dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Homogeneous_d.h

430 lines
14 KiB
C
Raw Normal View History

// Copyright (c) 2000,2001
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Michael Seel
#ifndef CGAL_HOMOGENEOUS_D_H
#define CGAL_HOMOGENEOUS_D_H
#include <CGAL/basic.h>
#include <CGAL/Quotient.h>
#include <CGAL/representation_tags.h>
#include <CGAL/Kernel_d/function_objects.h>
#include <CGAL/Linear_algebraHd.h>
#include <vector>
#include <CGAL/Kernel_d/Kernel_classesHd.h>
#include <CGAL/Kernel_d/PointHd.h>
#include <CGAL/Kernel_d/VectorHd.h>
#include <CGAL/Kernel_d/DirectionHd.h>
#include <CGAL/Kernel_d/HyperplaneHd.h>
#include <CGAL/Kernel_d/Aff_transformationHd.h>
#include <CGAL/Kernel_d/PointHd_impl.h>
#include <CGAL/Kernel_d/VectorHd_impl.h>
#include <CGAL/Kernel_d/DirectionHd_impl.h>
#include <CGAL/Kernel_d/HyperplaneHd_impl.h>
#include <CGAL/Kernel_d/function_objectsHd.h>
#include <CGAL/Kernel_d/intersection_objectsHd.h>
#include <CGAL/Kernel_d/Interface_classes.h>
#include <CGAL/Kernel_d/simple_objects.h>
#include <CGAL/Dimension.h>
namespace CGAL {
template <class pRT, class pLA = Linear_algebraHd<pRT> >
class Homogeneous_d
{
public:
typedef Homogeneous_d<pRT,pLA> Self;
typedef pRT RT;
typedef Quotient<RT> FT;
typedef pLA LA;
typedef Homogeneous_tag Rep_tag;
typedef PointHd2<RT,LA> Point_d_base;
typedef VectorHd<RT,LA> Vector_d_base;
typedef DirectionHd<RT,LA> Direction_d_base;
typedef HyperplaneHd<RT,LA> Hyperplane_d_base;
typedef Aff_transformationHd<RT,LA> Aff_transformation_d_base;
typedef CGAL::Point_d<Self> Point_d;
typedef CGAL::Vector_d<Self> Vector_d;
typedef CGAL::Direction_d<Self> Direction_d;
typedef CGAL::Hyperplane_d<Self> Hyperplane_d;
typedef CGAL::Aff_transformation_d<Self> Aff_transformation_d;
typedef typename Point_d_base::Cartesian_const_iterator Cartesian_const_iterator_d;
typedef Dynamic_dimension_tag Dimension;
template <typename T>
struct Ambient_dimension {
typedef typename T::Ambient_dimension type;
};
template <typename T>
struct Feature_dimension {
typedef typename T::Feature_dimension type;
};
template <typename K>
class Construct_cartesian_const_iterator
{
typedef typename K::Point_d Point_d;
typedef typename K::Cartesian_const_iterator_d Cartesian_const_iterator_d;
public:
typedef Cartesian_const_iterator_d result_type;
Cartesian_const_iterator_d
operator()(const Point_d& p) const
{
return p.cartesian_begin();
}
Cartesian_const_iterator_d
operator()( const Point_d& p, int) const
{
return p.cartesian_end();
}
};
// TODO: Make it work for the other values
template <typename K>
class Construct_vertex
{
typedef typename K::Point_d Point_d;
typedef typename K::Iso_box_d Iso_box_d;
typedef typename K::Cartesian_const_iterator_d Cartesian_const_iterator_d;
public:
typedef Point_d result_type;
Point_d operator()(const Iso_box_d& b, int i)
{
if(i == 0){
return (b.min)();
}
return (b.max)();
}
};
typedef Construct_vertex<Self> Construct_vertex_d;
template <typename K>
class Construct_min_vertex
{
typedef typename K::Point_d Point_d;
typedef typename K::Iso_box_d Iso_box_d;
public:
typedef Point_d result_type;
Point_d operator()(const Iso_box_d& b)
{
return (b.min)();
}
};
typedef Construct_min_vertex<Self> Construct_min_vertex_d;
Construct_min_vertex_d
construct_min_vertex_d_object() const
{
return Construct_min_vertex_d();
}
template <typename K>
class Construct_max_vertex
{
typedef typename K::Point_d Point_d;
typedef typename K::Iso_box_d Iso_box_d;
public:
typedef Point_d result_type;
Point_d operator()(const Iso_box_d& b)
{
return (b.max)();
}
};
typedef Construct_max_vertex<Self> Construct_max_vertex_d;
Construct_max_vertex_d
construct_max_vertex_d_object() const
{
return Construct_max_vertex_d();
}
typedef Construct_cartesian_const_iterator<Self>
Construct_cartesian_const_iterator_d;
Construct_cartesian_const_iterator_d
construct_cartesian_const_iterator_d_object() const
{
return Construct_cartesian_const_iterator_d();
}
// meta types (fit both kernels):
typedef CGAL::Sphere_d<Self> Sphere_d;
typedef CGAL::Iso_box_d<Self> Iso_box_d;
typedef CGAL::Segment_d<Self> Segment_d;
typedef CGAL::Ray_d<Self> Ray_d;
typedef CGAL::Line_d<Self> Line_d;
// construction objects:
typedef internal::Construct<Point_d> Construct_point_d;
Construct_point_d construct_point_d_object() const
{ return Construct_point_d(); }
typedef internal::Construct<Vector_d> Construct_vector_d;
Construct_vector_d construct_vector_d_object() const
{ return Construct_vector_d(); }
typedef internal::Construct<Direction_d> Construct_direction_d;
Construct_direction_d construct_direction_d_object() const
{ return Construct_direction_d(); }
typedef internal::Construct<Segment_d> Construct_segment_d;
Construct_segment_d construct_segment_d_object() const
{ return Construct_segment_d(); }
typedef internal::Construct<Ray_d> Construct_ray_d;
Construct_ray_d construct_ray_d_object() const
{ return Construct_ray_d(); }
typedef internal::Construct<Line_d> Construct_line_d;
Construct_line_d construct_line_d_object() const
{ return Construct_line_d(); }
typedef internal::Construct<Iso_box_d> Construct_iso_box_d;
Construct_iso_box_d construct_iso_box_d_object() const
{ return Construct_iso_box_d(); }
typedef internal::Construct<Hyperplane_d> Construct_hyperplane_d;
Construct_hyperplane_d construct_hyperplane_d_object() const
{ return Construct_hyperplane_d(); }
typedef internal::Construct<Sphere_d> Construct_sphere_d;
Construct_sphere_d construct_sphere_d_object() const
{ return Construct_sphere_d(); }
typedef internal::Construct<Aff_transformation_d>
Construct_aff_transformation_d;
Construct_aff_transformation_d
construct_aff_transformation_d_object() const
{ return Construct_aff_transformation_d(); }
// function objects:
typedef Compute_coordinateHd<Self> Compute_coordinate_d;
typedef Lift_to_paraboloidHd<Self> Lift_to_paraboloid_d;
typedef Project_along_d_axisHd<Self> Project_along_d_axis_d;
typedef MidpointHd<Self> Midpoint_d;
typedef Squared_distanceHd<Self> Squared_distance_d;
typedef Position_on_lineHd<Self> Position_on_line_d;
typedef Barycentric_coordinatesHd<Self> Barycentric_coordinates_d;
typedef OrientationHd<Self> Orientation_d;
typedef Side_of_oriented_sphereHd<Self> Side_of_oriented_sphere_d;
typedef Side_of_bounded_sphereHd<Self> Side_of_bounded_sphere_d;
typedef Contained_in_simplexHd<Self> Contained_in_simplex_d;
typedef Contained_in_affine_hullHd<Self> Contained_in_affine_hull_d;
typedef Affine_rankHd<Self> Affine_rank_d;
typedef Affinely_independentHd<Self> Affinely_independent_d;
typedef Compare_lexicographicallyHd<Self> Compare_lexicographically_d;
typedef Lt_from_compare<Self> Less_lexicographically_d;
typedef Le_from_compare<Self> Less_or_equal_lexicographically_d;
typedef Less_coordinateHd<Self> Less_coordinate_d;
typedef Point_dimensionHd<Self> Point_dimension_d;
typedef Eq_from_method<Self> Equal_d;
typedef Center_of_sphereHd<Self> Center_of_sphere_d;
typedef Contained_in_linear_hullHd<Self> Contained_in_linear_hull_d;
typedef Linear_rankHd<Self> Linear_rank_d;
typedef Linearly_independentHd<Self> Linearly_independent_d;
typedef Linear_baseHd<Self> Linear_base_d;
Compute_coordinate_d compute_coordinate_d_object() const
{ return Compute_coordinate_d(); }
Point_dimension_d point_dimension_d_object() const
{ return Point_dimension_d(); }
Less_coordinate_d less_coordinate_d_object() const
{ return Less_coordinate_d(); }
Lift_to_paraboloid_d lift_to_paraboloid_d_object() const
{ return Lift_to_paraboloid_d(); }
Project_along_d_axis_d project_along_d_axis_d_object() const
{ return Project_along_d_axis_d(); }
Midpoint_d midpoint_d_object() const
{ return Midpoint_d(); }
Squared_distance_d squared_distance_d_object() const
{ return Squared_distance_d(); }
Position_on_line_d position_on_line_d_object() const
{ return Position_on_line_d(); }
Barycentric_coordinates_d barycentric_coordinates_d_object() const
{ return Barycentric_coordinates_d(); }
Orientation_d orientation_d_object() const
{ return Orientation_d(); }
Side_of_oriented_sphere_d side_of_oriented_sphere_d_object() const
{ return Side_of_oriented_sphere_d(); }
Side_of_bounded_sphere_d side_of_bounded_sphere_d_object() const
{ return Side_of_bounded_sphere_d(); }
Contained_in_simplex_d contained_in_simplex_d_object() const
{ return Contained_in_simplex_d(); }
Contained_in_affine_hull_d contained_in_affine_hull_d_object() const
{ return Contained_in_affine_hull_d(); }
Affine_rank_d affine_rank_d_object() const
{ return Affine_rank_d(); }
Affinely_independent_d affinely_independent_d_object() const
{ return Affinely_independent_d(); }
Equal_d equal_d_object() const
{ return Equal_d(); }
Compare_lexicographically_d compare_lexicographically_d_object() const
{ return Compare_lexicographically_d(); }
Less_lexicographically_d less_lexicographically_d_object() const
{ return Less_lexicographically_d(); }
Less_or_equal_lexicographically_d
less_or_equal_lexicographically_d_object() const
{ return Less_or_equal_lexicographically_d(); }
Center_of_sphere_d center_of_sphere_d_object() const
{ return Center_of_sphere_d(); }
Contained_in_linear_hull_d contained_in_linear_hull_d_object() const
{ return Contained_in_linear_hull_d(); }
Linear_rank_d linear_rank_d_object() const
{ return Linear_rank_d(); }
Linearly_independent_d linearly_independent_d_object() const
{ return Linearly_independent_d(); }
Linear_base_d linear_base_d_object() const
{ return Linear_base_d(); }
// Intersection objects:
typedef CGAL::Line_line_intersectionHd<Self> Line_line_intersection_d;
typedef CGAL::Line_hyperplane_intersectionHd<Self>
Line_hyperplane_intersection_d;
typedef CGAL::Line_d_Line_d_pair<Self> Line_d_Line_d_pair;
typedef CGAL::Ray_d_Ray_d_pair<Self> Ray_d_Ray_d_pair;
typedef CGAL::Segment_d_Segment_d_pair<Self> Segment_d_Segment_d_pair;
typedef CGAL::Line_d_Ray_d_pair<Self> Line_d_Ray_d_pair;
typedef CGAL::Line_d_Segment_d_pair<Self> Line_d_Segment_d_pair;
typedef CGAL::Ray_d_Segment_d_pair<Self> Ray_d_Segment_d_pair;
typedef CGAL::Line_d_Hyperplane_d_pair<Self> Line_d_Hyperplane_d_pair;
typedef CGAL::Ray_d_Hyperplane_d_pair<Self> Ray_d_Hyperplane_d_pair;
typedef CGAL::Segment_d_Hyperplane_d_pair<Self> Segment_d_Hyperplane_d_pair;
typedef internal::Intersect<Self> Intersect_d;
Intersect_d intersect_d_object() const
{ return Intersect_d(); }
typedef internal::Do_intersect<Self> Do_intersect_d;
Do_intersect_d do_intersect_d_object() const
{ return Do_intersect_d(); }
// FT - RT conversion and access :
static FT make_FT(const RT & num, const RT& denom)
{ return FT(num, denom); }
static FT make_FT(const RT & num)
{ return FT(num); }
static RT FT_numerator(const FT &r)
{ return r.numerator(); }
static RT FT_denominator(const FT &r)
{ return r.denominator(); }
// special stuff for traits class character :
struct Component_accessor_d {
template <typename C>
int dimension(const C& c) const { return c.dimension(); }
template <typename C>
RT homogeneous(const C& c, int i) { return c.homogeneous(i); }
template <typename C>
FT cartesian(const C& c, int i) { return c.cartesian(i); }
};
Component_accessor_d component_accessor_d_object() const
{ return Component_accessor_d(); }
typedef internal::Call_has_on_positive_side Has_on_positive_side_d;
Has_on_positive_side_d has_on_positive_side_d_object() const
{ return Has_on_positive_side_d(); }
typedef internal::Call_oriented_side Oriented_side_d;
Oriented_side_d oriented_side_d_object() const
{ return Oriented_side_d(); }
struct Value_at_d {
RT operator()(const Hyperplane_d& h, const Point_d& p) const
{ return h.value_at(p); }
};
Value_at_d value_at_d_object() const
{ return Value_at_d(); }
struct Point_to_vector_d {
Vector_d operator()(const Point_d& p) const
{ return p-CGAL::ORIGIN; }
};
Point_to_vector_d point_to_vector_d_object() const
{ return Point_to_vector_d(); }
struct Vector_to_point_d {
Point_d operator()(const Vector_d& v) const
{ return CGAL::ORIGIN+v; }
};
Vector_to_point_d vector_to_point_d_object() const
{ return Vector_to_point_d(); }
struct Orthogonal_vector_d {
Vector_d operator()(const Hyperplane_d& h) const
{ return h.orthogonal_vector(); }
};
Orthogonal_vector_d orthogonal_vector_d_object() const
{ return Orthogonal_vector_d(); }
struct Point_of_sphere_d {
Point_d operator()(const Sphere_d& S, int i)
{ return S.point(i); }
};
Point_of_sphere_d point_of_sphere_d_object() const
{ return Point_of_sphere_d(); }
}; // Homogeneous_d<R>
} //namespace CGAL
#include <CGAL/Kernel_d/Point_d.h>
#include <CGAL/Kernel_d/Vector_d.h>
#include <CGAL/Kernel_d/Direction_d.h>
#include <CGAL/Kernel_d/Hyperplane_d.h>
#include <CGAL/Kernel_d/Aff_transformation_d.h>
#include <CGAL/Kernel_d/Sphere_d.h>
#include <CGAL/Kernel_d/Iso_box_d.h>
#include <CGAL/Kernel_d/Segment_d.h>
#include <CGAL/Kernel_d/Ray_d.h>
#include <CGAL/Kernel_d/Line_d.h>
#include <CGAL/Kernel_d/Line_d_impl.h>
#include <CGAL/intersections_d.h>
#endif // CGAL_HOMOGENEOUS_D_H