dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Polynomial/Real_embeddable_traits.h

123 lines
4.3 KiB
C
Raw Normal View History

// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany)
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Arno Eigenwillig <arno@mpi-inf.mpg.de>
// Michael Hemmer <hemmer@informatik.uni-mainz.de>
//
// ============================================================================
// TODO: The comments are all original EXACUS comments and aren't adapted. So
// they may be wrong now.
#ifndef CGAL_POLYNOMIAL_REAL_EMBEDDABLE_TRAITS_H
#define CGAL_POLYNOMIAL_REAL_EMBEDDABLE_TRAITS_H
#include <CGAL/basic.h>
namespace CGAL {
namespace internal {
template< class Polynomial , class TAG> class Real_embeddable_traits_poly_base;
template< class NT , class TAG> class Real_embeddable_traits_poly_base< Polynomial<NT>, TAG >
: public INTERN_RET::Real_embeddable_traits_base< Polynomial<NT> , CGAL::Tag_false > {};
// Real embeddable traits
// TODO: Polynomials aren't Real_embeddable! But for debugging and testing
// reasons, the real embeddable functors are provided.
template< class NT > class Real_embeddable_traits_poly_base< Polynomial<NT>, CGAL::Tag_true >
: public INTERN_RET::Real_embeddable_traits_base< Polynomial<NT> , CGAL::Tag_false > {
public:
typedef Tag_false Is_real_embeddable;
class Abs {
public:
typedef Polynomial<NT> argument_type;
typedef Polynomial<NT> result_type;
Polynomial<NT> operator()( const Polynomial<NT>& x ) const {
return x.abs();
}
};
class Sgn {
public:
typedef Polynomial<NT> argument_type;
typedef CGAL::Sign result_type;
CGAL::Sign operator()( const Polynomial<NT>& x ) const {
return x.sign();
}
};
class Compare {
public:
typedef Polynomial<NT> first_argument_type;
typedef Polynomial<NT> second_argument_type;
typedef CGAL::Comparison_result result_type;
CGAL::Comparison_result operator()(
const Polynomial<NT>& x,
const Polynomial<NT>& y ) const {
return x.compare(y);
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR_WITH_RT( Polynomial<NT>,
CGAL::Comparison_result )
};
class To_double {
public:
typedef typename Real_embeddable_traits<NT>::To_double NT_to_double;
typedef Polynomial<typename NT_to_double::result_type> result_type;
typedef Polynomial<NT> argument_type;
result_type operator()( const Polynomial<NT>& x ) const {
CGAL_precondition(x.degree() >= 0);
NT_to_double to_double;
return result_type(
::boost::make_transform_iterator(x.begin(),to_double),
::boost::make_transform_iterator(x.end() ,to_double));
}
};
class To_interval {
public:
typedef typename Real_embeddable_traits<NT>::To_interval NT_to_interval;
typedef Polynomial<typename NT_to_interval::result_type> result_type;
typedef Polynomial<NT> argument_type;
result_type operator()( const Polynomial<NT>& x ) const {
CGAL_precondition( x.degree() >= 0 );
NT_to_interval to_interval;
return result_type(
::boost::make_transform_iterator(x.begin(),to_interval),
::boost::make_transform_iterator(x.end() ,to_interval));
}
};
};
} // namespace internal
template <typename NT>
class Real_embeddable_traits<Polynomial<NT> >
:public internal::Real_embeddable_traits_poly_base<
Polynomial<NT>,
typename Real_embeddable_traits<typename internal::Innermost_coefficient_type<NT>::Type>::Is_real_embeddable>
{};
} //namespace CGAL
#endif // CGAL_POLYNOMIAL_REAL_EMBEDDABLE_TRAITS_H