(first,last));
return rank(first,last) == n-1;
}
};
template <class R>
class Compare_lexicographicallyCd
{
typedef typename R::Point_d Point_d;
typedef typename R::Point_d PointD; //MSVC hack
typedef typename R::Comparison_result Comparison_result;
public:
typedef Comparison_result result_type;
result_type operator()(const Point_d & p1, const Point_d & p2) const
{
return PointD::cmp(p1,p2);
}
};
template <class R>
class Contained_in_linear_hullCd
{
typedef typename R::LA LA;
typedef typename R::FT FT;
typedef typename R::Vector_d Vector_d;
public:
typedef typename R::Boolean result_type;
template<class ForwardIterator>
result_type operator()(
ForwardIterator first, ForwardIterator last, const Vector_d& x) const
{
TUPLE_DIM_CHECK(first,last,Contained_in_linear_hull_d);
int k = static_cast<int>(std::distance(first,last));
// |A| contains |k| vectors
int d = first->dimension();
typename LA::Matrix M(d,k);
typename LA::Vector b(d);
for (int i = 0; i < d; i++) {
b[i] = x.cartesian(i);
for (int j = 0; j < k; j++)
M(i,j) = (first+j)->cartesian(i);
}
return LA::is_solvable(M,b);
}
};
template <class R>
class Linear_rankCd
{
typedef typename R::LA LA;
public:
typedef int result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last) const
{
TUPLE_DIM_CHECK(first,last,linear_rank);
int k = static_cast<int>(std::distance(first,last)); // k vectors
int d = first->dimension();
typename LA::Matrix M(d,k);
for (int i = 0; i < d ; i++)
for (int j = 0; j < k; j++)
M(i,j) = (first + j)->cartesian(i);
return LA::rank(M);
}
};
template <class R>
class Linearly_independentCd
{
typedef typename R::LA LA;
public:
typedef typename R::Boolean result_type;
template <class ForwardIterator>
result_type operator()(ForwardIterator first, ForwardIterator last) const
{
typename R::Linear_rank_d rank;
return rank(first,last) == static_cast<int>(std::distance(first,last));
}
};
template <class R>
class Linear_baseCd
{
typedef typename R::LA LA;
typedef typename R::FT FT;
typedef typename R::Vector_d Vector_d;
public:
template <class ForwardIterator, class OutputIterator>
OutputIterator operator()(ForwardIterator first, ForwardIterator last,
OutputIterator result) const
{
TUPLE_DIM_CHECK(first,last,linear_base);
int k = static_cast<int>(std::distance(first,last)); // k vectors
int d = first->dimension();
typename LA::Matrix M(d,k);
for (int j = 0; j < k; ++first, ++j)
for (int i = 0; i < d; i++)
M(i,j) = first->cartesian(i);
std::vector<int> indcols;
int r = LA::independent_columns(M,indcols);
for (int l=0; l < r; l++) {
typename LA::Vector v = M.column(indcols[l]);
*result++ = Vector_d(d,v.begin(),v.end());
}
return result;
}
};
} //namespace CGAL
#endif //CGAL_FUNCTION_OBJECTSCD_H