dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Arr_polycurve_traits_2.h

1198 lines
45 KiB
C
Raw Normal View History

// Copyright (c) 2006,2007,2008,2009,2010,2011 Tel-Aviv University(Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Efi Fogel <efif@post.tau.ac.il>
// Ron Wein <wein@post.tau.ac.il>
// Dror Atariah <dror.atariah@fu-berlin.de>
// Waqar Khan <wkhan@mpi-inf.mpg.de>
#ifndef CGAL_ARR_POLYCURVE_TRAITS_2_H
#define CGAL_ARR_POLYCURVE_TRAITS_2_H
#include <CGAL/license/Arrangement_on_surface_2.h>
#include <CGAL/disable_warnings.h>
/*! \file
* The traits-class for the general piece-wise (polycurve) type of curves of the
* arrangement package.
*/
#include <iterator>
#include <boost/type_traits/is_same.hpp>
#include <boost/utility/enable_if.hpp>
#include <CGAL/basic.h>
#include <CGAL/tags.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arr_polycurve_basic_traits_2.h>
#include <CGAL/Arr_geometry_traits/Polycurve_2.h>
#include <CGAL/Arr_tags.h>
#include <CGAL/Arr_enums.h>
namespace CGAL {
template <typename SubcurveTraits_2 = Arr_segment_traits_2<> >
class Arr_polycurve_traits_2 :
public Arr_polycurve_basic_traits_2<SubcurveTraits_2>
{
public:
typedef SubcurveTraits_2 Subcurve_traits_2;
private:
typedef Arr_polycurve_basic_traits_2<Subcurve_traits_2> Base;
public:
/// \name Types inherited from the polycurve basic traits class.
//@{
typedef typename Base::Has_left_category Has_left_category;
typedef typename Base::Has_do_intersect_category
Has_do_intersect_category;
typedef typename Base::Left_side_category Left_side_category;
typedef typename Base::Bottom_side_category Bottom_side_category;
typedef typename Base::Top_side_category Top_side_category;
typedef typename Base::Right_side_category Right_side_category;
typedef typename Base::Are_all_sides_oblivious_tag
Are_all_sides_oblivious_tag;
typedef typename Base::X_monotone_subcurve_2 X_monotone_subcurve_2;
typedef typename Base::Size Size;
typedef typename Base::size_type size_type;
typedef typename Base::Point_2 Point_2;
typedef typename Base::X_monotone_curve_2 X_monotone_curve_2;
typedef typename Base::Compare_x_2 Compare_x_2;
typedef typename Base::Compare_xy_2 Compare_xy_2;
typedef typename Base::Construct_min_vertex_2 Construct_min_vertex_2;
typedef typename Base::Construct_max_vertex_2 Construct_max_vertex_2;
typedef typename Base::Is_vertical_2 Is_vertical_2;
typedef typename Base::Compare_y_at_x_2 Compare_y_at_x_2;
typedef typename Base::Compare_y_at_x_left_2 Compare_y_at_x_left_2;
typedef typename Base::Compare_y_at_x_right_2 Compare_y_at_x_right_2;
typedef typename Base::Equal_2 Equal_2;
typedef typename Base::Compare_endpoints_xy_2 Compare_endpoints_xy_2;
typedef typename Base::Construct_opposite_2 Construct_opposite_2;
typedef typename Base::Approximate_2 Approximate_2;
typedef typename Base::Construct_x_monotone_curve_2
Construct_x_monotone_curve_2;
typedef typename Base::Parameter_space_in_x_2 Parameter_space_in_x_2;
typedef typename Base::Parameter_space_in_y_2 Parameter_space_in_y_2;
typedef typename Base::Compare_x_on_boundary_2 Compare_x_on_boundary_2;
typedef typename Base::Compare_x_at_limit_2 Compare_x_at_limit_2;
typedef typename Base::Compare_x_near_limit_2 Compare_x_near_limit_2;
typedef typename Base::Compare_y_on_boundary_2 Compare_y_on_boundary_2;
typedef typename Base::Compare_y_near_boundary_2 Compare_y_near_boundary_2;
typedef typename Base::Is_on_y_identification_2 Is_on_y_identification_2;
typedef typename Base::Is_on_x_identification_2 Is_on_x_identification_2;
typedef typename Base::Trim_2 Trim_2;
//@}
/// \name Types and functors inherited from the subcurve geometry traits.
//@{
typedef typename Subcurve_traits_2::Has_merge_category Has_merge_category;
typedef typename Subcurve_traits_2::Multiplicity Multiplicity;
typedef typename Subcurve_traits_2::Curve_2 Subcurve_2;
//@}
// Backward compatibility:
typedef Subcurve_2 Segment_2;
private:
typedef Arr_polycurve_traits_2<Subcurve_traits_2> Self;
public:
/*! Default constructor */
Arr_polycurve_traits_2() : Base() {}
/*! Constructor with given subcurve traits
* \param seg_traits an already existing subcurve tarits which is passed will
* be used by the class.
*/
Arr_polycurve_traits_2(const Subcurve_traits_2* geom_traits) :
Base(geom_traits)
{}
/*! A polycurve represents a general continuous piecewise-linear
* curve, without degenerated subcurves.
*/
typedef internal::Polycurve_2<Subcurve_2, Point_2> Curve_2;
/// \name Basic predicate functors(based on the subcurve traits).
//@{
/*! \class
* A functor that obtains the number of points of a polycurve.
*/
class Number_of_points_2 : public Base::Number_of_points_2 {
public:
size_type operator()(const Curve_2& cv) const
{
size_type num_seg = cv.number_of_subcurves();
return (num_seg == 0) ? 0 : num_seg + 1;
}
};
/*! Obtain a number_of_points_2 functor object. */
Number_of_points_2 number_of_points_2_object() const
{ return Number_of_points_2(); }
///@}
/// \name Construction functors(based on the subcurve traits).
//@{
#ifndef DOXYGEN_RUNNING
class Push_back_2;
#endif
/*! \class
* A functor that divides an arc into x-monotone arcs. That are, arcs that
* do not cross the identification arc.
*/
class Make_x_monotone_2 {
protected:
typedef Arr_polycurve_traits_2<Subcurve_traits_2> Polycurve_traits_2;
/*! The traits (in case it has state) */
const Polycurve_traits_2& m_poly_traits;
public:
/*! Constructor. */
Make_x_monotone_2(const Polycurve_traits_2& traits) :
m_poly_traits(traits)
{}
/*! Cut the given curve into x-monotone sub-curves and insert them into the
* given output iterator.
*
* \pre if `cv` is not empty then it must be continuous and well-oriented.
* \param cv The curve.
* \param oi The output iterator, whose value-type is Object. The output
* object is a wrapper of a X_monotone_curve_2.
* \return The past-the-end iterator.
*/
private:
template <typename OutputIterator>
OutputIterator operator_impl(const Curve_2& cv, OutputIterator oi,
Arr_all_sides_oblivious_tag) const
{
typedef typename Curve_2::Subcurve_const_iterator const_seg_iterator;
// If the polycurve is empty, return.
if (cv.number_of_subcurves() == 0) return oi;
Construct_x_monotone_curve_2 ctr_x_curve =
m_poly_traits.construct_x_monotone_curve_2_object();
typename Subcurve_traits_2::Make_x_monotone_2 make_seg_x_monotone =
m_poly_traits.subcurve_traits_2()->make_x_monotone_2_object();
typename Subcurve_traits_2::Compare_endpoints_xy_2 cmp_seg_endpts =
m_poly_traits.subcurve_traits_2()->compare_endpoints_xy_2_object();
#ifdef CGAL_ALWAYS_LEFT_TO_RIGHT
typename Subcurve_traits_2::Construct_opposite_2 ctr_seg_opposite =
m_poly_traits.subcurve_traits_2()->construct_opposite_2_object();
#endif
// Convert the input polycurve to a sequence of CGAL objects, such
// that each Object wraps an x-monotone subcurve.
std::vector<Object> x_seg_objects;
const_seg_iterator it_segs;
for (it_segs = cv.subcurves_begin(); it_segs != cv.subcurves_end();
++it_segs)
make_seg_x_monotone(*it_segs, std::back_inserter(x_seg_objects));
typename std::vector<Object>::iterator it = x_seg_objects.begin();
X_monotone_subcurve_2 x_seg;
#if defined (CGAL_NO_ASSERTIONS)
CGAL::assign(x_seg, *it);
#else
bool assign_res = CGAL::assign(x_seg, *it);
CGAL_assertion(assign_res);
#endif
// If the polycurve consists of a single x-monotone subcurve, return.
if (x_seg_objects.size() == 1) {
#ifdef CGAL_ALWAYS_LEFT_TO_RIGHT
if (cmp_seg_endpts(x_seg) == LARGER)
x_seg = ctr_seg_opposite(x_seg);
#endif
*oi++ = make_object(ctr_x_curve(x_seg));
x_seg_objects.clear();
return oi;
}
CGAL_precondition_code
(
// To be used in order to verify continuity and well-orientedness
// of the input curve cv.
typename Subcurve_traits_2::Construct_min_vertex_2 min_seg_v =
m_poly_traits.subcurve_traits_2()->construct_min_vertex_2_object();
typename Subcurve_traits_2::Construct_max_vertex_2 max_seg_v =
m_poly_traits.subcurve_traits_2()->construct_max_vertex_2_object();
typename Subcurve_traits_2::Equal_2 equal =
m_poly_traits.subcurve_traits_2()->equal_2_object();
Point_2 last_target = (cmp_seg_endpts(x_seg) == SMALLER) ?
max_seg_v(x_seg) : min_seg_v(x_seg);
Point_2 next_src;
);
// The polycurve consists of at least 2 x-monotone subcurves:
Push_back_2 push_back = m_poly_traits.push_back_2_object();
typename Subcurve_traits_2::Is_vertical_2 is_seg_vertical =
m_poly_traits.subcurve_traits_2()->is_vertical_2_object();
bool is_start_vertical = is_seg_vertical(x_seg);
Comparison_result start_dir = cmp_seg_endpts(x_seg);
#ifdef CGAL_ALWAYS_LEFT_TO_RIGHT
Push_front_2 push_front = m_poly_traits.push_front_2_object();
if (cmp_seg_endpts(x_seg) == LARGER) x_seg = ctr_seg_opposite(x_seg);
#endif
X_monotone_curve_2 x_polycurve = ctr_x_curve(x_seg);
for (++it; it != x_seg_objects.end(); ++it){
X_monotone_subcurve_2 x_seg;
#if defined (CGAL_NO_ASSERTIONS)
CGAL::assign(x_seg, *it);
#else
bool assign_res = CGAL::assign(x_seg, *it);
CGAL_assertion(assign_res);
#endif
// Test that cv is continuous and well-oriented.
CGAL_precondition_code
(
next_src = (cmp_seg_endpts(x_seg) == SMALLER) ?
min_seg_v(x_seg) : max_seg_v(x_seg);
);
CGAL_precondition_msg
(
equal(last_target, next_src),
"cv must form a continuous and well oriented curve."
);
CGAL_precondition_code
(
last_target = (cmp_seg_endpts(x_seg) == SMALLER) ?
max_seg_v(x_seg) : min_seg_v(x_seg);
);
if ((cmp_seg_endpts(x_seg) != start_dir) ||
(is_seg_vertical(x_seg) != is_start_vertical))
{
// Construct an x-monotone curve from the sub-range which was found
*oi++ = make_object(x_polycurve);
is_start_vertical = is_seg_vertical(x_seg);
start_dir = cmp_seg_endpts(x_seg);
#ifdef CGAL_ALWAYS_LEFT_TO_RIGHT
if (cmp_seg_endpts(x_seg) == LARGER) x_seg = ctr_seg_opposite(x_seg);
#endif
x_polycurve = ctr_x_curve(x_seg);
}
else {
#ifdef CGAL_ALWAYS_LEFT_TO_RIGHT
if (cmp_seg_endpts(x_seg) == LARGER) {
x_seg = ctr_seg_opposite(x_seg);
push_front(x_polycurve, x_seg);
}
else
push_back(x_polycurve, x_seg);
#else
push_back(x_polycurve, x_seg);
#endif
}
} // for loop
if (x_polycurve.number_of_subcurves() != 0)
*oi++ = make_object(x_polycurve);
x_seg_objects.clear();
return oi;
}
template <typename OutputIterator>
OutputIterator operator_impl(const Curve_2& cv, OutputIterator oi,
Arr_not_all_sides_oblivious_tag) const
{
typedef typename Curve_2::Subcurve_const_iterator const_seg_iterator;
// If the polycurve is empty, return.
if (cv.number_of_subcurves() == 0) return oi;
Construct_x_monotone_curve_2 ctr_x_curve =
m_poly_traits.construct_x_monotone_curve_2_object();
typename Subcurve_traits_2::Make_x_monotone_2 make_seg_x_monotone =
m_poly_traits.subcurve_traits_2()->make_x_monotone_2_object();
typename Subcurve_traits_2::Compare_endpoints_xy_2 cmp_seg_endpts =
m_poly_traits.subcurve_traits_2()->compare_endpoints_xy_2_object();
typename Subcurve_traits_2::Parameter_space_in_x_2 ps_x =
m_poly_traits.subcurve_traits_2()->parameter_space_in_x_2_object();
typename Subcurve_traits_2::Parameter_space_in_y_2 ps_y =
m_poly_traits.subcurve_traits_2()->parameter_space_in_y_2_object();
#ifdef CGAL_ALWAYS_LEFT_TO_RIGHT
typename Subcurve_traits_2::Construct_opposite_2 ctr_seg_opposite =
m_poly_traits.subcurve_traits_2()->construct_opposite_2_object();
#endif
// Convert the input polycurve to a sequence of CGAL objects, such
// that each Object wraps an x-monotone subcurve.
std::vector<Object> x_seg_objects;
const_seg_iterator it_segs;
for (it_segs = cv.subcurves_begin(); it_segs != cv.subcurves_end();
++it_segs)
make_seg_x_monotone(*it_segs, std::back_inserter(x_seg_objects));
typename std::vector<Object>::iterator it = x_seg_objects.begin();
X_monotone_subcurve_2 x_seg;
#if defined (CGAL_NO_ASSERTIONS)
CGAL::assign(x_seg, *it);
#else
bool assign_res = CGAL::assign(x_seg, *it);
CGAL_assertion(assign_res);
#endif
// If the polycurve consists of a single x-monotone subcurve, return.
if (x_seg_objects.size() == 1) {
#ifdef CGAL_ALWAYS_LEFT_TO_RIGHT
if (cmp_seg_endpts(x_seg) == LARGER)
x_seg = ctr_seg_opposite(x_seg);
#endif
*oi++ = make_object(ctr_x_curve(x_seg));
x_seg_objects.clear();
return oi;
}
CGAL_precondition_code
(
// To be used in order to verify continuity and well-orientedness
// of the input curve cv.
typename Subcurve_traits_2::Construct_min_vertex_2 min_seg_v =
m_poly_traits.subcurve_traits_2()->construct_min_vertex_2_object();
typename Subcurve_traits_2::Construct_max_vertex_2 max_seg_v =
m_poly_traits.subcurve_traits_2()->construct_max_vertex_2_object();
typename Subcurve_traits_2::Equal_2 equal =
m_poly_traits.subcurve_traits_2()->equal_2_object();
Point_2 last_target = (cmp_seg_endpts(x_seg) == SMALLER) ?
max_seg_v(x_seg) : min_seg_v(x_seg);
Point_2 next_src;
);
// The polycurve consists of at least 2 x-monotone subcurves:
Push_back_2 push_back = m_poly_traits.push_back_2_object();
typename Subcurve_traits_2::Is_vertical_2 is_seg_vertical =
m_poly_traits.subcurve_traits_2()->is_vertical_2_object();
bool is_start_vertical = is_seg_vertical(x_seg);
Comparison_result start_dir = cmp_seg_endpts(x_seg);
#ifdef CGAL_ALWAYS_LEFT_TO_RIGHT
Push_front_2 push_front = m_poly_traits.push_front_2_object();
if (cmp_seg_endpts(x_seg) == LARGER) x_seg = ctr_seg_opposite(x_seg);
#endif
X_monotone_curve_2 x_polycurve = ctr_x_curve(x_seg);
for (++it; it != x_seg_objects.end(); ++it){
X_monotone_subcurve_2 x_seg;
#if defined (CGAL_NO_ASSERTIONS)
CGAL::assign(x_seg, *it);
#else
bool assign_res = CGAL::assign(x_seg, *it);
CGAL_assertion(assign_res);
#endif
// Test that cv is continuous and well-oriented.
CGAL_precondition_code
(
next_src = (cmp_seg_endpts(x_seg) == SMALLER) ?
min_seg_v(x_seg) : max_seg_v(x_seg);
);
CGAL_precondition_msg
(
equal(last_target, next_src),
"cv must form a continuous and well oriented curve."
);
CGAL_precondition_code
(
last_target = (cmp_seg_endpts(x_seg) == SMALLER) ?
max_seg_v(x_seg) : min_seg_v(x_seg);
);
Arr_curve_end polycurve_target =
(cmp_seg_endpts(x_polycurve[0]) == SMALLER) ?
ARR_MAX_END : ARR_MIN_END;
Arr_curve_end seg_source = (cmp_seg_endpts(x_seg) == SMALLER) ?
ARR_MIN_END : ARR_MAX_END;
unsigned int num_segs = x_polycurve.number_of_subcurves();
if ((cmp_seg_endpts(x_seg) != start_dir) ||
(is_seg_vertical(x_seg) != is_start_vertical))
{
// Construct an x-monotone curve from the sub-range which was found
*oi++ = make_object(x_polycurve);
is_start_vertical = is_seg_vertical(x_seg);
start_dir = cmp_seg_endpts(x_seg);
#ifdef CGAL_ALWAYS_LEFT_TO_RIGHT
if (cmp_seg_endpts(x_seg) == LARGER) x_seg = ctr_seg_opposite(x_seg);
#endif
x_polycurve = ctr_x_curve(x_seg);
}
else if (ps_x(x_polycurve[num_segs-1], polycurve_target) !=
ARR_INTERIOR ||
ps_x(x_seg, seg_source) != ARR_INTERIOR)
{
*oi++ = make_object(x_polycurve);
#ifdef CGAL_ALWAYS_LEFT_TO_RIGHT
if (cmp_seg_endpts(x_seg) == LARGER) x_seg = ctr_seg_opposite(x_seg);
#endif
x_polycurve = ctr_x_curve(x_seg);
}
else {
#ifdef CGAL_ALWAYS_LEFT_TO_RIGHT
if (cmp_seg_endpts(x_seg) == LARGER) {
x_seg = ctr_seg_opposite(x_seg);
push_front(x_polycurve, x_seg);
}
else
push_back(x_polycurve, x_seg);
#else
push_back(x_polycurve, x_seg);
#endif
}
} // for loop
if (x_polycurve.number_of_subcurves() != 0)
*oi++ = make_object(x_polycurve);
x_seg_objects.clear();
return oi;
}
public:
template <typename OutputIterator>
OutputIterator operator()(const Curve_2& cv, OutputIterator oi) const
{ return operator_impl(cv, oi, Are_all_sides_oblivious_tag()); }
};
/*! Obtain a Make_x_monotone_2 functor object. */
Make_x_monotone_2 make_x_monotone_2_object() const
{ return Make_x_monotone_2(*this); }
/* Functor to augment a polycurve by either adding a vertex or a subcurve
* at the back.
* TODO: Test all the operator()'s. (Don't forget vertical cases!)
*/
class Push_back_2 : public Base::Push_back_2 {
protected:
typedef Arr_polycurve_traits_2<Subcurve_traits_2> Polycurve_traits_2;
public:
/*! Constructor. */
Push_back_2(const Polycurve_traits_2& traits) :
Base::Push_back_2(traits)
{}
// Normally, the moment the compiler finds a name, it stops looking. In
// other words, the compiler first finds the operator() in the current
// class and stops looking, never finding the one in the base class.
// Explicitly bring the base operator() into scope, unnecesitating the
// code below.
using Base::Push_back_2::operator();
// /*! Append a subcurve to an existing x-monotone polycurve at the back.
// */
// void operator()(X_monotone_curve_2& xcv,
// const X_monotone_subcurve_2& seg)
// const
// { Base::Push_back_2::operator()(xcv, seg); }
/* Append a subcurve to an existing polycurve at the back.
* If the polycurve is empty, the subcurve will be its only subcurve.
*/
void operator()(Curve_2& cv, const Subcurve_2& seg) const
{ cv.push_back(seg); }
};
/*! Obtain a Push_back_2 functor object. */
Push_back_2 push_back_2_object() const { return Push_back_2(*this); }
/* Functor to augment a polycurve by either adding a vertex or a subcurve
* at the front.
* TODO: Test all the operator()'s. (Don't forget vertical cases!)
*/
class Push_front_2 : public Base::Push_front_2 {
protected:
typedef Arr_polycurve_traits_2<Subcurve_traits_2> Polycurve_traits_2;
public:
/*! Constructor. */
Push_front_2(const Polycurve_traits_2& traits) :
Base::Push_front_2(traits)
{}
// Normally, the moment the compiler finds a name, it stops looking. In
// other words, the compiler first finds the operator() in the current
// class and stops looking, never finding the one in the base class.
// Explicitly bring the base operator() into scope, unnecesitating the
// code below.
using Base::Push_front_2::operator();
// /*! Append a subcurve to an existing x-monotone polycurve at the front.
// */
// void operator()(X_monotone_curve_2& xcv,
// const X_monotone_subcurve_2& seg)
// const
// { Base::Push_front_2::operator()(xcv, seg); }
/* Append a subcurve to an existing polycurve at the front. */
void operator()(Curve_2& cv, const Subcurve_2& seg) const
{ cv.push_front(seg); }
};
/*! Obtain a Push_front_2 functor object. */
Push_front_2 push_front_2_object() const { return Push_front_2(*this); }
class Split_2 {
protected:
typedef Arr_polycurve_traits_2<Subcurve_traits_2> Polycurve_traits_2;
/*! The polycurve traits (in case it has state) */
const Polycurve_traits_2& m_poly_traits;
public:
/*! Constructor. */
Split_2(const Polycurve_traits_2& traits) : m_poly_traits(traits) {}
public:
/*! Split a given x-monotone curve at a given point into two sub-curves.
* \param cv The curve to split
* \param p The split point.
* \param c1 Output: The left resulting subcurve(p is its right endpoint).
* \param c2 Output: The right resulting subcurve(p is its left endpoint).
* \pre p lies on cv but is not one of its end-points.
*/
void operator()(const X_monotone_curve_2& xcv, const Point_2& p,
X_monotone_curve_2& xcv1, X_monotone_curve_2& xcv2) const
{
const Subcurve_traits_2* geom_traits = m_poly_traits.subcurve_traits_2();
typename Subcurve_traits_2::Construct_min_vertex_2 min_vertex =
geom_traits->construct_min_vertex_2_object();
typename Subcurve_traits_2::Construct_max_vertex_2 max_vertex =
geom_traits->construct_max_vertex_2_object();
typename Subcurve_traits_2::Equal_2 equal =
geom_traits->equal_2_object();
typename Subcurve_traits_2::Compare_endpoints_xy_2 cmp_seg_endpts =
geom_traits->compare_endpoints_xy_2_object();
// Make sure the split point is not one of the curve endpoints.
CGAL_precondition((!equal(m_poly_traits.
construct_min_vertex_2_object()(xcv), p)));
CGAL_precondition((!equal(m_poly_traits.
construct_max_vertex_2_object()(xcv), p)));
CGAL_precondition_msg(xcv.number_of_subcurves() > 0,
"Cannot split a polycurve of length zero.");
Comparison_result dir = cmp_seg_endpts(xcv[0]);
// Locate the subcurve on the polycurve xcv that contains p.
std::size_t i = m_poly_traits.locate(xcv, p);
CGAL_precondition(i != Polycurve_traits_2::INVALID_INDEX);
// Clear the output curves.
xcv1.clear();
xcv2.clear();
// Push all subcurves labeled(0, 1, ... , i-1) into xcv1.
for (std::size_t j = 0; j < i; ++j) xcv1.push_back(xcv[j]);
if (dir == SMALLER){
// Check whether the split point is xcv[i]'s source or target.
if (equal(max_vertex(xcv[i]), p)) {
// The entire i'th subcurve belongs to xcv1:
xcv1.push_back(xcv[i]);
}
else if (equal(min_vertex(xcv[i]), p)) {
// The entire i'th subcurves belongs to xcv2:
xcv2.push_back(xcv[i]);
}
else {
// The i'th subcurve should be split: The left part(seg1)
// goes to xcv1, and the right part(seg2) goes to xcv2.
X_monotone_subcurve_2 seg1, seg2;
m_poly_traits.subcurve_traits_2()->split_2_object()(xcv[i], p,
seg1, seg2);
xcv1.push_back(seg1);
xcv2.push_back(seg2);
}
}
else {
if (equal(min_vertex(xcv[i]), p)) {
xcv1.push_back(xcv[i]);
}
else if (equal(max_vertex(xcv[i]), p)) {
xcv2.push_back(xcv[i]);
}
else {
X_monotone_subcurve_2 seg1, seg2;
m_poly_traits.subcurve_traits_2()->
split_2_object()(xcv[i], p, seg1, seg2);
if (cmp_seg_endpts(seg2) == LARGER){
xcv1.push_back(seg2);
}
else {
// seg2 has to be reversed
seg2 = m_poly_traits.subcurve_traits_2()->
construct_opposite_2_object()(seg2);
xcv1.push_back(seg2);
}
if (cmp_seg_endpts(seg1) == LARGER){
xcv2.push_back(seg1);
}
else {
// seg2 has to be reversed
seg1 = m_poly_traits.subcurve_traits_2()->
construct_opposite_2_object()(seg1);
xcv1.push_back(seg1);
}
}
}
// Push all subcurves labeled(i+1, i+2, ... , n-1) into xcv1.
std::size_t n = xcv.number_of_subcurves();
for (std::size_t j = i+1; j < n; ++j) xcv2.push_back(xcv[j]);
if (dir != SMALLER) std::swap(xcv1, xcv2);
}
};
/*! Obtain a Split_2 functor object. */
Split_2 split_2_object() const { return Split_2(*this); }
class Intersect_2 {
protected:
typedef Arr_polycurve_traits_2<Subcurve_traits_2> Polycurve_traits_2;
/*! The polycurve traits (in case it has state) */
const Polycurve_traits_2& m_poly_traits;
public:
/*! Constructor. */
Intersect_2(const Polycurve_traits_2& traits) : m_poly_traits(traits) {}
/*! Find the intersections of the two given curves and insert them into the
* given output iterator. As two subcurves may itersect only once, only a
* single intersection will be contained in the iterator.
* Note: If the intersection yields an overlap then it will be oriented
* from left-to-right.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param oi The output iterator.
* \return The past-the-end iterator.
*/
template <typename OutputIterator>
OutputIterator
operator()(const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
OutputIterator oi) const
{
const Subcurve_traits_2* geom_traits = m_poly_traits.subcurve_traits_2();
Compare_y_at_x_2 cmp_y_at_x = m_poly_traits.compare_y_at_x_2_object();
typename Subcurve_traits_2::Equal_2 equal =
geom_traits->equal_2_object();
typename Subcurve_traits_2::Construct_min_vertex_2 min_vertex =
geom_traits->construct_min_vertex_2_object();
typename Subcurve_traits_2::Construct_max_vertex_2 max_vertex =
geom_traits->construct_max_vertex_2_object();
typename Subcurve_traits_2::Intersect_2 intersect =
geom_traits->intersect_2_object();
typename Subcurve_traits_2::Compare_endpoints_xy_2 cmp_seg_endpts =
geom_traits->compare_endpoints_xy_2_object();
typename Subcurve_traits_2::Construct_opposite_2 construct_opposite =
geom_traits->construct_opposite_2_object();
typedef std::pair<Point_2,Multiplicity> Point_2_pair;
Comparison_result dir1 = cmp_seg_endpts(cv1[0]);
Comparison_result dir2 = cmp_seg_endpts(cv2[0]);
const std::size_t n1 = cv1.number_of_subcurves();
const std::size_t n2 = cv2.number_of_subcurves();
std::size_t i1 = (dir1 == SMALLER) ? 0 : n1-1;
std::size_t i2 = (dir2 == SMALLER) ? 0 : n2-1;
X_monotone_curve_2 ocv; // Used to represent overlaps.
Compare_xy_2 compare_xy = m_poly_traits.compare_xy_2_object();
Comparison_result left_res =
compare_xy(cv1[i1], ARR_MIN_END, cv2[i2], ARR_MIN_END);
if (left_res == SMALLER) {
// cv1's left endpoint is to the left of cv2's left endpoint:
// Locate the index i1 of the subcurve in cv1 which contains cv2's
// left endpoint.
i1 = m_poly_traits.locate_impl(cv1, cv2[i2], ARR_MIN_END,
Are_all_sides_oblivious_tag());
if (i1 == Polycurve_traits_2::INVALID_INDEX) return oi;
if (equal(max_vertex(cv1[i1]), min_vertex(cv2[i2]))) {
if (((dir1 == SMALLER) && (i1 == n1-1)) ||
((dir1 == LARGER) && (i1 == 0))){
// cv1's right endpoint equals cv2's left endpoint
// Thus we can return this single(!) intersection point
std::pair<Point_2, Multiplicity> p(max_vertex(cv1[i1]), 0);
*oi++ = make_object(p);
return oi;
}
dir1 == SMALLER ?
++i1 : (i1 != 0) ? --i1 : (std::size_t) Polycurve_traits_2::INVALID_INDEX;
left_res = EQUAL;
}
}
else if (left_res == LARGER) {
// cv1's left endpoint is to the right of cv2's left endpoint:
// Locate the index i2 of the subcurve in cv2 which contains cv1's
// left endpoint.
i2 = m_poly_traits.locate_impl(cv2, cv1[i1], ARR_MIN_END,
Are_all_sides_oblivious_tag());
if (i2 == Polycurve_traits_2::INVALID_INDEX) return oi;
if (equal(max_vertex(cv2[i2]), min_vertex(cv1[i1]))) {
if (((dir2 == SMALLER) && (i2 == n2-1)) ||
((dir2 == LARGER) && (i2 == 0))){
// cv2's right endpoint equals cv1's left endpoint
// Thus we can return this single(!) intersection point
std::pair<Point_2, Multiplicity> p(max_vertex(cv2[i2]), 0);
*oi++ = make_object(p);
return oi;
}
dir2 == SMALLER ?
++i2 : (i2 != 0) ? --i2 : (std::size_t) Polycurve_traits_2::INVALID_INDEX;
left_res = EQUAL;
}
}
// Check if the the left endpoint lies on the other polycurve.
bool left_coincides = (left_res == EQUAL);
bool left_overlap = false;
if (left_res == SMALLER)
left_coincides = (cmp_y_at_x(cv2[i2], ARR_MIN_END, cv1[i1]) == EQUAL);
else if (left_res == LARGER)
left_coincides = (cmp_y_at_x(cv1[i1], ARR_MIN_END, cv2[i2]) == EQUAL);
// The main loop: Go simultaneously over both polycurves.
Comparison_result right_res = left_res;
bool right_coincides = left_coincides;
bool right_overlap = false;
while (((dir1 == SMALLER) && (dir2 == SMALLER) &&
(i1 < n1) && (i2 < n2)) ||
((dir1 != SMALLER) && (dir2 == SMALLER) &&
(i1 != Polycurve_traits_2::INVALID_INDEX) && (i2 < n2)) ||
((dir1 == SMALLER) && (dir2 != SMALLER) && (i1 < n1) &&
(i2 != Polycurve_traits_2::INVALID_INDEX)) ||
((dir1 != SMALLER) && (dir2 != SMALLER) &&
(i1 != Polycurve_traits_2::INVALID_INDEX) &&
(i2 != Polycurve_traits_2::INVALID_INDEX)))
{
right_res = compare_xy(cv1[i1], ARR_MAX_END, cv2[i2], ARR_MAX_END);
right_coincides = (right_res == EQUAL);
if (right_res == SMALLER)
right_coincides =
(cmp_y_at_x(cv1[i1], ARR_MAX_END, cv2[i2]) == EQUAL);
else if (right_res == LARGER)
right_coincides =
(cmp_y_at_x(cv2[i2], ARR_MAX_END, cv1[i1]) == EQUAL);
right_overlap = false;
if (!right_coincides && !left_coincides) {
// Non of the endpoints of the current subcurve of one polycurve
// coincides with the curent subcurve of the other polycurve:
// Output the intersection if exists.
oi = intersect(cv1[i1], cv2[i2], oi);
}
else if (right_coincides && left_coincides) {
// An overlap exists between the current subcurves of the
// polycurves: Output the overlapping subcurve.
right_overlap = true;
std::vector<CGAL::Object> int_seg;
intersect(cv1[i1], cv2[i2], std::back_inserter(int_seg));
for (size_t i = 0; i < int_seg.size(); ++i) {
const X_monotone_subcurve_2* x_seg =
CGAL::object_cast<X_monotone_subcurve_2> (&(int_seg[i]));
if (x_seg != NULL) {
X_monotone_subcurve_2 seg = *x_seg;
// If for some reason the subcurve intersection
// results in left oriented curve.
if ( cmp_seg_endpts(seg) == LARGER)
seg = construct_opposite(seg);
ocv.push_back(seg);
}
const Point_2_pair* p_ptr =
CGAL::object_cast<Point_2_pair>(&(int_seg[i]));
if (p_ptr != NULL) {
// Any point that is not equal to the max_vertex of the
// subcurve should be inserted into oi.
// The max_vertex of the current subcurve (if intersecting)
// will be taken care of as the min_vertex of in the next
// iteration.
if (!equal(p_ptr->first, max_vertex(cv1[i1])))
*oi++ = make_object(*p_ptr);
}
}
}
else if (left_coincides && !right_coincides) {
// std::cout << "Left is coinciding but right is not." << std::endl;
// The left point of the current subcurve of one polycurve
// coincides with the current subcurve of the other polycurve.
if (left_overlap) {
// An overlap occured at the previous iteration:
// Output the overlapping polycurve.
CGAL_assertion(ocv.number_of_subcurves() > 0);
*oi++ = make_object(ocv);
ocv.clear();
}
else {
// The left point of the current subcurve of one
// polycurve coincides with the current subcurve of the
// other polycurve, and no overlap occured at the
// previous iteration: Output the intersection
// point. The derivative of at least one of the
// polycurves is not defined at this point, so we give
// it multiplicity 0.
if (left_res == SMALLER) {
std::pair<Point_2, Multiplicity> p(min_vertex(cv2[i2]), 0);
*oi++ = make_object(p);
}
else {
std::pair<Point_2, Multiplicity> p(min_vertex(cv1[i1]), 0);
*oi++ = make_object(p);
}
}
}
// Proceed forward.
if (right_res != SMALLER) {
if (dir2 == SMALLER) ++i2;
else {
if (i2 == 0) i2 = Polycurve_traits_2::INVALID_INDEX;
else --i2;
}
}
if (right_res != LARGER) {
if (dir1 == SMALLER)
++i1;
else {
if (i1 == 0) i1 = Polycurve_traits_2::INVALID_INDEX;
else --i1;
}
}
left_res = (right_res == SMALLER) ? LARGER :
(right_res == LARGER) ? SMALLER : EQUAL;
left_coincides = right_coincides;
left_overlap = right_overlap;
} // END of while loop
// Output the remaining overlapping polycurve, if necessary.
if (ocv.number_of_subcurves() > 0) {
*oi++ = make_object(ocv);
}
else if (right_coincides) {
typedef std::pair<Point_2,Multiplicity> return_point;
return_point ip;
if (right_res == SMALLER) {
ip = (dir1 == SMALLER) ?
return_point(max_vertex(cv1[i1-1]), 0) :
(i1 != Polycurve_traits_2::INVALID_INDEX) ?
return_point(max_vertex(cv1[i1+1]), 0) :
return_point(max_vertex(cv1[0]), 0);
*oi++ = make_object(ip);
}
else if (right_res == LARGER) {
ip = (dir2 == SMALLER) ?
return_point(max_vertex(cv2[i2-1]), 0) :
(i2 != Polycurve_traits_2::INVALID_INDEX) ?
return_point(max_vertex(cv2[i2+1]), 0) :
return_point(max_vertex(cv2[0]), 0);
*oi++ = make_object(ip);
}
else if (((i1 > 0) && (dir1 == SMALLER)) ||
((i1 < n1) && (dir1 != SMALLER)) ||
((i1 == Polycurve_traits_2::INVALID_INDEX) &&
(dir1 != SMALLER)))
{
ip = (dir1 == SMALLER) ?
return_point(max_vertex(cv1[i1-1]), 0) :
(i1 != Polycurve_traits_2::INVALID_INDEX) ?
return_point(max_vertex(cv1[i1+1]), 0) :
return_point(max_vertex(cv1[0]), 0);
*oi++ = make_object(ip);
}
else {
CGAL_assertion_msg((dir2 == SMALLER && i2 > 0) ||
(dir2 != SMALLER && i2 < n2) ||
(dir2 != SMALLER &&
((i1 == Polycurve_traits_2::INVALID_INDEX) ||
(i2 == Polycurve_traits_2::INVALID_INDEX))),
"Wrong index for xcv2 in Intersect_2 of "
"polycurves.");
ip = (dir2 == SMALLER) ?
return_point(max_vertex(cv2[i2-1]), 0) :
(i2 != Polycurve_traits_2::INVALID_INDEX) ?
return_point(max_vertex(cv2[i2+1]), 0) :
return_point(max_vertex(cv2[0]), 0);
*oi++ = make_object(ip);
}
}
return oi;
}
};
/*! Obtain an Intersect_2 functor object. */
Intersect_2 intersect_2_object() const
{ return Intersect_2(*this); }
class Are_mergeable_2 {
protected:
typedef Arr_polycurve_traits_2<Subcurve_traits_2> Polycurve_traits_2;
/*! The polycurve traits (in case it has state) */
const Polycurve_traits_2& m_poly_traits;
public:
/*! Constructor. */
Are_mergeable_2(const Polycurve_traits_2& traits) :
m_poly_traits(traits)
{}
/*! Check whether it is possible to merge two given x-monotone curves.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \return(true) if the two curves are mergeable, that is, they share a
* common endpoint and the same orientation;(false) otherwise.
*/
bool operator()(const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2) const
{
const Subcurve_traits_2* geom_traits = m_poly_traits.subcurve_traits_2();
Construct_min_vertex_2 min_vertex =
m_poly_traits.construct_min_vertex_2_object();
Construct_max_vertex_2 max_vertex =
m_poly_traits.construct_max_vertex_2_object();
typename Subcurve_traits_2::Equal_2 equal =
geom_traits->equal_2_object();
typename Subcurve_traits_2::Is_vertical_2 is_seg_vertical =
geom_traits->is_vertical_2_object();
Comparison_result dir1 =
m_poly_traits.compare_endpoints_xy_2_object()(cv1);
Comparison_result dir2 =
m_poly_traits.compare_endpoints_xy_2_object()(cv2);
if (dir1 != dir2)
return false;
bool ver1 = is_seg_vertical(cv1[0]);
bool ver2 = is_seg_vertical(cv2[0]);
return (((// Both are directed from left-to-right
(dir1 == SMALLER) &&
((equal(max_vertex(cv1),min_vertex(cv2))) ||
(equal(max_vertex(cv2),min_vertex(cv1))))) ||
(// Both are directed from right-to-left
(dir1 == LARGER) &&
((equal(min_vertex(cv1),max_vertex(cv2))) ||
(equal(max_vertex(cv1),min_vertex(cv2))))
)) &&
(// Either both should be vertical or both should
// be NOT vertical.
(ver1 && ver2) || (!ver1 && !ver2)));
}
};
/*! Obtain an Are_mergeable_2 functor object. */
Are_mergeable_2 are_mergeable_2_object() const
{ return Are_mergeable_2(*this); }
/*! \class Merge_2
* A functor that merges two x-monotone curves into one.
*/
/* Roadmap: Allow merging of overlapping polycurves. This means also
* changing the subcurve traits class.
*/
class Merge_2 {
protected:
typedef Arr_polycurve_traits_2<Subcurve_traits_2> Geometry_traits;
/*! The traits (in case it has state) */
const Geometry_traits& m_poly_traits;
public:
/*! Constructor
* \param traits the traits (in case it has state)
*/
Merge_2(const Geometry_traits& traits) : m_poly_traits(traits) {}
/*! Merge two given x-monotone curves into a single curve(segment).
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param c Output: The merged curve.
* \pre The two curves are mergeable.
*/
void operator()(const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
X_monotone_curve_2& c) const
{
CGAL_precondition(m_poly_traits.are_mergeable_2_object()(cv1, cv2));
Construct_min_vertex_2 get_min_v =
m_poly_traits.construct_min_vertex_2_object();
Construct_max_vertex_2 get_max_v =
m_poly_traits.construct_max_vertex_2_object();
Compare_endpoints_xy_2 cmp_seg_endpts =
m_poly_traits.compare_endpoints_xy_2_object();
Equal_2 equal = m_poly_traits.equal_2_object();
c.clear();
if (// Either both are left-to-right and cv2 is to the right of cv1
((cmp_seg_endpts(cv1)==SMALLER) &&
(equal(get_max_v(cv1),get_min_v(cv2)))) ||
// or both are right-to-left and cv2 is to the left of cv1
((cmp_seg_endpts(cv1)==LARGER) &&
(equal(get_min_v(cv1), get_max_v(cv2)))))
{
const std::size_t n1 = cv1.number_of_subcurves();
const std::size_t n2 = cv2.number_of_subcurves();
std::size_t i;
// cv2 extends cv1 to the right:
for (i = 0; i < n1 - 1; ++i) c.push_back(cv1[i]);
// Try to merge the to contiguous line subcurves:
if (m_poly_traits.subcurve_traits_2()->
are_mergeable_2_object()(cv1[n1 - 1], cv2[0]))
{
X_monotone_subcurve_2 seg;
m_poly_traits.subcurve_traits_2()->
merge_2_object()(cv1[n1 - 1], cv2[0], seg);
c.push_back(seg);
}
else {
c.push_back(cv1[n1 - 1]);
c.push_back(cv2[0]);
}
for (i = 1; i < n2; ++i) c.push_back(cv2[i]);
}
else
return this->operator()(cv2,cv1,c);
}
};
/*! Obtain a Merge_2 functor object. */
Merge_2 merge_2_object() const { return Merge_2(*this); }
///@}
/*! \class
* A functor that constructs a (general) polycurve.
*/
class Construct_curve_2 {
protected:
typedef Arr_polycurve_traits_2<Subcurve_traits_2> Polycurve_traits_2;
/*! The polycurve traits (in case it has state) */
const Polycurve_traits_2& m_poly_traits;
public:
/*! Constructor. */
Construct_curve_2(const Polycurve_traits_2& traits) :
m_poly_traits(traits)
{}
/*! Obtain a polycurve that consists of one given subcurve. */
Curve_2 operator()(const Subcurve_2& seg) const { return Curve_2(seg); }
/* Construct a well-oriented polycurve from a range of either
* `SubcurveTraits::Point_2` or `SubcurveTraits::Subcurve_2`.
*/
template <typename ForwardIterator>
Curve_2 operator()(ForwardIterator begin, ForwardIterator end) const
{
typedef typename std::iterator_traits<ForwardIterator>::value_type VT;
typedef typename boost::is_same<VT, Point_2>::type Is_point;
// Dispatch the range to the appropriate implementation.
return constructor_impl(begin, end, Is_point());
}
/*! Construction of a polycurve from a range of points.
* \pre The range contains at least two points
* \pre Consecutive points are disjoint.
* \return Well-oriented polycurve connecting the given
* points. The order of the vertices is determined by
* their order in the range. Furthermore, the
* orientation of the polycurve is induced by their
* order.
*/
template <typename ForwardIterator>
Curve_2 constructor_impl(ForwardIterator /* begin */,
ForwardIterator /* end */,
boost::true_type) const
{ CGAL_error_msg("Cannot construct a polycurve from a range of points!"); }
/*! Construction implementation from a range of subcurves.
* Note that the subcurves in the range are NOT necessarily x-monotone,
* thus it is impossible to test (even in precondition) whether the input
* forms a continuous and well oriented polycurve.
* \pre Range should contain at least one subcurve.
*/
template <typename ForwardIterator>
Curve_2 constructor_impl(ForwardIterator begin, ForwardIterator end,
boost::false_type) const
{
// Range has to contain at least one subcurve
CGAL_precondition(begin != end);
return Curve_2(begin, end);
}
};
/*! Obtain a Construct_curve_2 functor object. */
Construct_curve_2 construct_curve_2_object() const
{ return Construct_curve_2(*this); }
};
} //namespace CGAL
#include <CGAL/enable_warnings.h>
#endif