dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Homogeneous/PointH2.h

156 lines
3.9 KiB
C
Raw Normal View History

// Copyright (c) 1999
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Stefan Schirra
#ifndef CGAL_HOMOGENEOUS_POINT_2_H
#define CGAL_HOMOGENEOUS_POINT_2_H
#include <CGAL/Origin.h>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_convertible.hpp>
#include <boost/mpl/and.hpp>
#include <boost/mpl/logical.hpp>
namespace CGAL {
template < class R_ >
class PointH2
{
typedef typename R_::FT FT;
typedef typename R_::RT RT;
typedef typename R_::Vector_2 Vector_2;
typedef typename R_::Point_2 Point_2;
typedef typename R_::Direction_2 Direction_2;
typedef Rational_traits<FT> Rat_traits;
// Reference-counting is handled in Vector_2.
Vector_2 base;
public:
typedef FT Cartesian_coordinate_type;
typedef const RT& Homogeneous_coordinate_type;
typedef typename Vector_2::Cartesian_const_iterator Cartesian_const_iterator;
typedef R_ R;
PointH2() {}
PointH2(const Origin &)
: base(NULL_VECTOR) {}
template < typename Tx, typename Ty >
PointH2(const Tx & x, const Ty & y,
typename boost::enable_if< boost::mpl::and_<boost::is_convertible<Tx, RT>,
boost::is_convertible<Ty, RT> > >::type* = 0)
: base(x, y) {}
PointH2(const FT& x, const FT& y)
: base(x, y) {}
PointH2(const RT& hx, const RT& hy, const RT& hw)
: base(hx, hy, hw) {}
bool operator==( const PointH2<R>& p) const;
bool operator!=( const PointH2<R>& p) const;
const RT & hx() const { return base.hx(); }
const RT & hy() const { return base.hy(); }
const RT & hw() const { return base.hw(); }
FT x() const { return FT(hx()) / FT(hw()); }
FT y() const { return FT(hy()) / FT(hw()); }
FT cartesian(int i) const;
FT operator[](int i) const;
const RT & homogeneous(int i) const;
Cartesian_const_iterator cartesian_begin() const
{
return base.cartesian_begin();
}
Cartesian_const_iterator cartesian_end() const
{
return base.cartesian_end();
}
int dimension() const;
Direction_2 direction() const;
};
template < class R >
inline
bool
PointH2<R>::operator==( const PointH2<R>& p) const
{
return base == p.base;
}
template < class R >
inline
bool
PointH2<R>::operator!=( const PointH2<R>& p) const
{ return !(*this == p); }
template < class R >
inline
typename PointH2<R>::FT
PointH2<R>::cartesian(int i) const
{
return base.cartesian(i);
}
template < class R >
inline
const typename PointH2<R>::RT &
PointH2<R>::homogeneous(int i) const
{
return base.homogeneous(i);
}
template < class R >
inline
typename PointH2<R>::FT
PointH2<R>::operator[](int i) const
{ return base[i]; }
template < class R >
inline
int
PointH2<R>::dimension() const
{ return base.dimension(); }
template < class R >
inline
typename PointH2<R>::Direction_2
PointH2<R>::direction() const
{ return typename PointH2<R>::Direction_2(*this); }
} //namespace CGAL
#endif // CGAL_HOMOGENEOUS_POINT_2_H