dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/triangulate_power_diagram_3.h

762 lines
27 KiB
C
Raw Normal View History

// Copyright (c) 2005 Rijksuniversiteit Groningen (Netherlands)
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
//
// Author(s) : Nico Kruithof <Nico@cs.rug.nl>
#ifndef CGAL_TRIANGULATE_POWER_DIAGRAM_3_H
#define CGAL_TRIANGULATE_POWER_DIAGRAM_3_H
#include <CGAL/license/Skin_surface_3.h>
#include <CGAL/Compute_anchor_3.h>
#include <CGAL/Triangulation_data_structure_3.h>
#include <CGAL/Triangulated_mixed_complex_observer_3.h>
#include <CGAL/Triangulation_incremental_builder_3.h>
// NGHK: move this one to SkinSurfaceTraits
#include <CGAL/Compute_anchor_3.h>
#include <CGAL/Union_find.h>
namespace CGAL {
template <
class RegularTriangulation_3,
class TriangulatedMixedComplex_3,
class TriangulatedMixedComplexObserver_3 =
Triangulated_mixed_complex_observer_3<TriangulatedMixedComplex_3,
RegularTriangulation_3> >
class Power_diagram_triangulator_3
{
public:
typedef typename RegularTriangulation_3::Geom_traits Regular_traits;
typedef typename TriangulatedMixedComplex_3::Geom_traits Triangulated_mixed_complex_traits;
typedef RegularTriangulation_3 Regular;
typedef TriangulatedMixedComplex_3 Triangulated_mixed_complex;
typedef TriangulatedMixedComplexObserver_3
Triangulated_mixed_complex_observer;
private:
typedef typename Regular::Vertex_handle Rt_Vertex_handle;
typedef typename Regular::Edge Rt_Edge;
typedef typename Regular::Facet Rt_Facet;
typedef typename Regular::Cell_handle Rt_Cell_handle;
typedef typename Regular::Finite_vertices_iterator Rt_Finite_vertices_iterator;
typedef typename Regular::Finite_edges_iterator Rt_Finite_edges_iterator;
typedef typename Regular::Finite_facets_iterator Rt_Finite_facets_iterator;
typedef typename Regular::All_cells_iterator Rt_All_cells_iterator;
typedef typename Regular::Finite_cells_iterator Rt_Finite_cells_iterator;
typedef typename Regular::Cell_circulator Rt_Cell_circulator;
typedef Triangulation_simplex_3<Regular> Rt_Simplex;
typedef typename Regular::Bare_point Rt_Bare_point;
typedef typename Regular_traits::FT Rt_FT;
typedef typename Regular::Weighted_point Rt_Weighted_point;
typedef typename Triangulated_mixed_complex::Vertex_handle Tmc_Vertex_handle;
typedef typename Triangulated_mixed_complex::Edge Tmc_Edge;
typedef typename Triangulated_mixed_complex::Facet Tmc_Facet;
typedef typename Triangulated_mixed_complex::Cell_handle Tmc_Cell_handle;
typedef typename Triangulated_mixed_complex::Finite_vertices_iterator
Tmc_Finite_vertices_iterator;
typedef typename Triangulated_mixed_complex::Finite_edges_iterator
Tmc_Finite_edges_iterator;
typedef typename Triangulated_mixed_complex::Finite_facets_iterator
Tmc_Finite_facets_iterator;
typedef typename Triangulated_mixed_complex::All_cells_iterator
Tmc_All_cells_iterator;
typedef typename Triangulated_mixed_complex::Finite_cells_iterator
Tmc_Finite_cells_iterator;
typedef typename Triangulated_mixed_complex::Cell_circulator
Tmc_Cell_circulator;
typedef typename TriangulatedMixedComplex_3::Geom_traits Tmc_traits;
typedef typename Tmc_traits::Point_3 Tmc_Point;
typedef typename Tmc_traits::RT Tmc_RT;
typedef Triangulation_incremental_builder_3<Triangulated_mixed_complex>
Triangulation_incremental_builder;
typedef Compute_anchor_3<Regular> Compute_anchor;
typedef std::pair<Rt_Simplex,Rt_Simplex> Symb_anchor;
// You might get type differences here:
// struct Anchor_map_iterator_tmp;
// typedef std::map<Rt_Simplex, Anchor_map_iterator_tmp> Anchor_map;
// struct Anchor_map_iterator_tmp : Anchor_map::iterator {
// Anchor_map_iterator_tmp()
// : Anchor_map::iterator() {}
// Anchor_map_iterator_tmp(typename Anchor_map::iterator const &it)
// : Anchor_map::iterator(it) {}
// };
// typedef typename Anchor_map::iterator Anchor_map_iterator;
typedef Union_find<Rt_Simplex> Union_find_anchor;
typedef std::map<Rt_Simplex,
typename Union_find_anchor::handle> Simplex_UF_map;
public:
Power_diagram_triangulator_3(Regular &regular,
Triangulated_mixed_complex &triangulated_mixed_complex,
Triangulated_mixed_complex_observer &observer,
bool verbose)
: regular(regular),
_tmc(triangulated_mixed_complex),
observer(observer),
triangulation_incr_builder(triangulated_mixed_complex),
compute_anchor_obj(regular),
verbose(verbose)
{
build();
}
private:
void build()
{
triangulation_incr_builder.begin_triangulation(3);
if (verbose)
std::cout << "Construct vertices" << std::endl;
construct_vertices();
if (verbose)
std::cout << "Construct cells" << std::endl;
construct_cells(); // mixed cells corresponding to regular vertices
triangulation_incr_builder.end_triangulation();
anchors.clear();
CGAL_assertion(_tmc.is_valid());
//remove_small_edges();
// { // NGHK: debug code:
// CGAL_assertion(_tmc.is_valid());
// std::vector<Tmc_Vertex_handle> ch_vertices;
// _tmc.incident_vertices(_tmc.infinite_vertex(),
// std::back_inserter(ch_vertices));
// for (typename std::vector<Tmc_Vertex_handle>::iterator
// vit = ch_vertices.begin(); vit != ch_vertices.end(); vit++) {
// CGAL_assertion((*vit)->sign() == POSITIVE);
// }
// }
}
Tmc_Vertex_handle add_vertex(Rt_Simplex const &anchor);
Tmc_Cell_handle add_cell(Tmc_Vertex_handle vh[], int orient, Rt_Simplex s);
Tmc_Vertex_handle get_vertex(Rt_Simplex &sVor);
void construct_anchor_vor(Rt_Simplex const &sVor);
void construct_anchors();
Rt_Simplex get_anchor_vor(Rt_Simplex const &sVor)
{
typename Simplex_UF_map::iterator it = anchor_vor_map.find(sVor);
CGAL_assertion(it != anchor_vor_map.end());
return *anchor_vor_uf.find(it->second);
}
void construct_vertices();
Tmc_Point get_orthocenter(Rt_Simplex const &s);
Tmc_Point get_anchor(Rt_Simplex const &sVor);
template <class Point>
Point construct_anchor_point(const Point &center_vor) {
return center_vor;
}
void construct_cells();
void remove_small_edges();
bool is_collapsible(Tmc_Vertex_handle vh,
Tmc_Vertex_handle &vh_collapse_to,
Tmc_RT sq_length);
void do_collapse(Tmc_Vertex_handle vh, Tmc_Vertex_handle vh_collapse_to);
private:
Regular const &regular;
Triangulated_mixed_complex &_tmc;
Triangulated_mixed_complex_observer &observer;
Triangulation_incremental_builder triangulation_incr_builder;
typename Tmc_traits::Construct_weighted_circumcenter_3 orthocenter_obj;
typename Tmc_traits::Compute_squared_radius_smallest_orthogonal_sphere_3 orthoweight_obj;
Compute_anchor_3<Regular> compute_anchor_obj;
bool verbose;
Cartesian_converter<typename Rt_Bare_point::R,
Triangulated_mixed_complex_traits > r2t_converter_object;
static const int edge_index[4][4];
struct Index_c4 { Tmc_Vertex_handle V[4]; };
struct Index_c6 { Tmc_Vertex_handle V[6]; };
struct Index_c44 { Tmc_Vertex_handle V[4][4]; };
struct Index_v {
Unique_hash_map < Rt_Vertex_handle, Tmc_Vertex_handle > V;
};
// index to vertex
Unique_hash_map < Rt_Cell_handle, Index_c4 > index_03;
Union_find_anchor anchor_vor_uf;
Simplex_UF_map anchor_vor_map;
// Anchor_map anchor_vor2;
std::map<Rt_Simplex, Tmc_Vertex_handle> anchors;
};
template <class RegularTriangulation_3,
class TriangulatedMixedComplex_3,
class TriangulatedMixedComplexObserver_3>
const int Power_diagram_triangulator_3<RegularTriangulation_3,
TriangulatedMixedComplex_3,
TriangulatedMixedComplexObserver_3>::
edge_index[4][4] = {{-1,0,1,2},{0,-1,3,4},{1,3,-1,5},{2,4,5,-1}};
template <class RegularTriangulation_3,
class TriangulatedMixedComplex_3,
class TriangulatedMixedComplexObserver_3>
void
Power_diagram_triangulator_3<RegularTriangulation_3,
TriangulatedMixedComplex_3,
TriangulatedMixedComplexObserver_3>::
construct_anchor_vor(Rt_Simplex const &sVor)
{
Rt_Simplex s = compute_anchor_obj.anchor_vor(sVor);
typename Union_find_anchor::handle sVor_handle, s_handle;
sVor_handle = anchor_vor_uf.make_set(sVor);
anchor_vor_map[sVor] = sVor_handle;
typename Simplex_UF_map::iterator s_it = anchor_vor_map.find(s);
CGAL_assertion(s_it != anchor_vor_map.end());
anchor_vor_uf.unify_sets(sVor_handle, s_it->second);
// degenerate simplices:
if (compute_anchor_obj.is_degenerate()) {
typename Compute_anchor::Simplex_iterator degenerate_it;
typename Simplex_UF_map::iterator deg_map_it;
for (degenerate_it = compute_anchor_obj.equivalent_anchors_begin();
degenerate_it != compute_anchor_obj.equivalent_anchors_end();
degenerate_it++) {
deg_map_it = anchor_vor_map.find(*degenerate_it);
// Possibly not found for 2 Voronoi vertices with the same center,
// If the first vertex is inserted and the second is already found.
// see compute_anchor_obj.anchor_vor(Cell_handle)
if (deg_map_it != anchor_vor_map.end()) {
anchor_vor_uf.unify_sets(sVor_handle, deg_map_it->second);
}
}
}
}
template <class RegularTriangulation_3,
class TriangulatedMixedComplex_3,
class TriangulatedMixedComplexObserver_3>
void
Power_diagram_triangulator_3<RegularTriangulation_3,
TriangulatedMixedComplex_3,
TriangulatedMixedComplexObserver_3>::
construct_anchors()
{
Rt_Finite_vertices_iterator vit;
Rt_Finite_edges_iterator eit;
Rt_Finite_facets_iterator fit;
Rt_Finite_cells_iterator cit;
Rt_Simplex s;
// Compute anchor points:
for (cit=regular.finite_cells_begin();
cit!=regular.finite_cells_end(); cit++) {
s = Rt_Simplex(cit);
construct_anchor_vor(s);
CGAL_assertion(s.dimension() == 3);
}
for (fit=regular.finite_facets_begin();
fit!=regular.finite_facets_end(); fit++) {
s = Rt_Simplex(*fit);
construct_anchor_vor(s);
CGAL_assertion(s.dimension() == 2);
}
for (eit=regular.finite_edges_begin();
eit!=regular.finite_edges_end(); eit++) {
s = Rt_Simplex(*eit);
construct_anchor_vor(s);
CGAL_assertion(s.dimension() == 1);
}
for (vit=regular.finite_vertices_begin();
vit!=regular.finite_vertices_end(); vit++) {
CGAL_assertion(vit->cell() != Rt_Cell_handle());
s = Rt_Simplex(vit);
construct_anchor_vor(s);
CGAL_assertion(s.dimension() == 0);
}
}
// Constructs the vertices of the simplicial complex
template <class RegularTriangulation_3,
class TriangulatedMixedComplex_3,
class TriangulatedMixedComplexObserver_3>
void
Power_diagram_triangulator_3<RegularTriangulation_3,
TriangulatedMixedComplex_3,
TriangulatedMixedComplexObserver_3>::
construct_vertices()
{
Rt_All_cells_iterator acit;
Rt_Finite_cells_iterator cit;
Rt_Finite_facets_iterator fit;
Rt_Finite_edges_iterator eit;
Rt_Finite_vertices_iterator vit;
Rt_Cell_circulator ccir, cstart;
Rt_Vertex_handle v1, v2, v3;
Rt_Edge e;
Rt_Cell_handle c1, c2;
Rt_Simplex sVor;
Tmc_Vertex_handle vh;
if (verbose) std::cout << "construct_anchors" << std::endl;
construct_anchors();
if (verbose) std::cout << "4 ";
// anchor dimDel=0, dimVor=3
for (cit=regular.finite_cells_begin();
cit!=regular.finite_cells_end(); cit++) {
sVor = get_anchor_vor(Rt_Simplex(cit));
if (anchors.find(sVor) == anchors.end()) {
vh = add_vertex(sVor);
anchors[sVor] = vh;
CGAL_assertion(vh == get_vertex(sVor));
}
}
if (verbose) std::cout << "3 ";
// anchor dimDel=2, dimVor=3 and dimDel=0, dimVor=2
for (fit=regular.finite_facets_begin(); fit!=regular.finite_facets_end(); fit++) {
// anchor dimDel=0, dimVor=2
sVor = get_anchor_vor(*fit);
if (anchors.find(sVor) == anchors.end()) {
vh = add_vertex(sVor);
anchors[sVor] = vh;
CGAL_assertion(vh == get_vertex(sVor));
}
}
if (verbose) std::cout << "2 ";
// anchor dimDel=0, dimVor=1
for (eit=regular.finite_edges_begin(); eit!=regular.finite_edges_end(); eit++) {
sVor = get_anchor_vor(*eit);
if (anchors.find(sVor) == anchors.end()) {
vh = add_vertex(sVor);
anchors[sVor] = vh;
CGAL_assertion(vh == get_vertex(sVor));
}
}
if (verbose) std::cout << "1 ";
// anchor dimDel=0, dimVor=0
for (vit=regular.finite_vertices_begin(); vit!=regular.finite_vertices_end(); vit++) {
sVor = get_anchor_vor(Rt_Simplex(vit));
if (anchors.find(sVor) == anchors.end()) {
vh = add_vertex(sVor);
anchors[sVor] = vh;
CGAL_assertion(vh == get_vertex(sVor));
}
}
}
// Constructs the cells of the mixed complex corresponding
// to Regular vertices
template <class RegularTriangulation_3,
class TriangulatedMixedComplex_3,
class TriangulatedMixedComplexObserver_3>
void
Power_diagram_triangulator_3<RegularTriangulation_3,
TriangulatedMixedComplex_3,
TriangulatedMixedComplexObserver_3>::
construct_cells()
{
Rt_Simplex sVor_v, sVor_e, sVor_f, sVor_c;
Tmc_Vertex_handle vh[4];
for (Rt_Finite_vertices_iterator vit=regular.finite_vertices_begin();
vit!=regular.finite_vertices_end(); vit++) {
Rt_Simplex simplex(vit);
sVor_v = get_anchor_vor(Rt_Simplex(vit));
vh[0] = get_vertex(sVor_v);
std::list<Rt_Cell_handle> adj_cells;
typename std::list<Rt_Cell_handle>::iterator adj_cell;
regular.incident_cells(vit, std::back_inserter(adj_cells));
// Construct cells:
for (adj_cell = adj_cells.begin();
adj_cell != adj_cells.end();
adj_cell ++) {
if (!regular.is_infinite(*adj_cell)) {
sVor_c = get_anchor_vor(Rt_Simplex(*adj_cell));
vh[3] = get_vertex(sVor_c);
int index = (*adj_cell)->index(vit);
for (int i=1; i<4; i++) {
sVor_f = get_anchor_vor(
Rt_Simplex(Rt_Facet(*adj_cell,(index+i)&3)));
vh[2] = get_vertex(sVor_f);
for (int j=1; j<4; j++) {
if (j!=i) {
sVor_e = get_anchor_vor(
Rt_Simplex(Rt_Edge(*adj_cell,index,(index+j)&3)));
vh[1] = get_vertex(sVor_e);
if ((vh[0] != vh[1]) && (vh[1] != vh[2]) && (vh[2] != vh[3])) {
CGAL_assertion(sVor_v != sVor_e);
CGAL_assertion(sVor_e != sVor_f);
CGAL_assertion(sVor_f != sVor_c);
// Tmc_Cell_handle ch =
add_cell(vh,(index + (j==(i%3+1)? 1:0))&1,simplex);
}
}
}
}
}
}
}
}
// Adds a vertex to the simplicial complex
template <class RegularTriangulation_3,
class TriangulatedMixedComplex_3,
class TriangulatedMixedComplexObserver_3>
typename Power_diagram_triangulator_3<
RegularTriangulation_3,
TriangulatedMixedComplex_3,
TriangulatedMixedComplexObserver_3>::Tmc_Vertex_handle
Power_diagram_triangulator_3<RegularTriangulation_3,
TriangulatedMixedComplex_3,
TriangulatedMixedComplexObserver_3>::
add_vertex(Rt_Simplex const &anchor)
{
Tmc_Vertex_handle vh;
vh = triangulation_incr_builder.add_vertex();
vh->point() = get_anchor(anchor);
observer.after_vertex_insertion(anchor, anchor, vh);
return vh;
}
// Gets a vertex from the simplicial complex based on the anchors
template <class RegularTriangulation_3,
class TriangulatedMixedComplex_3,
class TriangulatedMixedComplexObserver_3>
typename Power_diagram_triangulator_3<
RegularTriangulation_3,
TriangulatedMixedComplex_3,
TriangulatedMixedComplexObserver_3>::Tmc_Vertex_handle
Power_diagram_triangulator_3<RegularTriangulation_3,
TriangulatedMixedComplex_3,
TriangulatedMixedComplexObserver_3>::
get_vertex (Rt_Simplex &sVor)
{
Rt_Simplex sVor2 = get_anchor_vor(sVor);
CGAL_assertion(sVor == sVor2);
Tmc_Vertex_handle vh = anchors[sVor2];
CGAL_assertion(vh != Tmc_Vertex_handle());
return vh;
}
// Adds a cell to the simplicial complex
template <class RegularTriangulation_3,
class TriangulatedMixedComplex_3,
class TriangulatedMixedComplexObserver_3>
typename Power_diagram_triangulator_3<
RegularTriangulation_3,
TriangulatedMixedComplex_3,
TriangulatedMixedComplexObserver_3>::Tmc_Cell_handle
Power_diagram_triangulator_3<RegularTriangulation_3,
TriangulatedMixedComplex_3,
TriangulatedMixedComplexObserver_3>::
add_cell(Tmc_Vertex_handle vh[], int orient, Rt_Simplex s)
{
CGAL_assertion((orient==0) || (orient==1));
CGAL_assertion(vh[0] != Tmc_Vertex_handle()); CGAL_assertion(vh[1] != Tmc_Vertex_handle());
CGAL_assertion(vh[2] != Tmc_Vertex_handle()); CGAL_assertion(vh[3] != Tmc_Vertex_handle());
CGAL_assertion(vh[0] != vh[1]); CGAL_assertion(vh[0] != vh[2]); CGAL_assertion(vh[0] != vh[3]);
CGAL_assertion(vh[1] != vh[2]); CGAL_assertion(vh[1] != vh[3]); CGAL_assertion(vh[2] != vh[3]);
Tmc_Cell_handle ch;
if (orient) {
if (orientation(vh[0]->point(), vh[1]->point(),
vh[2]->point(), vh[3]->point()) != POSITIVE) {
std::cout << orientation(vh[0]->point(), vh[1]->point(),
vh[2]->point(), vh[3]->point())<< std::endl;
}
CGAL_assertion(orientation(vh[0]->point(), vh[1]->point(),
vh[2]->point(), vh[3]->point()) == POSITIVE);
ch = triangulation_incr_builder.add_cell(vh[0], vh[1], vh[2], vh[3]);
} else {
CGAL_assertion(orientation(vh[0]->point(), vh[1]->point(),
vh[3]->point(), vh[2]->point()) == POSITIVE);
ch = triangulation_incr_builder.add_cell(vh[0], vh[1], vh[3], vh[2]);
}
observer.after_cell_insertion(s, ch);
return ch;
}
template <class RegularTriangulation_3,
class TriangulatedMixedComplex_3,
class TriangulatedMixedComplexObserver_3>
typename TriangulatedMixedComplex_3::Geom_traits::Point_3
Power_diagram_triangulator_3<RegularTriangulation_3,
TriangulatedMixedComplex_3,
TriangulatedMixedComplexObserver_3>::
get_orthocenter(Rt_Simplex const &s)
{
Rt_Vertex_handle vh;
Rt_Edge e;
Rt_Facet f;
Rt_Cell_handle ch;
Tmc_Point result;
switch (s.dimension()) {
case 0:
vh=s;
result = Tmc_traits().construct_point_3_object()(r2t_converter_object(vh->point()));
break;
case 1:
e=s;
result = orthocenter_obj(
r2t_converter_object(e.first->vertex(e.second)->point()),
r2t_converter_object(e.first->vertex(e.third)->point()));
break;
case 2:
f=s;
result = orthocenter_obj(
r2t_converter_object(
f.first->vertex((f.second+1)&3)->point()),
r2t_converter_object(
f.first->vertex((f.second+2)&3)->point()),
r2t_converter_object(
f.first->vertex((f.second+3)&3)->point()));
break;
case 3:
ch=s;
result = orthocenter_obj(
r2t_converter_object(ch->vertex(0)->point()),
r2t_converter_object(ch->vertex(1)->point()),
r2t_converter_object(ch->vertex(2)->point()),
r2t_converter_object(ch->vertex(3)->point()));
break;
}
return result;
}
template <class RegularTriangulation_3,
class TriangulatedMixedComplex_3,
class TriangulatedMixedComplexObserver_3>
typename TriangulatedMixedComplex_3::Geom_traits::Point_3
Power_diagram_triangulator_3<
RegularTriangulation_3,
TriangulatedMixedComplex_3,
TriangulatedMixedComplexObserver_3>::
get_anchor(Rt_Simplex const &sVor)
{
return get_orthocenter(sVor);
}
template <class RegularTriangulation_3,
class TriangulatedMixedComplex_3,
class TriangulatedMixedComplexObserver_3>
void
Power_diagram_triangulator_3<RegularTriangulation_3,
TriangulatedMixedComplex_3,
TriangulatedMixedComplexObserver_3>::
remove_small_edges()
{
Bbox_3 bbox;
for (Tmc_Finite_vertices_iterator vit = _tmc.finite_vertices_begin();
vit != _tmc.finite_vertices_end(); vit++) {
bbox = bbox+vit->point().bbox();
}
// Tmc_RT sq_length = ((bbox.xmax()-bbox.xmin())*(bbox.xmax()-bbox.xmin()) +
// (bbox.ymax()-bbox.ymin())*(bbox.ymax()-bbox.ymin()) +
// (bbox.zmax()-bbox.zmin())*(bbox.zmax()-bbox.zmin()))/100000000;
Tmc_RT sq_length = 1e-6;
// NGHK: This may intrudoce rounding errors, since the quadratic surface
// may change:
Tmc_Vertex_handle vh, vh_collapse_to;
Tmc_Finite_vertices_iterator vit = _tmc.finite_vertices_begin();
int nCollapsed=0;
while (vit != _tmc.finite_vertices_end()) {
vh = vit;
vit++;
if (is_collapsible(vh, vh_collapse_to,sq_length)) {
nCollapsed ++;
do_collapse(vh,vh_collapse_to);
}
}
std::cout << "Collapsed: " << nCollapsed << std::endl;
}
template <class RegularTriangulation_3,
class TriangulatedMixedComplex_3,
class TriangulatedMixedComplexObserver_3>
bool
Power_diagram_triangulator_3<RegularTriangulation_3,
TriangulatedMixedComplex_3,
TriangulatedMixedComplexObserver_3>::
is_collapsible(Tmc_Vertex_handle vh,
Tmc_Vertex_handle &vh_collapse_to,
Tmc_RT sq_length)
{
std::vector<Tmc_Cell_handle> incident_cells;
CGAL_assertion(_tmc.is_vertex(vh));
incident_cells.reserve(64);
_tmc.incident_cells(vh, std::back_inserter(incident_cells));
std::set<Tmc_Vertex_handle> incident_vertices;
for(typename std::vector<Tmc_Cell_handle>::iterator
cit = incident_cells.begin();
cit != incident_cells.end(); ++cit) {
// Put all incident vertices in incident_vertices.
for (int j=0; j<4; ++j)
if ((*cit)->vertex(j) != vh)
incident_vertices.insert((*cit)->vertex(j));
}
for (typename std::set<Tmc_Vertex_handle>::iterator
it = incident_vertices.begin();
it != incident_vertices.end(); it++) {
if ((_tmc.geom_traits().compute_squared_distance_3_object()(vh->point(),
(*it)->point())
< sq_length) &&
(vh->cell()->surf == (*it)->cell()->surf) &&
(vh->sign() == (*it)->sign())) {
bool ok = true;
for (typename std::vector<Tmc_Cell_handle>::iterator
cit = incident_cells.begin();
ok && (cit != incident_cells.end()); cit++) {
if (!(*cit)->has_vertex(*it)) {
const Tmc_Point* pts[4] = { &((*cit)->vertex(0)->point()),
&((*cit)->vertex(1)->point()),
&((*cit)->vertex(2)->point()),
&((*cit)->vertex(3)->point()) };
pts[(*cit)->index(vh)] = &(*it)->point();
ok = (_tmc.geom_traits().orientation_3_object()
(*pts[0],*pts[1],*pts[2],*pts[3]) == CGAL::POSITIVE);
}
}
if (ok) {
vh_collapse_to = *it;
return true;
}
}
}
return false;
}
template <class RegularTriangulation_3,
class TriangulatedMixedComplex_3,
class TriangulatedMixedComplexObserver_3>
void
Power_diagram_triangulator_3<RegularTriangulation_3,
TriangulatedMixedComplex_3,
TriangulatedMixedComplexObserver_3>::
do_collapse(Tmc_Vertex_handle vh, Tmc_Vertex_handle vh_collapse_to)
{
std::vector<Tmc_Cell_handle> incident_cells;
incident_cells.reserve(32);
_tmc.incident_cells(vh, std::back_inserter(incident_cells));
int i,i2;
for (typename std::vector<Tmc_Cell_handle>::iterator
it = incident_cells.begin(); it != incident_cells.end(); it++) {
i = (*it)->index(vh);
if ((*it)->has_vertex(vh_collapse_to,i2)) {
// This cell is collapsed, set neighbor information of the new facet
// and set the cell-pointer of the incident vertices.
Tmc_Cell_handle ch1 = (*it)->neighbor(i);
Tmc_Cell_handle ch2 = (*it)->neighbor(i2);
ch1->set_neighbor(ch1->index((*it)), ch2);
ch2->set_neighbor(ch2->index((*it)), ch1);
for (int i=0; i<4; i++) {
// Try to point to a cell with the same surface:
if ((*it)->vertex(i)->cell() == (*it)) {
if ((*it)->surf == ch1->surf) {
(*it)->vertex(i)->set_cell(ch1);
} else {
(*it)->vertex(i)->set_cell(ch2);
}
}
}
_tmc.tds().delete_cell((*it));
} else {
// This cell is changed, set pointer to the new vertex
(*it)->set_vertex(i,vh_collapse_to);
}
}
_tmc.tds().delete_vertex(vh);
}
template <class RegularTriangulation_3,
class TriangulatedMixedComplex_3,
class TriangulatedMixedComplexObserver_3>
void
triangulate_power_diagram_3(RegularTriangulation_3 &rt,
TriangulatedMixedComplex_3 &tmc,
TriangulatedMixedComplexObserver_3 &observer,
bool verbose)
{
typedef Power_diagram_triangulator_3<
RegularTriangulation_3,
TriangulatedMixedComplex_3,
TriangulatedMixedComplexObserver_3> Power_diagram_triangulator;
Power_diagram_triangulator(rt, tmc, observer, verbose);
}
template <class RegularTriangulation_3,
class TriangulatedMixedComplex_3>
void
triangulate_power_diagram_3(RegularTriangulation_3 const &regular,
TriangulatedMixedComplex_3 &tmc,
bool verbose)
{
Triangulated_mixed_complex_observer_3<
TriangulatedMixedComplex_3, const RegularTriangulation_3> observer(1);
triangulate_power_diagram_3(regular, tmc, observer, verbose);
}
} //namespace CGAL
#endif // CGAL_TRIANGULATE_POWER_DIAGRAM_3_H