323 lines
7.2 KiB
C
323 lines
7.2 KiB
C
|
// Copyright (c) 2003,2004 INRIA Sophia-Antipolis (France).
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org).
|
||
|
// You can redistribute it and/or modify it under the terms of the GNU
|
||
|
// General Public License as published by the Free Software Foundation,
|
||
|
// either version 3 of the License, or (at your option) any later version.
|
||
|
//
|
||
|
// Licensees holding a valid commercial license may use this file in
|
||
|
// accordance with the commercial license agreement provided with the software.
|
||
|
//
|
||
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
//
|
||
|
// $URL$
|
||
|
// $Id$
|
||
|
// SPDX-License-Identifier: GPL-3.0+
|
||
|
//
|
||
|
//
|
||
|
// Author(s) : Menelaos Karavelas <mkaravel@iacm.forth.gr>
|
||
|
|
||
|
|
||
|
|
||
|
#ifndef CGAL_HYPERBOLA_2_H
|
||
|
#define CGAL_HYPERBOLA_2_H
|
||
|
|
||
|
#include <CGAL/license/Apollonius_graph_2.h>
|
||
|
|
||
|
|
||
|
#include <CGAL/enum.h>
|
||
|
#include <CGAL/determinant.h>
|
||
|
|
||
|
#include <CGAL/Apollonius_site_2.h>
|
||
|
#include <CGAL/Kernel_traits.h>
|
||
|
|
||
|
namespace CGAL {
|
||
|
|
||
|
template < class Gt >
|
||
|
class Hyperbola_2
|
||
|
{
|
||
|
public:
|
||
|
typedef Gt Geom_traits;
|
||
|
typedef typename Gt::Site_2 Site_2;
|
||
|
typedef typename Gt::Segment_2 Segment_2;
|
||
|
typedef typename Gt::Point_2 Point_2;
|
||
|
typedef typename Gt::FT FT;
|
||
|
#if 0
|
||
|
typedef typename Kernel_traits<Point>::Kernel Kernel;
|
||
|
typedef CGAL::Apollonius_site_2<Kernel> Site_2;
|
||
|
typedef typename Kernel::Segment_2 Segment_2;
|
||
|
typedef Point Point_2;
|
||
|
typedef typename Kernel::FT FT;
|
||
|
#endif
|
||
|
// typedef typename R::RT FT;
|
||
|
// typedef double FT;
|
||
|
// typedef CGAL::Point_2< Cartesian<double> > Point_2;
|
||
|
// typedef CGAL::Segment_2< Cartesian< double > > Segment_2;
|
||
|
|
||
|
protected:
|
||
|
FT STEP;
|
||
|
|
||
|
Point_2 f1, f2;
|
||
|
FT r;
|
||
|
Point_2 o;
|
||
|
|
||
|
inline
|
||
|
Point_2 lchain(const FT &t) const
|
||
|
{
|
||
|
std::vector< Point_2 > p = compute_points(t);
|
||
|
if ( right(p[0]) ) return p[1];
|
||
|
return p[0];
|
||
|
}
|
||
|
|
||
|
inline
|
||
|
Point_2 rchain(const FT &t) const
|
||
|
{
|
||
|
std::vector< Point_2 > p = compute_points(t);
|
||
|
if ( right(p[0]) ) return p[0];
|
||
|
return p[1];
|
||
|
}
|
||
|
|
||
|
inline
|
||
|
FT norm2(const Point_2& p) const
|
||
|
{
|
||
|
return (CGAL::square(p.x()) + CGAL::square(p.y()));
|
||
|
}
|
||
|
|
||
|
inline
|
||
|
FT distance2(const Point_2& p1, const Point_2& p2) const
|
||
|
{
|
||
|
FT dx = p1.x()-p2.x();
|
||
|
FT dy = p1.y()-p2.y();
|
||
|
return (CGAL::square(dx) + CGAL::square(dy));
|
||
|
}
|
||
|
|
||
|
inline
|
||
|
FT distance(const Point_2& p1, const Point_2& p2) const
|
||
|
{
|
||
|
return CGAL::sqrt( distance2(p1, p2) );
|
||
|
}
|
||
|
|
||
|
void compute_origin()
|
||
|
{
|
||
|
FT dx = f2.x() - f1.x();
|
||
|
FT dy = f2.y() - f1.y();
|
||
|
FT a = CGAL::sqrt(CGAL::square(dx) + CGAL::square(dy));
|
||
|
FT t = (FT(1) + r / a) / FT(2);
|
||
|
|
||
|
o = Point_2(dx * t + f1.x(), dy * t + f1.y());
|
||
|
}
|
||
|
|
||
|
std::vector< Point_2 > compute_points(const FT &d) const {
|
||
|
FT d1 = distance(o, f1) + d;
|
||
|
FT d2 = distance(o, f2) + d;
|
||
|
d1 *= d1;
|
||
|
d2 *= d2;
|
||
|
|
||
|
Point_2 df = Point_2(f2.x() - f1.x(), f2.y()-f1.y());
|
||
|
|
||
|
std::vector< Point_2 > p;
|
||
|
|
||
|
if ( CGAL::is_negative(d) ) return p;
|
||
|
|
||
|
if ( CGAL::is_zero(df.x()) ) {
|
||
|
FT y = (d1 - d2 + norm2(f2) - norm2(f1)) / (FT(2) * df.y());
|
||
|
|
||
|
FT D = d1 - CGAL::square(y - f1.y());
|
||
|
|
||
|
D = CGAL::abs(D);
|
||
|
|
||
|
FT x1 = CGAL::sqrt(D) + f1.x();
|
||
|
FT x2 = -CGAL::sqrt(D) + f1.x();
|
||
|
|
||
|
p.push_back(Point_2(x1, y));
|
||
|
p.push_back(Point_2(x2, y));
|
||
|
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
FT gamma = (d1 - d2 + norm2(f2) - norm2(f1)) / (FT(2) * df.x());
|
||
|
FT gamma1 = gamma - f1.x();
|
||
|
FT beta = df.y() / df.x();
|
||
|
|
||
|
FT a = FT(1) + CGAL::square(beta);
|
||
|
FT b = -FT(2) * (gamma1 * beta + f1.y());
|
||
|
FT c = CGAL::square(f1.y()) + CGAL::square(gamma1) - d1;
|
||
|
|
||
|
FT D = CGAL::square(b) - FT(4) * a * c;
|
||
|
|
||
|
D = CGAL::abs(D);
|
||
|
|
||
|
FT y1 = (-b + CGAL::sqrt(D)) / (FT(2) * a);
|
||
|
FT y2 = (-b - CGAL::sqrt(D)) / (FT(2) * a);
|
||
|
|
||
|
FT x1 = gamma - beta * y1;
|
||
|
FT x2 = gamma - beta * y2;
|
||
|
|
||
|
p.push_back(Point_2(x1, y1));
|
||
|
p.push_back(Point_2(x2, y2));
|
||
|
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
bool right(const Point_2& p) const
|
||
|
{
|
||
|
return
|
||
|
CGAL::is_negative( determinant<FT>(f1.x(), f1.y(), 1,
|
||
|
f2.x(), f2.y(), 1,
|
||
|
p.x(), p.y(), 1) );
|
||
|
}
|
||
|
|
||
|
inline
|
||
|
Point_2 midpoint(const Point_2& p1, const Point_2& p2) const
|
||
|
{
|
||
|
FT t1 = t(p1);
|
||
|
FT t2 = t(p2);
|
||
|
FT midt = (t1+t2)/2;
|
||
|
return f(midt);
|
||
|
}
|
||
|
|
||
|
inline
|
||
|
Point_2 f(FT t) const
|
||
|
{
|
||
|
if ( CGAL::is_negative(t) ) return rchain(-t);
|
||
|
return lchain(t);
|
||
|
}
|
||
|
|
||
|
inline
|
||
|
FT t(const Point_2 &p) const
|
||
|
{
|
||
|
FT tt = distance(f1, p) - distance(f1, o);
|
||
|
if ( right(p) ) return -tt;
|
||
|
return tt;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
Hyperbola_2() { STEP = FT(2); }
|
||
|
|
||
|
Hyperbola_2(const Site_2 &ff1, const Site_2 &ff2)
|
||
|
{
|
||
|
STEP = FT(2);
|
||
|
this->r = ff1.weight() - ff2.weight();
|
||
|
|
||
|
this->f1 = ff1.point();
|
||
|
this->f2 = ff2.point();
|
||
|
|
||
|
compute_origin();
|
||
|
}
|
||
|
|
||
|
Oriented_side
|
||
|
side_of_hyperbola(const Point_2 &p) const
|
||
|
{
|
||
|
double dist = distance(p, f1) - distance(p, f2) - r;
|
||
|
if ( dist < 0 ) return ON_NEGATIVE_SIDE;
|
||
|
if ( dist > 0 ) return ON_POSITIVE_SIDE;
|
||
|
return ON_ORIENTED_BOUNDARY;
|
||
|
}
|
||
|
|
||
|
|
||
|
template<class QTWIDGET>
|
||
|
void generate_points_qt(const QTWIDGET& W,
|
||
|
std::vector<Point_2>& pleft,
|
||
|
std::vector<Point_2>& pright) const
|
||
|
{
|
||
|
std::vector< Point_2 > p;
|
||
|
|
||
|
pleft.push_back(o);
|
||
|
pright.push_back(o);
|
||
|
|
||
|
double width = W.x_max() - W.x_min();
|
||
|
double height = W.y_max() - W.y_min();
|
||
|
|
||
|
FT STEP;
|
||
|
if ( width < height ) {
|
||
|
STEP = width / 500.0;
|
||
|
} else {
|
||
|
STEP = height / 500.0;
|
||
|
}
|
||
|
// double mind = distance(o, f1) - r1;
|
||
|
for (int i = 1; i <= 100; i++) {
|
||
|
p = compute_points(FT(i * i) * STEP);
|
||
|
|
||
|
if ( p.size() > 0 ) {
|
||
|
if ( right(p[0]) ) {
|
||
|
pright.push_back(p[0]);
|
||
|
pleft.push_back(p[1]);
|
||
|
} else {
|
||
|
pright.push_back(p[1]);
|
||
|
pleft.push_back(p[0]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template<class QTWIDGET>
|
||
|
void draw_qt(QTWIDGET& W) const
|
||
|
{
|
||
|
std::vector< Point_2 > pleft, pright;
|
||
|
generate_points_qt(pleft, pright);
|
||
|
|
||
|
for (unsigned int i = 0; i < pleft.size() - 1; i++) {
|
||
|
W << Segment_2(pleft[i], pleft[i+1]);
|
||
|
}
|
||
|
|
||
|
for (unsigned int i = 0; i < pright.size() - 1; i++) {
|
||
|
W << Segment_2(pright[i], pright[i+1]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void generate_points(std::vector<Point_2>& pleft,
|
||
|
std::vector<Point_2>& pright) const
|
||
|
{
|
||
|
std::vector< Point_2 > p;
|
||
|
|
||
|
pleft.push_back(o);
|
||
|
pright.push_back(o);
|
||
|
|
||
|
// double mind = distance(o, f1) - r1;
|
||
|
for (int i = 1; i <= 100; i++) {
|
||
|
p = compute_points(FT(i * i) * STEP);
|
||
|
|
||
|
if ( p.size() > 0 ) {
|
||
|
if ( right(p[0]) ) {
|
||
|
pright.push_back(p[0]);
|
||
|
pleft.push_back(p[1]);
|
||
|
} else {
|
||
|
pright.push_back(p[1]);
|
||
|
pleft.push_back(p[0]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template< class Stream >
|
||
|
void draw(Stream &W) const
|
||
|
{
|
||
|
std::vector< Point_2 > pleft, pright;
|
||
|
generate_points(pleft,pright);
|
||
|
|
||
|
for (unsigned int i = 0; i < pleft.size() - 1; i++) {
|
||
|
W << Segment_2(pleft[i], pleft[i+1]);
|
||
|
}
|
||
|
|
||
|
for (unsigned int i = 0; i < pright.size() - 1; i++) {
|
||
|
W << Segment_2(pright[i], pright[i+1]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
template< class Stream, class Gt >
|
||
|
inline
|
||
|
Stream& operator<<(Stream& s, const Hyperbola_2<Gt> &H)
|
||
|
{
|
||
|
H.draw(s);
|
||
|
return s;
|
||
|
}
|
||
|
|
||
|
|
||
|
} //namespace CGAL
|
||
|
|
||
|
#endif // CGAL_HYPERBOLA_2_H
|