dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Homogeneous/VectorH3.h

262 lines
8.3 KiB
C
Raw Normal View History

// Copyright (c) 1999
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Stefan Schirra
#ifndef CGAL_HOMOGENEOUS_VECTOR_3_H
#define CGAL_HOMOGENEOUS_VECTOR_3_H
#include <CGAL/Origin.h>
#include <CGAL/array.h>
#include <CGAL/Kernel_d/Cartesian_const_iterator_d.h>
#include <boost/next_prior.hpp>
namespace CGAL {
template < class R_ >
class VectorH3
{
typedef typename R_::RT RT;
typedef typename R_::FT FT;
typedef typename R_::Point_3 Point_3;
typedef typename R_::Vector_3 Vector_3;
typedef typename R_::Segment_3 Segment_3;
typedef typename R_::Ray_3 Ray_3;
typedef typename R_::Line_3 Line_3;
typedef typename R_::Direction_3 Direction_3;
typedef cpp11::array<RT, 4> Rep;
typedef typename R_::template Handle<Rep>::type Base;
typedef Rational_traits<FT> Rat_traits;
Base base;
public:
typedef Cartesian_const_iterator_d<typename Rep::const_iterator> Cartesian_const_iterator;
typedef R_ R;
VectorH3() {}
VectorH3(const Point_3& a, const Point_3& b)
{ *this = R().construct_vector_3_object()(a, b); }
VectorH3(const Segment_3& s)
{ *this = R().construct_vector_3_object()(s); }
VectorH3(const Ray_3& r)
{ *this = R().construct_vector_3_object()(r); }
VectorH3(const Line_3& l)
{ *this = R().construct_vector_3_object()(l); }
VectorH3(const Null_vector&)
: base(CGAL::make_array(RT(0), RT(0), RT(0), RT(1))) {}
template < typename Tx, typename Ty, typename Tz >
VectorH3(const Tx & x, const Ty & y, const Tz & z,
typename boost::enable_if< boost::mpl::and_< boost::mpl::and_< boost::is_convertible<Tx, RT>,
boost::is_convertible<Ty, RT> >,
boost::is_convertible<Tz, RT> > >::type* = 0)
: base(CGAL::make_array<RT>(x, y, z, RT(1))) {}
VectorH3(const FT& x, const FT& y, const FT& z)
: base(Rat_traits().denominator(x) * Rat_traits().denominator(y)
* Rat_traits().denominator(z) >= 0 ?
CGAL::make_array<RT>(
Rat_traits().numerator(x) * Rat_traits().denominator(y)
* Rat_traits().denominator(z),
Rat_traits().numerator(y) * Rat_traits().denominator(x)
* Rat_traits().denominator(z),
Rat_traits().numerator(z) * Rat_traits().denominator(x)
* Rat_traits().denominator(y),
Rat_traits().denominator(x) * Rat_traits().denominator(y)
* Rat_traits().denominator(z)) :
CGAL::make_array<RT>(
- Rat_traits().numerator(x) * Rat_traits().denominator(y)
* Rat_traits().denominator(z),
- Rat_traits().numerator(y) * Rat_traits().denominator(x)
* Rat_traits().denominator(z),
- Rat_traits().numerator(z) * Rat_traits().denominator(x)
* Rat_traits().denominator(y),
- Rat_traits().denominator(x) * Rat_traits().denominator(y)
* Rat_traits().denominator(z)))
{
CGAL_kernel_assertion(hw() > 0);
}
VectorH3(const RT& x, const RT& y, const RT& z, const RT& w)
: base( w >= RT(0) ? CGAL::make_array(x, y, z, w)
: CGAL::make_array<RT>(-x, -y, -z, -w) ) {}
const RT & hx() const { return get_pointee_or_identity(base)[0]; }
const RT & hy() const { return get_pointee_or_identity(base)[1]; }
const RT & hz() const { return get_pointee_or_identity(base)[2]; }
const RT & hw() const { return get_pointee_or_identity(base)[3]; }
FT x() const { return FT(hx())/FT(hw()); }
FT y() const { return FT(hy())/FT(hw()); }
FT z() const { return FT(hz())/FT(hw()); }
const RT & homogeneous(int i) const;
FT cartesian(int i) const;
FT operator[](int i) const;
Cartesian_const_iterator cartesian_begin() const
{
return make_cartesian_const_iterator_begin(get_pointee_or_identity(base).begin(),
boost::prior(get_pointee_or_identity(base).end()));
}
Cartesian_const_iterator cartesian_end() const
{
return make_cartesian_const_iterator_end(boost::prior(get_pointee_or_identity(base).end()));
}
int dimension() const { return 3; };
Direction_3 direction() const;
Vector_3 operator-() const;
bool operator==( const VectorH3<R>& v) const;
bool operator!=( const VectorH3<R>& v) const;
Vector_3 operator+( const VectorH3 &v) const;
Vector_3 operator-( const VectorH3 &v) const;
FT squared_length() const;
Vector_3 operator/( const RT &f) const;
Vector_3 operator/( const FT &f) const;
};
template < class R >
CGAL_KERNEL_INLINE
typename VectorH3<R>::FT
VectorH3<R>::cartesian(int i) const
{
CGAL_kernel_precondition(i == 0 || i == 1 || i == 2);
switch (i)
{
case 0: return x();
case 1: return y();
}
return z();
}
template < class R >
CGAL_KERNEL_INLINE
const typename VectorH3<R>::RT &
VectorH3<R>::homogeneous(int i) const
{
CGAL_kernel_precondition(i == 0 || i == 1 || i == 2 || i == 3);
return get_pointee_or_identity(base)[i];
}
template < class R >
inline
typename VectorH3<R>::Direction_3
VectorH3<R>::direction() const
{ return Direction_3(hx(), hy(), hz()); }
template < class R >
CGAL_KERNEL_INLINE
bool
VectorH3<R>::operator==( const VectorH3<R>& v) const
{
return ( (hx() * v.hw() == v.hx() * hw() )
&&(hy() * v.hw() == v.hy() * hw() )
&&(hz() * v.hw() == v.hz() * hw() ) );
}
template < class R >
inline
bool
VectorH3<R>::operator!=( const VectorH3<R>& v) const
{ return !(*this == v); }
template < class R >
inline
typename VectorH3<R>::FT
VectorH3<R>::operator[](int i) const
{ return cartesian(i); }
template < class R >
CGAL_KERNEL_INLINE
typename VectorH3<R>::Vector_3
VectorH3<R>::operator-() const
{ return Vector_3( - hx(), - hy(), -hz(), hw() ); }
template <class R>
CGAL_KERNEL_INLINE
typename R::Vector_3
VectorH3<R>::operator+(const VectorH3<R>& v) const
{
return typename R::Vector_3(hx()*v.hw() + v.hx()*hw(),
hy()*v.hw() + v.hy()*hw(),
hz()*v.hw() + v.hz()*hw(),
hw()*v.hw() );
}
template <class R>
CGAL_KERNEL_INLINE
typename R::Vector_3
VectorH3<R>::operator-(const VectorH3<R>& v) const
{
return typename R::Vector_3(hx()*v.hw() - v.hx()*hw(),
hy()*v.hw() - v.hy()*hw(),
hz()*v.hw() - v.hz()*hw(),
hw()*v.hw() );
}
template <class R>
CGAL_KERNEL_INLINE
typename VectorH3<R>::FT
VectorH3<R>::squared_length() const
{
typedef typename R::FT FT;
return
FT( CGAL_NTS square(hx()) +
CGAL_NTS square(hy()) +
CGAL_NTS square(hz()) ) /
FT( CGAL_NTS square(hw()) );
}
template <class R>
CGAL_KERNEL_INLINE
typename R::Vector_3
VectorH3<R>::operator/(const typename VectorH3<R>::RT& f) const
{ return typename R::Vector_3( hx(), hy(), hz(), hw()*f ); }
template <class R>
CGAL_KERNEL_INLINE
typename R::Vector_3
VectorH3<R>::operator/(const typename VectorH3<R>::FT& f) const
{ return typename R::Vector_3(hx()*f.denominator(), hy()*f.denominator(),
hz()*f.denominator(), hw()*f.numerator() ); }
} //namespace CGAL
#endif // CGAL_HOMOGENEOUS_VECTOR_3_H