dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Kernel_d/DirectionHd.h

227 lines
7.4 KiB
C
Raw Normal View History

// Copyright (c) 2000,2001
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Michael Seel
#ifndef CGAL_DIRECTIONHD_H
#define CGAL_DIRECTIONHD_H
#include <CGAL/basic.h>
#include <CGAL/Quotient.h>
#include <CGAL/Kernel_d/Tuple_d.h>
#include <CGAL/Kernel_d/PointHd.h>
#include <CGAL/Kernel_d/VectorHd.h>
#include <CGAL/Kernel_d/Aff_transformationHd.h>
namespace CGAL {
template <class RT, class LA> class DirectionHd;
template <class RT, class LA>
std::istream& operator>>(std::istream&, DirectionHd<RT,LA>&);
template <class RT, class LA>
std::ostream& operator<<(std::ostream&, const DirectionHd<RT,LA>&);
/*{\Manpage{Direction_d}{R}{Directions in d-space}{dir}}*/
/*{\Msubst
Hd<RT,LA>#_d<R>
VectorHd#Vector_d
DirectionHd#Direction_d
Quotient<RT>#FT
}*/
template <class _RT, class _LA>
class DirectionHd : public Handle_for< Tuple_d<_RT,_LA> > {
typedef Tuple_d<_RT,_LA> Tuple;
typedef Handle_for<Tuple> Base;
typedef DirectionHd<_RT,_LA> Self;
using Base::ptr;
/*{\Mdefinition
A |DirectionHd| is a vector in the $d$-dimensional vector space
where we forget about its length. We represent directions in
$d$-dimensional space as a tuple $(h_0,\ldots,h_d)$ of variables of
type |RT| which we call the homogeneous coordinates of the
direction. The coordinate $h_d$ must be positive. The Cartesian
coordinates of a direction are $c_i = h_i/h_d$ for $0 \le i < d$,
which are of type |Quotient<RT>|. Two directions are equal if their
Cartesian coordinates are positive multiples of each other. Directions
are in one-to-one correspondence to points on the unit sphere.}*/
const typename _LA::Vector& vector_rep() const { return ptr()->v; }
_RT& entry(int i) { return ptr()->v[i]; }
const _RT& entry(int i) const { return ptr()->v[i]; }
void invert_rep() { ptr()->invert(); }
public:
/*{\Mtypes 4}*/
typedef _RT RT;
/*{\Mtypemember the ring type.}*/
typedef Quotient<_RT> FT;
/*{\Mtypemember the field type.}*/
typedef _LA LA;
/*{\Mtypemember the linear algebra layer.}*/
typedef typename Tuple::const_iterator Delta_const_iterator;
/*{\Mtypemember a read-only iterator for the deltas of |\Mvar|.}*/
class Base_direction {};
/*{\Mtypemember construction tag.}*/
friend class VectorHd<RT,LA>;
/*{\Mcreation 4}*/
DirectionHd(int d = 0) : Base( Tuple(d+1) )
/*{\Mcreate introduces a variable |\Mvar| of type |DirectionHd<RT,LA>|
initialized to some direction in $d$-dimensional space.}*/
{ if (d>0) entry(d) = 1; }
DirectionHd(const VectorHd<RT,LA>& v);
/*{\Mcreate introduces a variable |\Mvar| of type |DirectionHd<RT,LA>|
initialized to the direction of |v|.}*/
template <class InputIterator>
DirectionHd(int d, InputIterator first, InputIterator last) :
Base( Tuple(d+1,first,last,1) ) {}
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in dimension |d|
with representation tuple |set [first,last)|. \precond |d| is
nonnegative, |[first,last)| has |d| elements and the value type of
|InputIterator| is |RT|.}*/
DirectionHd(int d, Base_direction, int i) : Base( Tuple(d+1) )
/*{\Mcreate returns a variable |\Mvar| of type |\Mname| initialized
to the direction of the $i$-th base vector of dimension $d$.
\precond $0 \leq i < d$.}*/
{ entry(d) = 1;
if ( d==0 ) return;
CGAL_assertion_msg((0<=i&&i<d), "DirectionHd::base: index out of range.");
entry(i) = 1;
}
DirectionHd(const RT& x, const RT& y) : Base( Tuple(x,y,1) ) {}
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in
$2$-dimensional space. }*/
DirectionHd(int a, int b) :
Base( Tuple(RT(a),RT(b),RT(1),MatchHelper()) ) {}
DirectionHd(const RT& x, const RT& y, const RT& z) :
Base( Tuple(x,y,z,1) ) {}
/*{\Mcreate introduces a variable |\Mvar| of type |\Mname| in
$3$-dimensional space. }*/
DirectionHd(int a, int b, int c) :
Base( Tuple(RT(a),RT(b),RT(c),RT(1)) ) {}
DirectionHd(const DirectionHd<RT,LA>& p) : Base(p) {}
~DirectionHd() {}
/*{\Moperations 5 3}*/
int dimension() const { return ptr()->size()-1; }
/*{\Mop returns the dimension of |\Mvar|. }*/
RT delta(int i) const
/*{\Mop returns the $i$-th component of |\Mvar|.
\precond $0 \leq i < d$.}*/
{ CGAL_assertion_msg((0<=i && i<(dimension())), "DirectionHd::delta():\
index out of range.");
return entry(i);
}
RT D() { return entry(dimension()); }
RT operator[](int i) const
/*{\Marrop returns the $i$-th delta of |\Mvar|.
\precond $0 \leq i < d$.}*/
{ return delta(i); }
Delta_const_iterator deltas_begin() const { return ptr()->begin(); }
/*{\Mop returns an iterator pointing to the first delta of |\Mvar|. }*/
Delta_const_iterator deltas_end() const { return ptr()->last(); }
/*{\Mop returns an iterator pointing beyond the last delta of |\Mvar|. }*/
VectorHd<RT,LA> vector() const;
/*{\Mop returns a vector pointing in direction |\Mvar|. }*/
bool is_degenerate() const
/*{\Mop returns true iff |\Mvar.vector()| is the zero vector.}*/
{ for (int i=0; i<dimension(); ++i)
if ( delta(i) != RT(0) ) return false;
return true; }
DirectionHd<RT,LA> transform(const Aff_transformationHd<RT,LA>& t) const;
/*{\Mop returns $t(p)$. }*/
DirectionHd<RT,LA> opposite() const
/*{\Mop returns the direction opposite to |\Mvar|. }*/
{ DirectionHd<RT,LA> result(*this); // creates a copied object!
result.copy_on_write(); // creates a copied object!
result.ptr()->invert(dimension());
return result;
}
DirectionHd<RT,LA> operator- () const
/*{\Munop returns the direction opposite to |\Mvar|.}*/
{ return opposite(); }
static Comparison_result cmp(
const DirectionHd<RT,LA>& h1, const DirectionHd<RT,LA>& h2);
bool operator==(const DirectionHd<RT,LA>& w) const
{ if ( this->identical(w) ) return true;
if ( dimension()!=w.dimension() ) return false;
return (DirectionHd<RT,LA>::cmp(*this,w) == EQUAL);
}
bool operator!=(const DirectionHd<RT,LA>& w) const
{ return !operator==(w); }
/*{\Mtext \headerline{Downward compatibility}
We provide all operations of the lower dimensional interface |dx()|,
|dy()|, |dz()|.}*/
RT dx() const { return delta(0); }
RT dy() const { return delta(1); }
RT dz() const { return delta(2); }
friend std::istream& operator>> <>
(std::istream& I, DirectionHd<RT,LA>& d);
friend std::ostream& operator<< <>
(std::ostream& O, const DirectionHd<RT,LA>& d);
}; // end of class DirectionHd
/*{\Mimplementation
Directions are implemented by arrays of integers as an item type. All
operations like creation, initialization, tests, inversion, input and
output on a direction $d$ take time $O(|d.dimension()|)$. |dimension()|,
coordinate access and conversion take constant time. The space
requirement is $O(|d.dimension()|)$. }*/
} //namespace CGAL
#endif // CGAL_DIRECTIONHD_H
//----------------------- end of file ----------------------------------