106 lines
3.0 KiB
C
106 lines
3.0 KiB
C
|
// Copyright (c) 2002-2008 Max-Planck-Institute Saarbruecken (Germany)
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU Lesser General Public License as
|
||
|
// published by the Free Software Foundation; either version 3 of the License,
|
||
|
// or (at your option) any later version.
|
||
|
//
|
||
|
// Licensees holding a valid commercial license may use this file in
|
||
|
// accordance with the commercial license agreement provided with the software.
|
||
|
//
|
||
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
//
|
||
|
// $URL$
|
||
|
// $Id$
|
||
|
// SPDX-License-Identifier: LGPL-3.0+
|
||
|
//
|
||
|
//
|
||
|
// Author(s) : Michael Hemmer <hemmer@mpi-inf.mpg.de>
|
||
|
// Dominik Huelse <dominik.huelse@gmx.de>
|
||
|
//
|
||
|
// ============================================================================
|
||
|
|
||
|
/*! \file CGAL/Polynomial/modular_gcd_utils.h
|
||
|
* \brief Provides additional utils for the modular GCD calculation
|
||
|
*/
|
||
|
|
||
|
#ifndef CGAL_POLYNOMIAL_MODULAR_GCD_UTILS_H
|
||
|
#define CGAL_POLYNOMIAL_MODULAR_GCD_UTILS_H
|
||
|
|
||
|
#include <CGAL/basic.h>
|
||
|
#include <vector>
|
||
|
#include <CGAL/Polynomial.h>
|
||
|
|
||
|
#include <CGAL/Timer.h>
|
||
|
|
||
|
namespace CGAL{
|
||
|
|
||
|
namespace internal {
|
||
|
|
||
|
template <class NT>
|
||
|
void euclidean_division_obstinate(const NT& F1, const NT& F2,
|
||
|
NT& Q, NT& R){
|
||
|
|
||
|
CGAL_precondition(F2 != 0);
|
||
|
|
||
|
CGAL::div_mod(F1, F2, Q, R);
|
||
|
CGAL_postcondition(F1 == F2*Q + R);
|
||
|
}
|
||
|
|
||
|
|
||
|
template <class NT>
|
||
|
void euclidean_division_obstinate(const Polynomial<NT>& F1,
|
||
|
const Polynomial<NT>& F2,
|
||
|
Polynomial<NT>& Q, Polynomial<NT>& R){
|
||
|
|
||
|
// std::cout<<" my_modular_gcd_utils "<<std::endl;
|
||
|
CGAL_precondition(!F2.is_zero());
|
||
|
int d1 = F1.degree();
|
||
|
int d2 = F2.degree();
|
||
|
if ( d1 < d2 ) {
|
||
|
Q = Polynomial<NT>(NT(0)); R = F1;
|
||
|
CGAL_postcondition( !(boost::is_same< typename Algebraic_structure_traits<NT>::Is_exact,
|
||
|
CGAL::Tag_true >::value) || F1 == Q*F2 + R); return;
|
||
|
}
|
||
|
|
||
|
typedef std::vector<NT> Vector;
|
||
|
Vector V_R, V_Q;
|
||
|
V_Q.reserve(d1);
|
||
|
if(d2==0){
|
||
|
for(int i=d1;i>=0;--i){
|
||
|
V_Q.push_back(F1[i]/F2[0]);
|
||
|
}
|
||
|
V_R.push_back(NT(0));
|
||
|
}
|
||
|
else{
|
||
|
V_R.reserve(d1);
|
||
|
V_R=Vector(F1.begin(),F1.end());
|
||
|
Vector tmp1;
|
||
|
tmp1.reserve(d2);
|
||
|
for(int k=0; k<=d1-d2; ++k){
|
||
|
V_Q.push_back(V_R[d1-k]/F2[d2]);
|
||
|
for(int j=0;j<d2;++j){
|
||
|
tmp1.push_back(F2[j]*V_Q[k]);
|
||
|
}
|
||
|
V_R[d1-k]=0;
|
||
|
for(int i=d1-d2-k;i<=d1-k-1;++i){
|
||
|
V_R[i]=V_R[i]-tmp1[i-(d1-d2-k)];
|
||
|
}
|
||
|
tmp1.clear();
|
||
|
}
|
||
|
|
||
|
|
||
|
}
|
||
|
Q = Polynomial<NT>(V_Q.rbegin(),V_Q.rend());
|
||
|
R = Polynomial<NT>(V_R.begin(),V_R.end());
|
||
|
CGAL_postcondition(F1 == F2*Q + R);
|
||
|
}
|
||
|
|
||
|
} // namespace internal
|
||
|
} // namespace CGAL
|
||
|
|
||
|
#endif //#ifnedef CGAL_POLYNOMIAL_MODULAR_GCD_UTILS_H 1
|
||
|
|
||
|
// EOF
|