332 lines
12 KiB
C
332 lines
12 KiB
C
|
// Copyright (c) 2014
|
||
|
// INRIA Saclay-Ile de France (France)
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU Lesser General Public License as
|
||
|
// published by the Free Software Foundation; either version 3 of the License,
|
||
|
// or (at your option) any later version.
|
||
|
//
|
||
|
// Licensees holding a valid commercial license may use this file in
|
||
|
// accordance with the commercial license agreement provided with the software.
|
||
|
//
|
||
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
//
|
||
|
// $URL$
|
||
|
// $Id$
|
||
|
// SPDX-License-Identifier: LGPL-3.0+
|
||
|
//
|
||
|
// Author(s) : Marc Glisse
|
||
|
|
||
|
#ifndef CGAL_KD_COAFFINE_H
|
||
|
#define CGAL_KD_COAFFINE_H
|
||
|
#include <vector>
|
||
|
#include <algorithm>
|
||
|
#include <iterator>
|
||
|
#include <CGAL/Dimension.h>
|
||
|
#include <CGAL/NewKernel_d/functor_tags.h>
|
||
|
|
||
|
namespace CGAL {
|
||
|
namespace CartesianDKernelFunctors {
|
||
|
struct Flat_orientation {
|
||
|
std::vector<int> proj;
|
||
|
std::vector<int> rest;
|
||
|
bool reverse;
|
||
|
};
|
||
|
|
||
|
// For debugging purposes
|
||
|
inline std::ostream& operator<< (std::ostream& o, Flat_orientation const& f) {
|
||
|
o << "Proj: ";
|
||
|
for(std::vector<int>::const_iterator i=f.proj.begin();
|
||
|
i!=f.proj.end(); ++i)
|
||
|
o << *i << ' ';
|
||
|
o << "\nRest: ";
|
||
|
for(std::vector<int>::const_iterator i=f.rest.begin();
|
||
|
i!=f.rest.end(); ++i)
|
||
|
o << *i << ' ';
|
||
|
o << "\nInv: " << f.reverse;
|
||
|
return o << '\n';
|
||
|
}
|
||
|
|
||
|
namespace internal {
|
||
|
namespace coaffine {
|
||
|
template<class Mat>
|
||
|
inline void debug_matrix(std::ostream& o, Mat const&mat) {
|
||
|
for(int i=0;i<mat.rows();++i){
|
||
|
for(int j=0;j<mat.cols();++j){
|
||
|
o<<mat(i,j)<<' ';
|
||
|
}
|
||
|
o<<'\n';
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template<class R_> struct Construct_flat_orientation : private Store_kernel<R_> {
|
||
|
CGAL_FUNCTOR_INIT_STORE(Construct_flat_orientation)
|
||
|
typedef R_ R;
|
||
|
typedef typename Get_type<R, FT_tag>::type FT;
|
||
|
typedef typename Get_type<R, Point_tag>::type Point;
|
||
|
typedef typename Increment_dimension<typename R::Max_ambient_dimension>::type Dplusone;
|
||
|
typedef typename R::LA::template Rebind_dimension<Dynamic_dimension_tag,Dplusone>::Other LA;
|
||
|
typedef typename LA::Square_matrix Matrix;
|
||
|
typedef typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type CCC;
|
||
|
typedef typename Get_functor<R, Point_dimension_tag>::type PD;
|
||
|
typedef Flat_orientation result_type;
|
||
|
|
||
|
// This implementation is going to suck. Maybe we should push the
|
||
|
// functionality into LA. And we should check (in debug mode) that
|
||
|
// the points are affinely independent.
|
||
|
template<class Iter>
|
||
|
result_type operator()(Iter f, Iter e)const{
|
||
|
Iter f_save = f;
|
||
|
PD pd (this->kernel());
|
||
|
CCC ccc (this->kernel());
|
||
|
int dim = pd(*f);
|
||
|
Matrix coord (dim+1, dim+1); // use distance(f,e)? This matrix doesn't need to be square.
|
||
|
int col = 0;
|
||
|
Flat_orientation o;
|
||
|
std::vector<int>& proj=o.proj;
|
||
|
std::vector<int>& rest=o.rest; rest.reserve(dim+1);
|
||
|
for(int i=0; i<dim+1; ++i) rest.push_back(i);
|
||
|
for( ; f != e ; ++col, ++f ) {
|
||
|
//std::cerr << "(*f)[0]=" << (*f)[0] << std::endl;
|
||
|
Point const&p=*f;
|
||
|
// use a coordinate iterator instead?
|
||
|
for(int i=0; i<dim; ++i) coord(col, i) = ccc(p, i);
|
||
|
coord(col,dim)=1;
|
||
|
int d = (int)proj.size()+1;
|
||
|
Matrix m (d, d);
|
||
|
// Fill the matrix with what we already have
|
||
|
for(int i=0; i<d; ++i)
|
||
|
for(int j=0; j<d-1; ++j)
|
||
|
m(i,j) = coord(i, proj[j]);
|
||
|
// Try to complete with any other coordinate
|
||
|
// TODO: iterate on rest by the end, or use a (forward_)list.
|
||
|
for(std::vector<int>::iterator it=rest.begin();;++it) {
|
||
|
CGAL_assertion(it!=rest.end());
|
||
|
for(int i=0; i<d; ++i) m(i,d-1) = coord(i, *it);
|
||
|
if(LA::sign_of_determinant(m)!=0) {
|
||
|
proj.push_back(*it);
|
||
|
rest.erase(it);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
std::sort(proj.begin(),proj.end());
|
||
|
typename Get_functor<R, In_flat_orientation_tag>::type ifo(this->kernel());
|
||
|
o.reverse = false;
|
||
|
o.reverse = ifo(o, f_save, e) != CGAL::POSITIVE;
|
||
|
return o;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<class R_> struct Contained_in_affine_hull : private Store_kernel<R_> {
|
||
|
CGAL_FUNCTOR_INIT_STORE(Contained_in_affine_hull)
|
||
|
typedef R_ R;
|
||
|
typedef typename Get_type<R, FT_tag>::type FT;
|
||
|
typedef typename Get_type<R, Point_tag>::type Point;
|
||
|
typedef typename Get_type<R, Bool_tag>::type result_type;
|
||
|
typedef typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type CCC;
|
||
|
typedef typename Get_functor<R, Point_dimension_tag>::type PD;
|
||
|
//typedef typename Increment_dimension<typename R::Default_ambient_dimension>::type D1;
|
||
|
//typedef typename Increment_dimension<typename R::Max_ambient_dimension>::type D2;
|
||
|
//typedef typename R::LA::template Rebind_dimension<D1,D2>::Other LA;
|
||
|
typedef typename Increment_dimension<typename R::Max_ambient_dimension>::type Dplusone;
|
||
|
typedef typename R::LA::template Rebind_dimension<Dynamic_dimension_tag,Dplusone>::Other LA;
|
||
|
typedef typename LA::Square_matrix Matrix;
|
||
|
|
||
|
// mostly copied from Construct_flat_orientation. TODO: dedup this code or use LA.
|
||
|
template<class Iter>
|
||
|
result_type operator()(Iter f, Iter e, Point const&x) const {
|
||
|
// FIXME: are the points in (f,e) required to be affinely independent?
|
||
|
PD pd (this->kernel());
|
||
|
CCC ccc (this->kernel());
|
||
|
int dim=pd(*f);
|
||
|
Matrix coord (dim+1, dim+1); // use distance
|
||
|
int col = 0;
|
||
|
std::vector<int> proj;
|
||
|
std::vector<int> rest; rest.reserve(dim+1);
|
||
|
for(int i=0; i<dim+1; ++i) rest.push_back(i);
|
||
|
for( ; f != e ; ++col, ++f ) {
|
||
|
Point const&p=*f;
|
||
|
for(int i=0; i<dim; ++i) coord(col, i) = ccc(p, i);
|
||
|
coord(col,dim)=1;
|
||
|
int d = (int)proj.size()+1;
|
||
|
Matrix m (d, d);
|
||
|
for(int i=0; i<d; ++i)
|
||
|
for(int j=0; j<d-1; ++j)
|
||
|
m(i,j) = coord(i, proj[j]);
|
||
|
for(std::vector<int>::iterator it=rest.begin();it!=rest.end();++it) {
|
||
|
for(int i=0; i<d; ++i) m(i,d-1) = coord(i, *it);
|
||
|
if(LA::sign_of_determinant(m)!=0) {
|
||
|
proj.push_back(*it);
|
||
|
rest.erase(it);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for(int i=0; i<dim; ++i) coord(col, i) = ccc(x, i);
|
||
|
coord(col,dim)=1;
|
||
|
int d = (int)proj.size()+1;
|
||
|
Matrix m (d, d);
|
||
|
for(int i=0; i<d; ++i)
|
||
|
for(int j=0; j<d-1; ++j)
|
||
|
m(i,j) = coord(i, proj[j]);
|
||
|
for(std::vector<int>::iterator it=rest.begin();it!=rest.end();++it) {
|
||
|
for(int i=0; i<d; ++i) m(i,d-1) = coord(i, *it);
|
||
|
if(LA::sign_of_determinant(m)!=0) return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<class R_> struct In_flat_orientation : private Store_kernel<R_> {
|
||
|
CGAL_FUNCTOR_INIT_STORE(In_flat_orientation)
|
||
|
typedef R_ R;
|
||
|
typedef typename Get_type<R, FT_tag>::type FT;
|
||
|
typedef typename Get_type<R, Point_tag>::type Point;
|
||
|
typedef typename Get_type<R, Orientation_tag>::type result_type;
|
||
|
typedef typename Increment_dimension<typename R::Default_ambient_dimension>::type D1;
|
||
|
typedef typename Increment_dimension<typename R::Max_ambient_dimension>::type D2;
|
||
|
typedef typename R::LA::template Rebind_dimension<D1,D2>::Other LA;
|
||
|
typedef typename LA::Square_matrix Matrix;
|
||
|
|
||
|
template<class Iter>
|
||
|
result_type operator()(Flat_orientation const&o, Iter f, Iter e) const {
|
||
|
// TODO: work in the projection instead of the ambient space.
|
||
|
typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel());
|
||
|
typename Get_functor<R, Point_dimension_tag>::type pd(this->kernel());
|
||
|
int d=pd(*f);
|
||
|
Matrix m(d+1,d+1);
|
||
|
int i=0;
|
||
|
for(;f!=e;++f,++i) {
|
||
|
Point const& p=*f;
|
||
|
m(i,0)=1;
|
||
|
for(int j=0;j<d;++j){
|
||
|
m(i,j+1)=c(p,j);
|
||
|
}
|
||
|
}
|
||
|
for(std::vector<int>::const_iterator it = o.rest.begin(); it != o.rest.end() /* i<d+1 */; ++i, ++it) {
|
||
|
m(i,0)=1;
|
||
|
for(int j=0;j<d;++j){
|
||
|
m(i,j+1)=0; // unneeded if the matrix is initialized to 0
|
||
|
}
|
||
|
if(*it != d) m(i,1+*it)=1;
|
||
|
}
|
||
|
|
||
|
result_type ret = LA::sign_of_determinant(CGAL_MOVE(m));
|
||
|
if(o.reverse) ret=-ret;
|
||
|
return ret;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<class R_> struct In_flat_side_of_oriented_sphere : private Store_kernel<R_> {
|
||
|
CGAL_FUNCTOR_INIT_STORE(In_flat_side_of_oriented_sphere)
|
||
|
typedef R_ R;
|
||
|
typedef typename Get_type<R, FT_tag>::type FT;
|
||
|
typedef typename Get_type<R, Point_tag>::type Point;
|
||
|
typedef typename Get_type<R, Orientation_tag>::type result_type;
|
||
|
typedef typename Increment_dimension<typename R::Default_ambient_dimension,2>::type D1;
|
||
|
typedef typename Increment_dimension<typename R::Max_ambient_dimension,2>::type D2;
|
||
|
typedef typename R::LA::template Rebind_dimension<D1,D2>::Other LA;
|
||
|
typedef typename LA::Square_matrix Matrix;
|
||
|
|
||
|
template<class Iter>
|
||
|
result_type operator()(Flat_orientation const&o, Iter f, Iter e, Point const&x) const {
|
||
|
// TODO: can't work in the projection, but we should at least remove the row of 1s.
|
||
|
typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel());
|
||
|
typename Get_functor<R, Point_dimension_tag>::type pd(this->kernel());
|
||
|
int d=pd(*f);
|
||
|
Matrix m(d+2,d+2);
|
||
|
int i=0;
|
||
|
for(;f!=e;++f,++i) {
|
||
|
Point const& p=*f;
|
||
|
m(i,0)=1;
|
||
|
m(i,d+1)=0;
|
||
|
for(int j=0;j<d;++j){
|
||
|
m(i,j+1)=c(p,j);
|
||
|
m(i,d+1)+=CGAL_NTS square(m(i,j+1));
|
||
|
}
|
||
|
}
|
||
|
for(std::vector<int>::const_iterator it = o.rest.begin(); it != o.rest.end() /* i<d+1 */; ++i, ++it) {
|
||
|
m(i,0)=1;
|
||
|
for(int j=0;j<d;++j){
|
||
|
m(i,j+1)=0; // unneeded if the matrix is initialized to 0
|
||
|
}
|
||
|
if(*it != d) m(i,d+1)=m(i,1+*it)=1;
|
||
|
else m(i,d+1)=0;
|
||
|
}
|
||
|
m(d+1,0)=1;
|
||
|
m(d+1,d+1)=0;
|
||
|
for(int j=0;j<d;++j){
|
||
|
m(d+1,j+1)=c(x,j);
|
||
|
m(d+1,d+1)+=CGAL_NTS square(m(d+1,j+1));
|
||
|
}
|
||
|
|
||
|
result_type ret = -LA::sign_of_determinant(CGAL_MOVE(m));
|
||
|
if(o.reverse) ret=-ret;
|
||
|
return ret;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<class R_> struct In_flat_power_side_of_power_sphere_raw : private Store_kernel<R_> {
|
||
|
CGAL_FUNCTOR_INIT_STORE(In_flat_power_side_of_power_sphere_raw)
|
||
|
typedef R_ R;
|
||
|
typedef typename Get_type<R, FT_tag>::type FT;
|
||
|
typedef typename Get_type<R, Point_tag>::type Point;
|
||
|
typedef typename Get_type<R, Orientation_tag>::type result_type;
|
||
|
typedef typename Increment_dimension<typename R::Default_ambient_dimension,2>::type D1;
|
||
|
typedef typename Increment_dimension<typename R::Max_ambient_dimension,2>::type D2;
|
||
|
typedef typename R::LA::template Rebind_dimension<D1,D2>::Other LA;
|
||
|
typedef typename LA::Square_matrix Matrix;
|
||
|
|
||
|
template<class Iter, class IterW, class Wt>
|
||
|
result_type operator()(Flat_orientation const&o, Iter f, Iter e, IterW fw, Point const&x, Wt const&w) const {
|
||
|
// TODO: can't work in the projection, but we should at least remove the row of 1s.
|
||
|
typename Get_functor<R, Compute_point_cartesian_coordinate_tag>::type c(this->kernel());
|
||
|
typename Get_functor<R, Point_dimension_tag>::type pd(this->kernel());
|
||
|
int d=pd(*f);
|
||
|
Matrix m(d+2,d+2);
|
||
|
int i=0;
|
||
|
for(;f!=e;++f,++fw,++i) {
|
||
|
Point const& p=*f;
|
||
|
m(i,0)=1;
|
||
|
m(i,d+1)=-*fw;
|
||
|
for(int j=0;j<d;++j){
|
||
|
m(i,j+1)=c(p,j);
|
||
|
m(i,d+1)+=CGAL_NTS square(m(i,j+1));
|
||
|
}
|
||
|
}
|
||
|
for(std::vector<int>::const_iterator it = o.rest.begin(); it != o.rest.end() /* i<d+1 */; ++i, ++it) {
|
||
|
m(i,0)=1;
|
||
|
for(int j=0;j<d;++j){
|
||
|
m(i,j+1)=0; // unneeded if the matrix is initialized to 0
|
||
|
}
|
||
|
if(*it != d) m(i,d+1)=m(i,1+*it)=1;
|
||
|
else m(i,d+1)=0;
|
||
|
}
|
||
|
m(d+1,0)=1;
|
||
|
m(d+1,d+1)=-w;
|
||
|
for(int j=0;j<d;++j){
|
||
|
m(d+1,j+1)=c(x,j);
|
||
|
m(d+1,d+1)+=CGAL_NTS square(m(d+1,j+1));
|
||
|
}
|
||
|
|
||
|
result_type ret = -LA::sign_of_determinant(CGAL_MOVE(m));
|
||
|
if(o.reverse) ret=-ret;
|
||
|
return ret;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
}
|
||
|
CGAL_KD_DEFAULT_TYPE(Flat_orientation_tag,(CGAL::CartesianDKernelFunctors::Flat_orientation),(),());
|
||
|
CGAL_KD_DEFAULT_FUNCTOR(In_flat_orientation_tag,(CartesianDKernelFunctors::In_flat_orientation<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag));
|
||
|
CGAL_KD_DEFAULT_FUNCTOR(In_flat_side_of_oriented_sphere_tag,(CartesianDKernelFunctors::In_flat_side_of_oriented_sphere<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag));
|
||
|
CGAL_KD_DEFAULT_FUNCTOR(In_flat_power_side_of_power_sphere_raw_tag,(CartesianDKernelFunctors::In_flat_power_side_of_power_sphere_raw<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag));
|
||
|
CGAL_KD_DEFAULT_FUNCTOR(Construct_flat_orientation_tag,(CartesianDKernelFunctors::Construct_flat_orientation<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag,In_flat_orientation_tag));
|
||
|
CGAL_KD_DEFAULT_FUNCTOR(Contained_in_affine_hull_tag,(CartesianDKernelFunctors::Contained_in_affine_hull<K>),(Point_tag),(Compute_point_cartesian_coordinate_tag,Point_dimension_tag));
|
||
|
}
|
||
|
#endif
|