dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Multiset.h

4015 lines
113 KiB
C
Raw Normal View History

// Copyright (c) 2005 Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Ron Wein <wein@post.tau.ac.il>
#ifndef CGAL_MULTISET_H
#define CGAL_MULTISET_H
#include <CGAL/config.h>
#include <CGAL/assertions.h>
#include <CGAL/multiset_assertions.h>
#include <CGAL/enum.h>
#include <CGAL/memory.h>
#include <CGAL/number_utils_classes.h>
#include <iterator>
namespace CGAL {
/*!
* Container class representing a red-black tree, which is a balanced binary
* tree that has the following invariants:
* 1. Each node has a color, which is either red or black.
* 2. Each red node has two red children (if a child is missing, it is
* considered as a black node).
* 3. The number of black nodes from every path from the tree root to a leaf
* is the same for all tree leaves (it is called the 'black height' of the
* tree).
* Due to propeties 2-3, the height of a red-black tree containing n nodes
* is bounded by 2*log_2(n).
*
* The Multiset template requires three template parmeters:
* - The contained Type class represents the objects stored in the tree.
* It has to support the default constructor, the copy constructor and
* the assignment operator (operator=).
* - Compare is a three-valued functor used to define the order of objects of
* class Type: It has to support an operator() that recieves two objects from
* the Type class and returns SMALLER, EQUAL or LARGER, depending on the
* comparison result.
* In case the deafult parameter is supplied, the Type class has to support
* the less-than (<) and the equal (==) operators.
* - The Allocator represents an allocator class. By default, it is the CGAL
* allocator.
*/
template <typename Type_,
class Compare_ = CGAL::Compare<Type_>,
class Allocator_ = CGAL_ALLOCATOR(int)>
class Multiset
{
public:
// General type definitions:
typedef Type_ Type;
typedef Compare_ Compare;
typedef Allocator_ Allocator;
typedef Multiset<Type, Compare, Allocator> Self;
// Type definitions for STL compatibility.
typedef Type value_type;
typedef Type key_type;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef Compare key_compare;
typedef Compare value_compare;
typedef size_t size_type;
typedef std::ptrdiff_t difference_type;
protected:
/*! \struct
* Representation of a node in a red-black tree.
*/
struct Node
{
enum Color
{
RED, // Regular red node in the tree.
BLACK, // Regular black node in the tree.
DUMMY_BEGIN, // The dummy before-the-begin tree node.
DUMMY_END // The dummy past-the-end tree node.
};
typedef char Node_color;
Type object; // The stored object.
Node_color color; // The color of the node.
Node *parentP; // Points on the parent node.
Node *rightP; // Points on the right child of the node.
Node *leftP; // Points on the left child of the node.
/*! Default constructor. */
Node() :
parentP(NULL),
rightP(NULL),
leftP(NULL)
{}
/*!
* Constructor of a red-black tree node.
* \param _object The object stored in the node.
* \param _color The color of the node.
*/
Node (const Type& _object, Node_color _color) :
object(_object),
color(_color),
parentP(NULL),
rightP(NULL),
leftP(NULL)
{}
/*!
* Initialize the node.
* \param _object The object stored in the node.
* \param _color The color of the node.
*/
void init (const Type& _object, Node_color _color)
{
object = _object;
color = _color;
}
/*! Destructor. */
~Node ()
{}
/*!
* Check if the node is valid (not a dummy node).
*/
inline bool is_valid () const
{
return (color == BLACK || color == RED);
}
/*!
* Check if the node is red.
*/
inline bool is_red () const
{
return (color == RED);
}
/*!
* Check if the node is black.
* Note that dummy nodes are also considered to be black.
*/
inline bool is_black () const
{
return (color != RED);
}
/*!
* Get the previous node in the tree (according to the tree order).
*/
Node* predecessor () const
{
// The DUMMY_BEGIN node has no predecessor.
CGAL_multiset_assertion (color != DUMMY_BEGIN);
Node *predP;
if (leftP != NULL)
{
// If there is a left child, the predecessor is the maximal object in
// the sub-tree spanned by this child.
predP = leftP;
while (predP->rightP != NULL)
predP = predP->rightP;
}
else
{
// Otherwise, go up the tree until reaching the parent from the right
// direction (this also covers the case of the DUMMY_END node).
const Node *prevP = this;
predP = parentP;
while (predP != NULL && prevP == predP->leftP)
{
prevP = predP;
predP = predP->parentP;
}
}
return (predP);
}
/*!
* Get the next node in the tree (according to the tree order).
*/
Node* successor () const
{
// The DUMMY_END node has no successor.
CGAL_multiset_assertion (color != DUMMY_END);
Node *succP;
if (rightP != NULL)
{
// If there is a right child, the successor is the minimal object in
// the sub-tree spanned by this child.
succP = rightP;
while (succP->leftP != NULL)
succP = succP->leftP;
}
else
{
// Otherwise, go up the tree until reaching the parent from the left
// direction (this also covers the case of the DUMMY_BEGIN node).
const Node *prevP = this;
succP = parentP;
while (succP != NULL && prevP == succP->rightP)
{
prevP = succP;
succP = succP->parentP;
}
}
return (succP);
}
};
// Rebind the allocator to the Node type:
#ifdef CGAL_CXX11
typedef std::allocator_traits<Allocator> Allocator_traits;
typedef typename Allocator_traits::template rebind_alloc<Node> Node_allocator;
#else
typedef typename Allocator::template rebind <Node> Node_alloc_rebind;
typedef typename Node_alloc_rebind::other Node_allocator;
#endif
public:
// Forward decleration:
class const_iterator;
/*! \class
* An iterator for the red black tree.
* The iterator also servers as a handle to a tree nodes.
*/
class iterator
{
// Give the red-black tree class template access to the iterator's members.
friend class Multiset<Type, Compare, Allocator>;
friend class const_iterator;
public:
// Type definitions:
typedef std::bidirectional_iterator_tag iterator_category;
typedef Type value_type;
typedef std::ptrdiff_t difference_type;
typedef size_t size_type;
typedef value_type& reference;
typedef value_type* pointer;
private:
Node *nodeP; // Points to a tree node.
/*! Private constructor. */
iterator (Node *_nodeP) :
nodeP (_nodeP)
{}
public:
/*! Deafult constructor. */
iterator () :
nodeP (NULL)
{}
/*! Equality operator. */
bool operator== (const iterator& iter) const
{
return (nodeP == iter.nodeP);
}
/*! Inequality operator. */
bool operator!= (const iterator& iter) const
{
return (nodeP != iter.nodeP);
}
/*! Increment operator (prefix notation). */
iterator& operator++ ()
{
CGAL_multiset_precondition (nodeP != NULL);
nodeP = nodeP->successor();
return (*this);
}
/*! Increment operator (postfix notation). */
iterator operator++ (int )
{
CGAL_multiset_precondition (nodeP != NULL);
iterator temp = *this;
nodeP = nodeP->successor();
return (temp);
}
/*! Decrement operator (prefix notation). */
iterator& operator-- ()
{
CGAL_multiset_precondition (nodeP != NULL);
nodeP = nodeP->predecessor();
return (*this);
}
/*! Decrement operator (postfix notation). */
iterator operator-- (int )
{
CGAL_multiset_precondition (nodeP != NULL);
iterator temp = *this;
nodeP = nodeP->predecessor();
return (temp);
}
/*!
* Get the object pointed by the iterator.
*/
reference operator* () const
{
CGAL_multiset_precondition (nodeP != NULL && nodeP->is_valid());
return (nodeP->object);
}
/*!
* Get the a pointer object pointed by the iterator.
*/
pointer operator-> () const
{
CGAL_multiset_precondition (nodeP != NULL && nodeP->is_valid());
return (&(nodeP->object));
}
};
friend class iterator;
/*! \class
* An const iterator for the red black tree.
* The iterator also servers as a const handle to a tree nodes.
*/
class const_iterator
{
// Give the red-black tree class template access to the iterator's members.
friend class Multiset<Type, Compare, Allocator>;
public:
// Type definitions:
typedef std::bidirectional_iterator_tag iterator_category;
typedef Type value_type;
typedef std::ptrdiff_t difference_type;
typedef size_t size_type;
typedef const value_type& reference;
typedef const value_type* pointer;
private:
const Node *nodeP; // Points to a tree node.
/*! Private constructor. */
const_iterator (const Node *_nodeP) :
nodeP (_nodeP)
{}
public:
/*! Deafult constructor. */
const_iterator () :
nodeP (NULL)
{}
/*! Constructor from a mutable iterator. */
const_iterator (const iterator& iter) :
nodeP (iter.nodeP)
{}
/*! Equality operator. */
bool operator== (const const_iterator& iter) const
{
return (nodeP == iter.nodeP);
}
/*! Inequality operator. */
bool operator!= (const const_iterator& iter) const
{
return (nodeP != iter.nodeP);
}
/*! Increment operator (prefix notation). */
const_iterator& operator++ ()
{
CGAL_multiset_precondition (nodeP != NULL);
nodeP = nodeP->successor();
return (*this);
}
/*! Increment operator (postfix notation). */
const_iterator operator++ (int )
{
CGAL_multiset_precondition (nodeP != NULL);
const_iterator temp = *this;
nodeP = nodeP->successor();
return (temp);
}
/*! Decrement operator (prefix notation). */
const_iterator& operator-- ()
{
CGAL_multiset_precondition (nodeP != NULL);
nodeP = nodeP->predecessor();
return (*this);
}
/*! Decrement operator (postfix notation). */
const_iterator operator-- (int )
{
CGAL_multiset_precondition (nodeP != NULL);
const_iterator temp = *this;
nodeP = nodeP->predecessor();
return (temp);
}
/*!
* Get the object pointed by the iterator.
*/
reference operator* () const
{
CGAL_multiset_precondition (nodeP != NULL && nodeP->is_valid());
return (nodeP->object);
}
/*!
* Get the a pointer object pointed by the iterator.
*/
pointer operator-> () const
{
CGAL_multiset_precondition (nodeP != NULL && nodeP->is_valid());
return (&(nodeP->object));
}
};
friend class const_iterator;
// Define the reverse iterators:
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
protected:
// Data members:
Node *rootP; // Pointer to the tree root.
size_t iSize; // Number of objects stored in the tree.
size_t iBlackHeight; // The black-height of the tree (the number
// of black nodes from the root to each leaf).
Compare comp_f; // A comparison functor.
Node_allocator node_alloc; // Allocator for the tree nodes.
Node beginNode; // A fictitious before-the-minimum node.
// Its parent is the leftmost tree node.
Node endNode; // A fictitious past-the-maximum node.
// Its parent is the rightmost tree node.
public:
/// \name Construction and destruction functions.
//@{
/*!
* Default constructor. [takes O(1) operations]
*/
Multiset ();
/*!
* Constructor with a comparison object. [takes O(1) operations]
* \param comp A comparison object to be used by the tree.
*/
Multiset (const Compare& comp);
/*!
* Copy constructor. [takes O(n) operations]
* \param tree The copied tree.
*/
Multiset (const Self& tree);
/*!
* Construct a tree that contains all objects in the given range.
* [takes O(n log n) operations]
* \param first An iterator for the first object in the range.
* \param last A past-the-end iterator for the range.
*/
template <class InputIterator>
Multiset (InputIterator first, InputIterator last,
const Compare& comp = Compare()) :
rootP (NULL),
iSize (0),
iBlackHeight (0),
comp_f (comp)
{
// Mark the two fictitious nodes as dummies.
beginNode.color = Node::DUMMY_BEGIN;
endNode.color = Node::DUMMY_END;
// Insert all objects to the tree.
while (first != last)
{
insert (*first);
++first;
}
}
/*!
* Destructor. [takes O(n) operations]
*/
virtual ~Multiset ();
/*!
* Assignment operator. [takes O(n) operations]
* \param tree The copied tree.
*/
Self& operator= (const Self& tree);
/*!
* Swap two trees. [takes O(1) operations]
* \param tree The copied tree.
*/
void swap (Self& tree);
//@}
/// \name Comparison operations.
//@{
/*!
* Test two trees for equality. [takes O(n) operations]
* \param tree The compared tree.
*/
bool operator== (const Self& tree) const;
/*!
* Check if our tree is lexicographically smaller. [takes O(n) operations]
* \param tree The compared tree.
*/
bool operator< (const Self& tree) const;
//@}
/// \name Access functions.
//@{
/*!
* Get the comparsion object used by the tree (non-const version).
*/
inline Compare& key_comp ()
{
return (comp_f);
}
/*!
* Get the comparsion object used by the tree (non-const version).
*/
inline Compare& value_comp ()
{
return (comp_f);
}
/*!
* Get the comparsion object used by the tree (const version).
*/
inline const Compare& key_comp () const
{
return (comp_f);
}
/*!
* Get the comparsion object used by the tree (const version).
*/
inline const Compare& value_comp () const
{
return (comp_f);
}
/*!
* Get an iterator for the minimum object in the tree (non-const version).
*/
inline iterator begin ();
/*!
* Get a past-the-end iterator for the tree objects (non-const version).
*/
inline iterator end ();
/*!
* Get an iterator for the minimum object in the tree (const version).
*/
inline const_iterator begin () const;
/*!
* Get a past-the-end iterator for the tree objects (const version).
*/
inline const_iterator end () const;
/*!
* Get a reverse iterator for the maxnimum object in the tree
* (non-const version).
*/
inline reverse_iterator rbegin ();
/*!
* Get a pre-the-begin reverse iterator for the tree objects
* (non-const version).
*/
inline reverse_iterator rend ();
/*!
* Get a reverse iterator for the maximum object in the tree (const version).
*/
inline const_reverse_iterator rbegin () const;
/*!
* Get a pre-the-begin reverse iterator for the tree objects (const version).
*/
inline const_reverse_iterator rend () const;
/*!
* Check whether the tree is empty.
*/
inline bool empty () const
{
return (rootP == NULL);
}
/*!
* Get the size of the tree. [takes O(1) operations, unless the tree
* was involved in a split operation, then it may take O(n) time.]
* \return The number of objects stored in the tree.
*/
size_t size () const;
/*!
* Get the maximal possible size (equivalent to size()).
*/
size_t max_size () const
{
return (size());
}
//@}
/// \name Insertion functions.
/*!
* Insert an object into the tree. [takes O(log n) operations]
* \param object The object to be inserted.
* \return An iterator pointing to the inserted object.
*/
iterator insert (const Type& object);
/*!
* Insert a range of k objects into the tree. [takes O(k log n) operations]
* \param first An iterator for the first object in the range.
* \param last A past-the-end iterator for the range.
*/
template <class InputIterator>
void insert (InputIterator first, InputIterator last)
{
// Insert all objects to the tree.
while (first != last)
{
insert (*first);
++first;
}
return;
}
/*!
* Insert an object to the tree, with a given hint to its position.
* [takes O(log n) operations at worst-case, but only O(1) amortized]
* \param position A hint for the position of the object.
* \param object The object to be inserted.
* \return An iterator pointing to the inserted object.
*/
iterator insert (iterator position,
const Type& object);
/*!
* Insert an object to the tree, as the successor the given object.
* [takes O(log n) operations at worst-case, but only O(1) amortized]
* \param position Points to the object after which the new object should
* be inserted (or an invalid iterator to insert the object
* as the tree minimum).
* \param object The object to be inserted.
* \pre The operation does not violate the tree properties.
* \return An iterator pointing to the inserted object.
*/
iterator insert_after (iterator position,
const Type& object);
/*!
* Insert an object to the tree, as the predecessor the given object.
* [takes O(log n) operations at worst-case, but only O(1) amortized]
* \param position Points to the object before which the new object should
* be inserted (or an invalid iterator to insert the object
* as the tree maximum).
* \param object The object to be inserted.
* \pre The operation does not violate the tree properties.
* \return An iterator pointing to the inserted object.
*/
iterator insert_before (iterator position,
const Type& object);
//@}
/// \name Erasing functions.
//@{
/*!
* Erase objects from the tree. [takes O(log n) operations]
* \param object The object to be removed.
* \return The number of objects removed from the tree.
* Note that all iterators to the erased objects become invalid.
*/
size_t erase (const Type& object);
/*!
* Remove the object pointed by the given iterator.
* [takes O(log n) operations at worst-case, but only O(1) amortized]
* \param position An iterator pointing the object to be erased.
* \pre The iterator must be a valid.
* Note that all iterators to the erased object become invalid.
*/
void erase (iterator position);
/*!
* Clear the contents of the tree. [takes O(n) operations]
*/
void clear ();
//@}
/// \name Search functions.
//@{
/*!
* Search the tree for the given key (non-const version).
* [takes O(log n) operations]
* \param key The query key.
* \param comp_key A comparison functor for comparing keys and objects.
* \return A iterator pointing to the first equivalent object in the tree,
* or end() if no such object is found in the tree.
*/
iterator find (const Type& object)
{
return (find (object, comp_f));
}
template <class Key, class CompareKey>
iterator find (const Key& key,
const CompareKey& comp_key)
{
bool is_equal;
Node *nodeP = _bound (LOWER_BOUND, key, comp_key, is_equal);
if (_is_valid(nodeP) && is_equal)
return (iterator (nodeP));
else
return (iterator (&endNode));
}
/*!
* Search the tree for the given key (const version).
* [takes O(log n) operations]
* \param key The query key.
* \param comp_key A comparison functor for comparing keys and objects.
* \return A iterator pointing to the first equivalent object in the tree,
* or end() if no such object is found in the tree.
*/
const_iterator find (const Type& object) const
{
return (find (object, comp_f));
}
template <class Key, class CompareKey>
const_iterator find (const Key& key,
const CompareKey& comp_key) const
{
bool is_equal;
const Node *nodeP = _bound (LOWER_BOUND, key, comp_key, is_equal);
if (_is_valid (nodeP) && is_equal)
return (const_iterator (nodeP));
else
return (const_iterator (&endNode));
}
/*!
* Count the number of object in the tree equivalent to a given key.
* [takes O(log n + d) operations]
* \param key The query key.
* \param comp_key A comparison functor for comparing keys and objects.
* \return The number of equivalent objects.
*/
size_type count (const Type& object) const
{
return (count (object, comp_f));
}
template <class Key, class CompareKey>
size_type count (const Key& key,
const CompareKey& comp_key) const
{
// Get the first equivalent object (if any).
size_t n_objects = 0;
bool is_equal;
const Node *nodeP = _bound (LOWER_BOUND, key, comp_key, is_equal);
if (! is_equal)
return (0);
while (_is_valid (nodeP) &&
comp_key (key, nodeP->object) == EQUAL)
{
n_objects++;
// Proceed to the successor.
nodeP = nodeP->successor();
}
return (n_objects);
}
/*!
* Get the first element whose key is not less than a given key
* (non-const version). [takes O(log n) operations]
* \param key The query key.
* \param comp_key A comparison functor for comparing keys and objects.
* \return The lower bound of the key, or end() if the key is not found
* in the tree.
*/
iterator lower_bound (const Type& object)
{
return (lower_bound (object, comp_f));
}
template <class Key, class CompareKey>
iterator lower_bound (const Key& key,
const CompareKey& comp_key)
{
bool is_equal;
Node *nodeP = _bound (LOWER_BOUND, key, comp_key, is_equal);
if (_is_valid (nodeP))
return (iterator (nodeP));
else
return (iterator (&endNode));
}
/*!
* Get the first element whose key is not less than a given key
* (non-const version). [takes O(log n) operations]
* \param key The query key.
* \param comp_key A comparison functor for comparing keys and objects.
* \return The lower bound of the key, along with a flag indicating whether
* the bound equals the given key.
*/
std::pair<iterator, bool> find_lower (const Type& object)
{
return (find_lower (object, comp_f));
}
template <class Key, class CompareKey>
std::pair<iterator, bool> find_lower (const Key& key,
const CompareKey& comp_key)
{
bool is_equal;
Node *nodeP = _bound (LOWER_BOUND, key, comp_key, is_equal);
if (_is_valid (nodeP))
return (std::make_pair (iterator (nodeP), is_equal));
else
return (std::make_pair (iterator (&endNode), false));
}
/*!
* Get the first element whose key is greater than a given key
* (non-const version). [takes O(log n) operations]
* \param key The query key.
* \param comp_key A comparison functor for comparing keys and objects.
* \return The upper bound of the key, or end() if the key is not found
* in the tree.
*/
iterator upper_bound (const Type& object)
{
return (upper_bound (object, comp_f));
}
template <class Key, class CompareKey>
iterator upper_bound (const Key& key,
const CompareKey& comp_key)
{
bool is_equal;
Node *nodeP = _bound (UPPER_BOUND, key, comp_key, is_equal);
if (_is_valid (nodeP))
return (iterator (nodeP));
else
return (iterator (&endNode));
}
/*!
* Get the first element whose key is not less than a given key
* (const version). [takes O(log n) operations]
* \param key The query key.
* \param comp_key A comparison functor for comparing keys and objects.
* \return The lower bound of the key, or end() if the key is not found
* in the tree.
*/
const_iterator lower_bound (const Type& object) const
{
return (lower_bound (object, comp_f));
}
template <class Key, class CompareKey>
const_iterator lower_bound (const Key& key,
const CompareKey& comp_key) const
{
bool is_equal;
const Node *nodeP = _bound (LOWER_BOUND, key, comp_key, is_equal);
if (_is_valid (nodeP))
return (const_iterator (nodeP));
else
return (const_iterator (&endNode));
}
/*!
* Get the first element whose key is not less than a given key
* (const version). [takes O(log n) operations]
* \param key The query key.
* \param comp_key A comparison functor for comparing keys and objects.
* \return The lower bound of the key, along with a flag indicating whether
* the bound equals the given key.
*/
std::pair<const_iterator, bool> find_lower (const Type& object) const
{
return (find_lower (object, comp_f));
}
template <class Key, class CompareKey>
std::pair<const_iterator, bool> find_lower (const Key& key,
const CompareKey& comp_key) const
{
bool is_equal;
const Node *nodeP = _bound (LOWER_BOUND, key, comp_key, is_equal);
if (_is_valid (nodeP))
return (std::make_pair (const_iterator (nodeP), is_equal));
else
return (std::make_pair (const_iterator (&endNode), false));
}
/*!
* Get the first element whose key is greater than a given key
* (const version). [takes O(log n) operations]
* \param object The query object.
* \return The upper bound of the key, or end() if the key is not found
* in the tree.
*/
const_iterator upper_bound (const Type& object) const
{
return (upper_bound (object, comp_f));
}
template <class Key, class CompareKey>
const_iterator upper_bound (const Key& key,
const CompareKey& comp_key) const
{
bool is_equal;
const Node *nodeP = _bound (UPPER_BOUND, key, comp_key, is_equal);
if (_is_valid (nodeP))
return (const_iterator (nodeP));
else
return (const_iterator (&endNode));
}
/*!
* Get the range of objects in the tree that are equivalent to a given key
* (non-const version). [takes O(log n + d) operations]
* \param key The query key.
* \param comp_key A comparison functor for comparing keys and objects.
* \return A pair of (lower_bound(key), upper_bound(key)).
*/
std::pair<iterator, iterator> equal_range (const Type& object)
{
return (equal_range (object, comp_f));
}
template <class Key, class CompareKey>
std::pair<iterator, iterator>
equal_range (const Key& key,
const CompareKey& comp_key)
{
// Get the first equivalent object (if any).
const size_t max_steps = static_cast<size_t> (1.5 * iBlackHeight);
bool is_equal;
Node *lowerP = _bound (LOWER_BOUND, key, comp_key, is_equal);
Node *upperP = lowerP;
size_t n_objects = 0;
if (is_equal)
{
while (_is_valid (upperP) &&
comp_key (key, upperP->object) == EQUAL)
{
n_objects++;
if (n_objects >= max_steps)
{
// If we have more than log(n) objects in the range, locate the
// upper bound directly.
upperP = _bound (UPPER_BOUND, key, comp_key, is_equal);
break;
}
// Proceed to the successor.
upperP = upperP->successor();
}
}
return (std::pair<iterator, iterator>
((_is_valid (lowerP)) ? iterator (lowerP) : iterator (&endNode),
(_is_valid (upperP)) ? iterator (upperP) : iterator (&endNode)));
}
/*!
* Get the range of objects in the tree that are equivalent to a given key
* (const version). [takes O(log n + d) operations]
* \param key The query key.
* \param comp_key A comparison functor for comparing keys and objects.
* \return A pair of (lower_bound(key), upper_bound(key)).
*/
std::pair<const_iterator, const_iterator>
equal_range (const Type& object) const
{
return (equal_range (object, comp_f));
}
template <class Key, class CompareKey>
std::pair<const_iterator, const_iterator>
equal_range (const Key& key,
const CompareKey& comp_key) const
{
// Get the first equivalent object (if any).
const size_t max_steps = static_cast<size_t> (1.5 * iBlackHeight);
bool is_equal;
const Node *lowerP = _bound (LOWER_BOUND, key, comp_key, is_equal);
const Node *upperP = lowerP;
size_t n_objects = 0;
if (is_equal)
{
while (_is_valid (upperP) &&
comp_key (key, upperP->object) == EQUAL)
{
n_objects++;
if (n_objects >= max_steps)
{
// If we have more than log(n) objects in the range, locate the
// upper bound directly.
upperP = _bound (UPPER_BOUND, key, comp_key, is_equal);
break;
}
// Proceed to the successor.
upperP = upperP->successor();
}
}
return (std::pair<const_iterator, const_iterator>
((_is_valid (lowerP)) ? const_iterator(lowerP) :
const_iterator(&endNode),
(_is_valid (upperP)) ? const_iterator(upperP) :
const_iterator(&endNode)));
}
//@}
/// \name Special functions.
//@{
/*!
* Replace the object pointed by a given iterator with another object.
* [takes O(1) operations]
* \param position An iterator pointing the object to be replaced.
* \param object The new object.
* \pre The given iterator is valid.
* The operation does not violate the tree properties.
*/
void replace (iterator position,
const Type& object);
/*!
* Swap the location two objects in the tree, given by their positions.
* [takes O(1) operations]
* \param pos1 An iterator pointing to the first object.
* \param pos1 An iterator pointing to the second object.
* \pre The two iterators are valid.
* The operation does not violate the tree properties.
*/
void swap (iterator pos1, iterator pos2);
/*!
* Catenate the tree with a given tree, whose minimal object is not less
* than the maximal object of this tree. [takes O(log n) operations]
* The function clears the other given tree, but all its iterators remain
* valid and can be used with the catenated tree.
* \param tree The tree to catenate to out tree.
* \pre The minimal object in the given tree is not less than the maximal
* objects.
*/
void catenate (Self& tree);
/*!
* Split the tree such that all remaining objects are less than a given
* key, and all objects greater then (or equal to) this key form
* a new output tree. [takes O(log n) operations]
* \param key The split key.
* \param comp_key A comparison functor for comparing keys and objects.
* \param tree Output: The tree that will eventually contain all objects
* greater than the split object.
* \pre The output tree is initially empty.
*/
void split (const Type& object, Self& tree)
{
split (object, comp_f, tree);
return;
}
template <class Key, class CompareKey>
void split (const Key& key, const CompareKey& comp_key,
Self& tree)
{
split (lower_bound (key, comp_key), tree);
return;
}
/*!
* Split the tree at a given position, such that it contains all objects
* in the range [begin, position) and all objects in the range
* [position, end) form a new output tree. [takes O(log n) operations]
* \param position An iterator pointing at the split position.
* \param tree Output: The output tree.
* \pre The output tree is initially empty.
*/
void split (iterator position, Self& tree);
//@}
/// \name Debugging utilities.
//@{
/*!
* Check validation of the tree. [takes o(n) operations]
* \return true iff the tree is valid.
*
*/
bool is_valid() const;
/*!
* Get the height of the tree. [takes O(n) operations]
* \return The length of the longest path from the root to a leaf node.
*/
size_t height () const;
/*!
* Get the black-height of the tree. [takes O(1) operations]
* \return The number of black nodes from the root to each leaf node.
*/
inline size_t black_height () const
{
return (iBlackHeight);
}
//@}
protected:
/// \name Auxiliary predicates.
//@{
/*! Check whether a node is valid. */
inline bool _is_valid (const Node *nodeP) const
{
return (nodeP != NULL && nodeP->is_valid());
}
/*! Check whether a node is red. */
inline bool _is_red (const Node *nodeP) const
{
return (nodeP != NULL && nodeP->color == Node::RED);
}
/*! Check whether a node is black. */
inline bool _is_black (const Node *nodeP) const
{
// Note that invalid nodes are considered ro be black as well.
return (nodeP == NULL || nodeP->color != Node::RED);
}
//@}
/// \name Auxiliary operations.
//@{
/*!
* Move the contents of one tree to another without actually duplicating
* the nodes. This operation also clears the copied tree.
* \param tree The tree to be copied (and eventuallu cleared).
*/
void _shallow_assign (Self& tree);
/*!
* Clear the properties of the tree, without actually deallocating its
* nodes.
*/
void _shallow_clear ();
/*!
* Return the pointer to the node containing the first object that is not
* less than (or greater than) the given key.
* \param type The bound type (lower or upper).
* \param key The query key.
* \param comp_key A comparison functor for comparing keys and objects.
* \param is_equal Output: In case of a lower bound, indicates whether the
* returned node contains an object equivalent to
* the given key.
* \return A node that contains the first object that is not less than the
* given key (if type is LOWER_BOUND), or anode that contains the
* first object that is greater than the given key (if type is
* UPPER_BOUND) - or a NULL node if no such nodes exist.
*/
enum Bound_type {LOWER_BOUND, UPPER_BOUND};
template <class Key, class CompareKey>
Node* _bound (Bound_type type,
const Key& key,
const CompareKey& comp_key,
bool& is_equal) const
{
// Initially mark that the key is not found in the tree.
is_equal = false;
if (rootP == NULL)
// The tree is empty:
return (NULL);
Node *currentP = rootP;
Node *prevP = currentP;
Comparison_result comp_res = EQUAL;
while (_is_valid (currentP))
{
comp_res = comp_key (key, currentP->object);
if (comp_res == EQUAL)
{
// The key is found in the tree:
if (type == LOWER_BOUND)
{
is_equal = true;
// Lower bound computation:
// Go backward as long as we find equivalent objects.
prevP = currentP->predecessor();
while (_is_valid (prevP))
{
if (comp_key (key, prevP->object) != EQUAL)
break;
currentP = prevP;
prevP = currentP->predecessor();
}
}
else
{
// Upper bound computation:
// Go backward until we encounter a non-equivalent objects.
do
{
currentP = currentP->successor();
} while (_is_valid (currentP) &&
comp_key (key, currentP->object) == EQUAL);
}
return (currentP);
}
else if (comp_res == SMALLER)
{
prevP = currentP;
// Go down to the left child.
currentP = currentP->leftP;
}
else // comp_res == LARGER
{
prevP = currentP;
// Go down to the right child.
currentP = currentP->rightP;
}
}
// If we reached here, the object is not found in the tree. We check if the
// last node we visited (given by prevP) contains an object greater than
// the query object. If not, we return its successor.
if (comp_res == SMALLER)
return (prevP);
else
return (prevP->successor());
}
/*!
* Remove the object stored in the given tree node.
* \param nodeP The node storing the object to be removed from the tree.
*/
void _remove_at (Node* nodeP);
/*!
* Swap the location two nodes in the tree.
* \param node1_P The first node.
* \param node2_P The second node.
*/
void _swap (Node* node1_P, Node* node2_P);
/*!
* Swap the location two sibling nodes in the tree.
* \param node1_P The first node.
* \param node2_P The second node.
* \pre The two nodes have a common parent.
*/
void _swap_siblings (Node* node1_P, Node* node2_P);
/*!
* Calculate the height of the sub-tree spanned by the given node.
* \param nodeP The sub-tree root.
* \return The height of the sub-tree.
*/
size_t _sub_height (const Node* nodeP) const;
/*!
* Check whether a sub-tree is valid.
* \param nodeP The sub-tree root.
* \param sub_size Output: The size of the sub-tree.
* \param sub_bh Output: The black height of the sub-tree.
*/
bool _sub_is_valid (const Node* nodeP,
size_t& sub_size,
size_t& sub_bh) const;
/*!
* Get the leftmost node in the sub-tree spanned by the given node.
* \param nodeP The sub-tree root.
* \return The sub-tree minimum.
*/
Node* _sub_minimum (Node* nodeP) const;
/*!
* Get the rightmost node in the sub-tree spanned by the given node.
* \param nodeP The sub-tree root.
* \return The sub-tree maximum.
*/
Node* _sub_maximum (Node* nodeP) const;
/*!
* Left-rotate the sub-tree spanned by the given node.
* \param nodeP The sub-tree root.
*/
void _rotate_left (Node* nodeP);
/*!
* Right-rotate the sub-tree spanned by the given node.
* \param nodeP The sub-tree root.
*/
void _rotate_right (Node* nodeP);
/*!
* Duplicate the entire sub-tree rooted at the given node.
* \param nodeP The sub-tree root.
* \return A pointer to the duplicated sub-tree root.
*/
Node* _duplicate (const Node* nodeP);
/*!
* Destroy the entire sub-tree rooted at the given node.
* \param nodeP The sub-tree root.
*/
void _destroy (Node* nodeP);
/*!
* Fix-up the red-black tree properties after an insertion operation.
* \param nodeP The node that has just been inserted to the tree.
*/
void _insert_fixup (Node* nodeP);
/*!
* Fix-up the red-black tree properties after a removal operation.
* \param nodeP The child of the node that has just been removed from
* the tree (may be a NULL node).
* \param parentP The parent node of nodeP (as nodeP may be a NULL node,
* we have to specify its parent explicitly).
*/
void _remove_fixup (Node* nodeP, Node* parentP);
/*!
* Allocate and initialize new tree node.
* \param object The object stored in the node.
* \param color The node color.
* \return A pointer to the newly created node.
*/
Node* _allocate_node (const Type& object,
typename Node::Node_color color)
#ifdef CGAL_CFG_OUTOFLINE_MEMBER_DEFINITION_BUG
{
CGAL_multiset_assertion (color != Node::DUMMY_BEGIN &&
color != Node::DUMMY_END);
Node* new_node = node_alloc.allocate(1);
#ifdef CGAL_CXX11
std::allocator_traits<Node_allocator>::construct(node_alloc, new_node, beginNode);
#else
node_alloc.construct(new_node, beginNode);
#endif
new_node->init(object, color);
return (new_node);
}
#else
;
#endif
/*!
* De-allocate a tree node.
* \param nodeP The object node to be deallocated.
*/
void _deallocate_node (Node* nodeP);
//@}
};
//---------------------------------------------------------
// Default constructor.
//
template <class Type, class Compare, typename Allocator>
Multiset<Type, Compare, Allocator>::Multiset () :
rootP (NULL),
iSize (0),
iBlackHeight (0),
comp_f ()
{
// Mark the two fictitious nodes as dummies.
beginNode.color = Node::DUMMY_BEGIN;
endNode.color = Node::DUMMY_END;
}
//---------------------------------------------------------
// Constructor with a pointer to comparison object.
//
template <class Type, class Compare, typename Allocator>
Multiset<Type, Compare, Allocator>::Multiset (const Compare& comp) :
rootP (NULL),
iSize (0),
iBlackHeight (0),
comp_f (comp)
{
// Mark the two fictitious nodes as dummies.
beginNode.color = Node::DUMMY_BEGIN;
endNode.color = Node::DUMMY_END;
}
//---------------------------------------------------------
// Copy constructor.
//
template <class Type, class Compare, typename Allocator>
Multiset<Type, Compare, Allocator>::Multiset (const Self& tree) :
rootP (NULL),
iSize (tree.iSize),
iBlackHeight (tree.iBlackHeight),
comp_f (tree.comp_f)
{
// Mark the two fictitious nodes as dummies.
beginNode.color = Node::DUMMY_BEGIN;
endNode.color = Node::DUMMY_END;
// Copy all the copied tree's nodes recursively.
if (tree.rootP != NULL)
{
rootP = _duplicate (tree.rootP);
// Set the dummy nodes.
beginNode.parentP = _sub_minimum (rootP);
beginNode.parentP->leftP = &beginNode;
endNode.parentP = _sub_maximum (rootP);
endNode.parentP->rightP = &endNode;
}
else
{
beginNode.parentP = NULL;
endNode.parentP = NULL;
}
}
//---------------------------------------------------------
// Destructor.
//
template <class Type, class Compare, typename Allocator>
Multiset<Type, Compare, Allocator>::~Multiset ()
{
// Delete the entire tree recursively.
if (rootP != NULL)
_destroy (rootP);
rootP = NULL;
beginNode.parentP = NULL;
endNode.parentP = NULL;
}
//---------------------------------------------------------
// Assignment operator.
//
template <class Type, class Compare, typename Allocator>
Multiset<Type, Compare, Allocator>&
Multiset<Type, Compare, Allocator>::operator= (const Self& tree)
{
// Avoid self-assignment.
if (this == &tree)
return (*this);
// Free all objects currently stored in the tree.
clear();
// Update the number of objects stored in the tree.
iSize = tree.iSize;
iBlackHeight = tree.iBlackHeight;
// Copy all the copied tree's nodes recursively.
if (tree.rootP != NULL)
{
rootP = _duplicate (tree.rootP);
// Set the dummy nodes.
beginNode.parentP = _sub_minimum (rootP);
beginNode.parentP->leftP = &beginNode;
endNode.parentP = _sub_maximum (rootP);
endNode.parentP->rightP = &endNode;
}
else
{
beginNode.parentP = NULL;
endNode.parentP = NULL;
}
return (*this);
}
//---------------------------------------------------------
// Swap two trees (replace their contents).
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::swap (Self& tree)
{
// Avoid self-swapping.
if (this == &tree)
return;
// Replace the contents of the trees.
Node *tempP = rootP;
rootP = tree.rootP;
tree.rootP = tempP;
size_t iTemp = iSize;
iSize = tree.iSize;
tree.iSize = iTemp;
iTemp = iBlackHeight;
iBlackHeight = tree.iBlackHeight;
tree.iBlackHeight = iTemp;
// Update the fictitious begin and end nodes.
tempP = beginNode.parentP;
beginNode.parentP = tree.beginNode.parentP;
if (beginNode.parentP != NULL)
beginNode.parentP->leftP = &beginNode;
tree.beginNode.parentP = tempP;
if (tree.beginNode.parentP != NULL)
tree.beginNode.parentP->leftP = &(tree.beginNode);
tempP = endNode.parentP;
endNode.parentP = tree.endNode.parentP;
if (endNode.parentP != NULL)
endNode.parentP->rightP = &endNode;
tree.endNode.parentP = tempP;
if (tree.endNode.parentP != NULL)
tree.endNode.parentP->rightP = &(tree.endNode);
return;
}
//---------------------------------------------------------
// Test two trees for equality.
//
template <class Type, class Compare, typename Allocator>
bool Multiset<Type,Compare,Allocator>::operator== (const Self& tree) const
{
// The sizes of the two trees must be the same.
if (size() != tree.size())
return (false);
// Go over all elements in both tree and compare them pairwise.
const_iterator it1 = this->begin();
const_iterator it2 = tree.begin();
while (it1 != this->end() && it2 != tree.end())
{
if (comp_f (*it1, *it2) != EQUAL)
return (false);
++it1;
++it2;
}
// If we reached here, the two trees are equal.
return (true);
}
//---------------------------------------------------------
// Check if our tree is lexicographically smaller that a given tree.
//
template <class Type, class Compare, typename Allocator>
bool Multiset<Type,Compare,Allocator>::operator< (const Self& tree) const
{
// Go over all elements in both tree and compare them pairwise.
const_iterator it1 = this->begin();
const_iterator it2 = tree.begin();
while (it1 != this->end() && it2 != tree.end())
{
const Comparison_result res = comp_f (*it1, *it2);
if (res == SMALLER)
return (true);
if (res == LARGER)
return (false);
++it1;
++it2;
}
// If we reached here, one tree is the prefix of the other tree. We now
// check which tree contains more elements.
if (it1 != this->end())
{
// Our tree contains the other tree as a prefix, so it is not smaller.
return (false);
}
else if (it2 != tree.end())
{
// The other tree contains our tree as a prefix, so our tree is smaller.
return (true);
}
// The two trees are equal:
return (false);
}
//---------------------------------------------------------
// Get an iterator for the minimum object in the tree (non-const version).
//
template <class Type, class Compare, typename Allocator>
inline typename Multiset<Type,Compare,Allocator>::iterator
Multiset<Type, Compare, Allocator>::begin ()
{
if (beginNode.parentP != NULL)
return (iterator (beginNode.parentP));
else
return (iterator (&endNode));
}
//---------------------------------------------------------
// Get a past-the-end iterator for the tree objects (non-const version).
//
template <class Type, class Compare, typename Allocator>
inline typename Multiset<Type, Compare,Allocator>::iterator
Multiset<Type, Compare, Allocator>::end ()
{
return (iterator (&endNode));
}
//---------------------------------------------------------
// Get an iterator for the minimum object in the tree (const version).
//
template <class Type, class Compare, typename Allocator>
inline typename Multiset<Type,Compare,Allocator>::const_iterator
Multiset<Type, Compare, Allocator>::begin () const
{
if (beginNode.parentP != NULL)
return (const_iterator (beginNode.parentP));
else
return (const_iterator (&endNode));
}
//---------------------------------------------------------
// Get a past-the-end iterator for the tree objects (const version).
//
template <class Type, class Compare, typename Allocator>
inline typename Multiset<Type,Compare,Allocator>::const_iterator
Multiset<Type, Compare, Allocator>::end () const
{
return (const_iterator (&endNode));
}
//---------------------------------------------------------
// Get a reverse iterator for the maxnimum object in the tree
// (non-const version).
//
template <class Type, class Compare, typename Allocator>
inline typename Multiset<Type,Compare,Allocator>::reverse_iterator
Multiset<Type, Compare, Allocator>::rbegin ()
{
return (reverse_iterator (end()));
}
//---------------------------------------------------------
// Get a pre-the-begin reverse iterator for the tree objects
// (non-const version).
//
template <class Type, class Compare, typename Allocator>
inline typename Multiset<Type,Compare,Allocator>::reverse_iterator
Multiset<Type, Compare, Allocator>::rend ()
{
return (reverse_iterator (begin()));
}
//---------------------------------------------------------
// Get a reverse iterator for the maximum object in the tree (const version).
//
template <class Type, class Compare, typename Allocator>
inline typename Multiset<Type,Compare,Allocator>::const_reverse_iterator
Multiset<Type, Compare, Allocator>::rbegin () const
{
return (const_reverse_iterator (end()));
}
//---------------------------------------------------------
// Get a pre-the-begin reverse iterator for the tree objects (const version).
//
template <class Type, class Compare, typename Allocator>
inline typename Multiset<Type,Compare,Allocator>::const_reverse_iterator
Multiset<Type, Compare, Allocator>::rend () const
{
return (const_reverse_iterator (begin()));
}
//---------------------------------------------------------
// Get the size of the tree.
//
template <class Type, class Compare, typename Allocator>
size_t Multiset<Type, Compare, Allocator>::size () const
{
if (rootP == NULL)
// The tree is empty:
return (0);
else if (iSize > 0)
return (iSize);
// If we reached here, the tree is the result of a split operation and its
// size is not known - compute it now.
const Node *nodeP = beginNode.parentP;
size_t iComputedSize = 0;
while (nodeP != &endNode)
{
nodeP = nodeP->successor();
iComputedSize++;
}
// Assign the computed size.
Self *myThis = const_cast<Self*> (this);
myThis->iSize = iComputedSize;
return (iComputedSize);
}
//---------------------------------------------------------
// Insert a new object to the tree.
//
template <class Type, class Compare, typename Allocator>
typename Multiset<Type, Compare, Allocator>::iterator
Multiset<Type, Compare, Allocator>::insert (const Type& object)
{
if (rootP == NULL)
{
// In case the tree is empty, assign a new rootP.
// Notice that the root is always black.
rootP = _allocate_node (object, Node::BLACK);
iSize = 1;
iBlackHeight = 1;
// As the tree now contains a single node, it is both the tree
// maximum and minimum.
beginNode.parentP = rootP;
rootP->leftP = &beginNode;
endNode.parentP = rootP;
rootP->rightP = &endNode;
return (iterator (rootP));
}
// Find a place for the new object, and insert it as a red leaf.
Node *currentP = rootP;
Node *newNodeP = _allocate_node (object, Node::RED);
Comparison_result comp_res;
bool is_leftmost = true;
bool is_rightmost = true;
while (_is_valid (currentP))
{
// Compare the inserted object with the object stored in the current node.
comp_res = comp_f (object, currentP->object);
if (comp_res == SMALLER)
{
is_rightmost = false;
if (! _is_valid (currentP->leftP))
{
// Insert the new leaf as the left child of the current node.
currentP->leftP = newNodeP;
newNodeP->parentP = currentP;
currentP = NULL; // In order to terminate the while loop.
if (is_leftmost)
{
// Assign a new tree minimum.
beginNode.parentP = newNodeP;
newNodeP->leftP = &beginNode;
}
}
else
{
// Go to the left sub-tree.
currentP = currentP->leftP;
}
}
else
{
is_leftmost = false;
if (! _is_valid (currentP->rightP))
{
// Insert the new leaf as the right child of the current node.
currentP->rightP = newNodeP;
newNodeP->parentP = currentP;
currentP = NULL; // In order to terminate the while loop.
if (is_rightmost)
{
// Assign a new tree maximum.
endNode.parentP = newNodeP;
newNodeP->rightP = &endNode;
}
}
else
{
// Go to the right sub-tree.
currentP = currentP->rightP;
}
}
}
// Mark that a new node was added.
if (iSize > 0)
iSize++;
// Fix up the tree properties.
_insert_fixup (newNodeP);
return (iterator(newNodeP));
}
//---------------------------------------------------------
// Insert an object to the tree, with a given hint to its position.
//
template <class Type, class Compare, typename Allocator>
typename Multiset<Type, Compare, Allocator>::iterator
Multiset<Type, Compare, Allocator>::insert (iterator position,
const Type& object)
{
Node *nodeP = position.nodeP;
CGAL_multiset_precondition (_is_valid (nodeP));
// Compare the object to the one stored at the given node in order to decide
// in which direction to proceed.
const size_t max_steps = static_cast<size_t> (1.5 * iBlackHeight);
Comparison_result res = comp_f(object, nodeP->object);
bool found_pos = true;
size_t k = 0;
if (res == EQUAL)
return (insert_after (position, object));
if (res == SMALLER)
{
// Go back until locating an object not greater than the inserted one.
Node *predP = nodeP->predecessor();
while (_is_valid (predP) &&
comp_f (object, predP->object) == SMALLER)
{
k++;
if (k > max_steps)
{
// In case the given position is too far away (more than log(n) steps)
// from the true poisition of the object, break the loop.
found_pos = false;
break;
}
nodeP = predP;
predP = nodeP->predecessor();
}
if (found_pos)
return (insert_before (iterator (nodeP), object));
}
else
{
// Go forward until locating an object not less than the inserted one.
Node *succP = nodeP->successor();
while (_is_valid (succP) &&
comp_f (object, succP->object) == LARGER)
{
k++;
if (k > max_steps)
{
// In case the given position is too far away (more than log(n) steps)
// from the true poisition of the object, break the loop.
found_pos = false;
break;
}
nodeP = succP;
succP = nodeP->successor();
}
if (found_pos)
return (insert_after (iterator (nodeP), object));
}
// If the hint was too far than the actual position, perform a normal
// insertion:
return (insert (object));
}
//---------------------------------------------------------
// Insert a new object to the tree as the a successor of a given node.
//
template <class Type, class Compare, typename Allocator>
typename Multiset<Type, Compare, Allocator>::iterator
Multiset<Type, Compare, Allocator>::insert_after (iterator position,
const Type& object)
{
Node *nodeP = position.nodeP;
// In case we are given a NULL node, object should be the tree minimum.
CGAL_multiset_assertion (nodeP != &endNode);
if (nodeP == &beginNode)
nodeP = NULL;
if (rootP == NULL)
{
// In case the tree is empty, make sure that we did not recieve a valid
// iterator.
CGAL_multiset_precondition (nodeP == NULL);
// Assign a new root node. Notice that the root is always black.
rootP = _allocate_node (object, Node::BLACK);
iSize = 1;
iBlackHeight = 1;
// As the tree now contains a single node, it is both the tree
// maximum and minimum:
beginNode.parentP = rootP;
rootP->leftP = &beginNode;
endNode.parentP = rootP;
rootP->rightP = &endNode;
return (iterator (rootP));
}
// Insert the new object as a red leaf, being the successor of nodeP.
Node *parentP;
Node *newNodeP = _allocate_node (object, Node::RED);
if (nodeP == NULL)
{
// The new node should become the tree minimum: Place is as the left
// child of the current minimal leaf.
parentP = beginNode.parentP;
CGAL_multiset_precondition (comp_f(object, parentP->object) != LARGER);
parentP->leftP = newNodeP;
// As we inserted a new tree minimum:
beginNode.parentP = newNodeP;
newNodeP->leftP = &beginNode;
}
else
{
// Make sure the insertion does not violate the tree order.
CGAL_multiset_precondition_code (Node *_succP = nodeP->successor());
CGAL_multiset_precondition (comp_f(object, nodeP->object) != SMALLER);
CGAL_multiset_precondition (! _succP->is_valid() ||
comp_f(object, _succP->object) != LARGER);
// In case given node has no right child, place the new node as its
// right child. Otherwise, place it at the leftmost position at the
// sub-tree rooted at its right side.
if (! _is_valid (nodeP->rightP))
{
parentP = nodeP;
parentP->rightP = newNodeP;
}
else
{
parentP = _sub_minimum (nodeP->rightP);
parentP->leftP = newNodeP;
}
if (nodeP == endNode.parentP)
{
// As we inserted a new tree maximum:
endNode.parentP = newNodeP;
newNodeP->rightP = &endNode;
}
}
newNodeP->parentP = parentP;
// Mark that a new node was added.
if (iSize > 0)
iSize++;
// Fix up the tree properties.
_insert_fixup (newNodeP);
return (iterator (newNodeP));
}
//---------------------------------------------------------
// Insert a new object to the tree as the a predecessor of a given node.
//
template <class Type, class Compare, typename Allocator>
typename Multiset<Type, Compare, Allocator>::iterator
Multiset<Type, Compare, Allocator>::insert_before (iterator position,
const Type& object)
{
Node *nodeP = position.nodeP;
// In case we are given a NULL node, object should be the tree maximum.
CGAL_multiset_assertion (nodeP != &beginNode);
if (nodeP == &endNode)
nodeP = NULL;
if (rootP == NULL)
{
// In case the tree is empty, make sure that we did not recieve a valid
// iterator.
CGAL_multiset_precondition (nodeP == NULL);
// Assign a new root node. Notice that the root is always black.
rootP = _allocate_node(object, Node::BLACK);
iSize = 1;
iBlackHeight = 1;
// As the tree now contains a single node, it is both the tree
// maximum and minimum:
beginNode.parentP = rootP;
rootP->leftP = &beginNode;
endNode.parentP = rootP;
rootP->rightP = &endNode;
return (iterator (rootP));
}
// Insert the new object as a red leaf, being the predecessor of nodeP.
Node *parentP;
Node *newNodeP = _allocate_node (object, Node::RED);
if (nodeP == NULL)
{
// The new node should become the tree maximum: Place is as the right
// child of the current maximal leaf.
parentP = endNode.parentP;
CGAL_multiset_precondition (comp_f(object, parentP->object) != SMALLER);
parentP->rightP = newNodeP;
// As we inserted a new tree maximum:
endNode.parentP = newNodeP;
newNodeP->rightP = &endNode;
}
else
{
// Make sure the insertion does not violate the tree order.
CGAL_multiset_precondition_code (Node *_predP = nodeP->predecessor());
CGAL_multiset_precondition (comp_f(object, nodeP->object) != LARGER);
CGAL_multiset_precondition (! _predP->is_valid() ||
comp_f(object, _predP->object) != SMALLER);
// In case given node has no left child, place the new node as its
// left child. Otherwise, place it at the rightmost position at the
// sub-tree rooted at its left side.
if (! _is_valid (nodeP->leftP))
{
parentP = nodeP;
parentP->leftP = newNodeP;
}
else
{
parentP = _sub_maximum (nodeP->leftP);
parentP->rightP = newNodeP;
}
if (nodeP == beginNode.parentP)
{
// As we inserted a new tree minimum:
beginNode.parentP = newNodeP;
newNodeP->leftP = &beginNode;
}
}
newNodeP->parentP = parentP;
// Mark that a new node was added.
if (iSize > 0)
iSize++;
// Fix up the tree properties.
_insert_fixup (newNodeP);
return (iterator (newNodeP));
}
//---------------------------------------------------------
// Remove an object from the tree.
//
template <class Type, class Compare, typename Allocator>
size_t Multiset<Type, Compare, Allocator>::erase (const Type& object)
{
// Find the first node containing an object not less than the object to
// be erased and from there look for objects equivalent to the given object.
size_t n_removed = 0;
bool is_equal;
Node *nodeP = _bound (LOWER_BOUND, object, comp_f, is_equal);
Node *succP;
if (! is_equal)
return (n_removed);
while (_is_valid (nodeP) && comp_f (object, nodeP->object) == EQUAL)
{
// Keep a pointer to the successor node.
succP = nodeP->successor();
// Remove the current node.
_remove_at (nodeP);
n_removed++;
// Proceed to the successor.
nodeP = succP;
}
return (n_removed);
}
//---------------------------------------------------------
// Remove the object pointed by the given iterator.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::erase (iterator position)
{
Node *nodeP = position.nodeP;
CGAL_multiset_precondition (_is_valid (nodeP));
_remove_at (nodeP);
return;
}
//---------------------------------------------------------
// Remove all objects from the tree.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::clear ()
{
// Delete all the tree nodes recursively.
if (rootP != NULL)
_destroy (rootP);
rootP = NULL;
beginNode.parentP = NULL;
endNode.parentP = NULL;
// Mark that there are no more objects in the tree.
iSize = 0;
iBlackHeight = 0;
return;
}
//---------------------------------------------------------
// Replace the object pointed by a given iterator with another object.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::replace (iterator position,
const Type& object)
{
Node *nodeP = position.nodeP;
CGAL_multiset_precondition (_is_valid (nodeP));
// Make sure the replacement does not violate the tree order.
CGAL_multiset_precondition_code (Node *_succP = nodeP->successor());
CGAL_multiset_precondition (_succP == NULL ||
_succP->color == Node::DUMMY_END ||
comp_f(object, _succP->object) != LARGER);
CGAL_multiset_precondition_code (Node *_predP = nodeP->predecessor());
CGAL_multiset_precondition (_predP == NULL ||
_predP->color == Node::DUMMY_BEGIN ||
comp_f(object, _predP->object) != SMALLER);
// Replace the object at nodeP.
nodeP->object = object;
return;
}
//---------------------------------------------------------
// Swap the location two objects in the tree, given by their positions.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::swap (iterator pos1,
iterator pos2)
{
Node *node1_P = pos1.nodeP;
Node *node2_P = pos2.nodeP;
CGAL_multiset_precondition (_is_valid (node1_P));
CGAL_multiset_precondition (_is_valid (node2_P));
if (node1_P == node2_P)
return;
// Make sure the swap does not violate the tree order.
CGAL_multiset_precondition_code (Node *_succ1_P = node1_P->successor());
CGAL_multiset_precondition (! _is_valid (_succ1_P) ||
comp_f (node2_P->object,
_succ1_P->object) != LARGER);
CGAL_multiset_precondition_code (Node *_pred1_P = node1_P->predecessor());
CGAL_multiset_precondition (! _is_valid (_pred1_P) ||
comp_f (node2_P->object,
_pred1_P->object) != SMALLER);
CGAL_multiset_precondition_code (Node *_succ2_P = node2_P->successor());
CGAL_multiset_precondition (! _is_valid (_succ2_P) ||
comp_f (node1_P->object,
_succ2_P->object) != LARGER);
CGAL_multiset_precondition_code (Node *_pred2_P = node2_P->predecessor());
CGAL_multiset_precondition (! _is_valid (_pred2_P) ||
comp_f (node1_P->object,
_pred2_P->object) != SMALLER);
// Perform the swap.
if (node1_P->parentP == node2_P->parentP)
_swap_siblings (node1_P, node2_P);
else
_swap (node1_P, node2_P);
return;
}
//---------------------------------------------------------
// Check if the tree is a valid one.
//
template <class Type, class Compare, typename Allocator>
bool Multiset<Type, Compare, Allocator>::is_valid () const
{
if (rootP == NULL)
{
// If there is no root, make sure that the tree is empty.
if (iSize != 0 || iBlackHeight != 0)
return (false);
if (beginNode.parentP != NULL || endNode.parentP != NULL)
return (false);
return (true);
}
// Check the validity of the fictitious nodes.
if (beginNode.parentP == NULL || beginNode.parentP->leftP != &beginNode)
return (false);
if (endNode.parentP == NULL || endNode.parentP->rightP != &endNode)
return (false);
// Check recursively whether the tree is valid.
size_t iComputedSize;
size_t iComputedBHeight;
if (! _sub_is_valid (rootP, iComputedSize, iComputedBHeight))
return (false);
// Make sure the tree properties are correct.
if (iSize != 0)
{
if (iSize != iComputedSize)
return (false);
}
else
{
// Assign the computed size.
Self *myThis = const_cast<Self*> (this);
myThis->iSize = iComputedSize;
}
if (iBlackHeight != iComputedBHeight)
return (false);
// If we reached here, the entire tree is valid.
return (true);
}
//---------------------------------------------------------
// Get the height of the tree.
//
template <class Type, class Compare, typename Allocator>
size_t Multiset<Type, Compare, Allocator>::height () const
{
if (rootP == NULL)
// Empty tree.
return (0);
// Return the height of the root's sub-tree (the entire tree).
return (_sub_height (rootP));
}
//---------------------------------------------------------
// Catenate the tree with another given tree.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::catenate (Self& tree)
{
// Get the maximal node in our tree and the minimal node in the other tree.
Node *max1_P = endNode.parentP;
Node *min2_P = tree.beginNode.parentP;
if (min2_P == NULL)
{
// The other tree is empty - nothing to do.
CGAL_multiset_assertion (tree.rootP == NULL);
return;
}
else if (max1_P == NULL)
{
// Our tree is empty: Copy all other tree properties to our tree.
CGAL_multiset_assertion (rootP == NULL);
_shallow_assign (tree);
return;
}
// Make sure that the minimal object in the other tree is not less than the
// maximal object in our tree.
CGAL_multiset_precondition (comp_f (max1_P->object,
min2_P->object) != LARGER);
// Make sure both tree roots black.
CGAL_multiset_assertion (_is_black (rootP));
CGAL_multiset_assertion (_is_black (tree.rootP));
// Splice max1_P (or min2_P) from its tree, but without deleting it.
Node* auxP = NULL;
if (max1_P != rootP)
{
// Splice max1_P from its current poisition in our tree.
// We know it is has no right child, so we just have to connect its
// left child with its parent.
max1_P->parentP->rightP = max1_P->leftP;
if (_is_valid (max1_P->leftP))
max1_P->leftP->parentP = max1_P->parentP;
// If max1_P is a black node, we have to fixup our tree.
if (max1_P->color == Node::BLACK)
_remove_fixup (max1_P->leftP, max1_P->parentP);
auxP = max1_P;
}
else if (min2_P != tree.rootP)
{
// Splice min2_P from its current poisition in the other tree.
// We know it is has no left child, so we just have to connect its
// right child with its parent.
if (min2_P->parentP != NULL)
{
min2_P->parentP->leftP = min2_P->rightP;
if (_is_valid (min2_P->rightP))
min2_P->rightP->parentP = min2_P->parentP;
// If min2_P is a black node, we have to fixup the other tree.
if (min2_P->color == Node::BLACK)
tree._remove_fixup (min2_P->rightP, min2_P->parentP);
}
auxP = min2_P;
}
else
{
// Both nodes are root nodes: Assign min2_P as the right child of the
// root and color it red.
rootP->rightP = min2_P;
min2_P->parentP = rootP;
min2_P->color = Node::RED;
min2_P->leftP = NULL;
if (! _is_valid (min2_P->rightP))
{
// The other tree is of size 1 - set min2_P as the tree maximum.
min2_P->rightP = &endNode;
endNode.parentP = min2_P;
}
else
{
// The other tree is of size 2 - fixup from min2_P's right child and set
// it as the tree maximum.
_insert_fixup (min2_P->rightP);
min2_P->rightP->rightP = &endNode;
endNode.parentP = min2_P->rightP;
}
if (iSize > 0 && tree.iSize > 0)
iSize += tree.iSize;
else
iSize = 0;
// Clear the other tree (without actually deallocating the nodes).
tree._shallow_clear();
return;
}
// Mark that the maximal node in our tree is no longer the maximum.
if (endNode.parentP != NULL)
endNode.parentP->rightP = NULL;
// Mark that the minimal node in the other tree is no longer the minimum.
if (tree.beginNode.parentP != NULL)
tree.beginNode.parentP->leftP = NULL;
// Locate node1_P along the rightmost path in our tree and node2_P along the
// leftmost path in the other tree, both having the same black-height.
Node *node1_P = rootP;
Node *node2_P = tree.rootP;
size_t iCurrBHeight;
if (iBlackHeight <= tree.iBlackHeight)
{
// The other tree is taller (or both trees have the same height):
// Go down the leftmost path of the other tree and locate node2_P.
node2_P = tree.rootP;
iCurrBHeight = tree.iBlackHeight;
while (iCurrBHeight > iBlackHeight)
{
if (node2_P->color == Node::BLACK)
iCurrBHeight--;
node2_P = node2_P->leftP;
}
if (_is_red (node2_P))
node2_P = node2_P->leftP;
CGAL_multiset_assertion (_is_valid (node2_P));
}
else
{
// Our tree is taller:
// Go down the rightmost path of our tree and locate node1_P.
node1_P = rootP;
iCurrBHeight = iBlackHeight;
while (iCurrBHeight > tree.iBlackHeight)
{
if (node1_P->color == Node::BLACK)
iCurrBHeight--;
node1_P = node1_P->rightP;
}
if (_is_red (node1_P))
node1_P = node1_P->rightP;
CGAL_multiset_assertion (_is_valid (node2_P));
}
// Check which one of the tree roots have we reached.
Node *newRootP = NULL;
Node *parentP;
if (node1_P == rootP)
{
// We know that node2_P has the same number of black roots from it to
// the minimal tree node as the number of black nodes from our tree root
// to any of its leaves. We make rootP and node2_P siblings by moving
// auxP to be their parent.
parentP = node2_P->parentP;
if (parentP == NULL)
{
// Make auxP the root of the catenated tree.
newRootP = auxP;
}
else
{
// The catenated tree will be rooted at the other tree's root.
newRootP = tree.rootP;
// Move auxP as the left child of parentP.
parentP->leftP = auxP;
}
}
else
{
// We know that node1_P has the same number of black roots from it to
// the maximal tree node as the number of black nodes from the other tree
// root to any of its leaves. We make tree.rootP and node1_P siblings by
// moving auxP to be their parent.
parentP = node1_P->parentP;
CGAL_multiset_assertion (parentP != NULL);
// The catenated tree will be rooted at the current root of our tree.
newRootP = rootP;
// Move auxP as the right child of parentP.
parentP->rightP = auxP;
}
// Move node1_P to be the left child of auxP, and node2_P to be its
// right child. We also color this node red.
auxP->parentP = parentP;
auxP->color = Node::RED;
auxP->leftP = node1_P;
auxP->rightP = node2_P;
node1_P->parentP = auxP;
node2_P->parentP = auxP;
// Set the catenated tree properties.
if (rootP != newRootP)
{
// Take the black-height of the other tree.
iBlackHeight = tree.iBlackHeight;
rootP = newRootP;
}
if (iSize > 0 && tree.iSize > 0)
iSize += tree.iSize;
else
iSize = 0;
// Set the new maximal node in the tree (the minimal node remains unchanged).
endNode.parentP = tree.endNode.parentP;
endNode.parentP->rightP = &endNode;
// Clear the other tree (without actually deallocating the nodes).
tree._shallow_clear();
// Perform a fixup of the tree invariants. This fixup will also take care
// of updating the black-height of our catenated tree.
_insert_fixup (auxP);
return;
}
//---------------------------------------------------------
// Split the tree at a given position, such that it contains all objects
// in the range [begin, position) and all objects in the range
// [position, end) form a new output tree.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::split (iterator position,
Self& tree)
{
CGAL_multiset_precondition (tree.empty());
// Check the extremal cases.
if (position == begin())
{
// The tree should be copied to the output tree.
tree._shallow_assign (*this);
return;
}
else if (position == end())
{
// Nothing to do - all objects should remain in our tree.
return;
}
// Prepare a vector describing the path from the given node to the tree
// root (where SMALLER designates a left turn and LARGER designates a
// right turn). Note that the length of this path (the depth of nodeP)
// is at most twice the black-height of the tree.
Node *nodeP = position.nodeP;
CGAL_multiset_precondition (_is_valid (nodeP));
Node *currP = nodeP;
Comparison_result *path = new Comparison_result [2 * iBlackHeight];
int depth = 0;
path[depth] = EQUAL;
while (currP->parentP != NULL)
{
depth++;
if (currP == currP->parentP->leftP)
path[depth] = SMALLER;
else
path[depth] = LARGER;
currP = currP->parentP;
}
CGAL_multiset_assertion (currP == rootP);
// Now go down the path and split the tree accordingly. We also keep
// track of the black-height of the current node.
size_t iCurrBHeight = iBlackHeight;
Self leftTree;
size_t iLeftBHeight = 0;
Node *spineLeftP = NULL;
Node *auxLeftP = NULL;
Self rightTree;
size_t iRightBHeight = 0;
Node *spineRightP = NULL;
Node *auxRightP = NULL;
Node *childP = NULL;
Node *nextP = NULL;
while (depth >= 0)
{
CGAL_multiset_assertion (_is_valid (currP));
// If we encounter a black node, the black-height of both its left and
// right subtrees is decremented.
if (_is_black (currP))
iCurrBHeight--;
// Check in which direction we have to go.
if (path[depth] != LARGER)
{
// We go left, so currP and its entire right sub-tree (T_r) should be
// included in the right split tree.
//
// (.) currP .
// / \ .
// / \ .
// (.) T_r .
//
// This also covers that case where currP is the split node (nodeP).
childP = currP->rightP;
nextP = currP->leftP;
if (_is_valid (childP) && rightTree.rootP == NULL)
{
// Assing T_r to rightTree.
rightTree.rootP = childP;
rightTree.iBlackHeight = iCurrBHeight;
// Make sure the root of rightTree is black.
rightTree.rootP->parentP = NULL;
if (_is_red (rightTree.rootP))
{
rightTree.rootP->color = Node::BLACK;
rightTree.iBlackHeight++;
}
// We store a black node along the leftmost spine of rightTree whose
// black-hieght is exactly iRightBHeight.
iRightBHeight = rightTree.iBlackHeight;
spineRightP = rightTree.rootP;
}
else if (_is_valid (childP))
{
// Catenate T_r with the current rightTree.
CGAL_multiset_assertion (_is_valid (spineRightP) &&
_is_valid(auxRightP));
// Make sure the root of T_r is black.
size_t iCurrRightBHeight = iCurrBHeight;
if (_is_red (childP))
{
childP->color = Node::BLACK;
iCurrRightBHeight++;
}
// Go down the leftmost path of rightTree until locating a black
// node whose black height is exactly iCurrRightBHeight.
CGAL_multiset_assertion (iRightBHeight >= iCurrRightBHeight);
while (iRightBHeight > iCurrRightBHeight)
{
if (spineRightP->color == Node::BLACK)
iRightBHeight--;
spineRightP = spineRightP->leftP;
}
if (_is_red (spineRightP))
spineRightP = spineRightP->leftP;
CGAL_multiset_assertion (_is_valid (spineRightP));
// Use the auxiliary node and make it the parent of T_r (which
// becomes its left sub-tree) and spineRightP (which becomes its
// right child). We color the auxiliary node red, as both its
// children are black.
auxRightP->parentP = spineRightP->parentP;
auxRightP->color = Node::RED;
auxRightP->leftP = childP;
auxRightP->rightP = spineRightP;
if (auxRightP->parentP != NULL)
auxRightP->parentP->leftP = auxRightP;
else
rightTree.rootP = auxRightP;
childP->parentP = auxRightP;
spineRightP->parentP = auxRightP;
// Perform a fixup on the right tree.
rightTree._insert_fixup (auxRightP);
auxRightP = NULL;
// Note that childP is now located on the leftmost spine of
// rightTree and its black-height is exactly iCurrRightBHeight.
iRightBHeight = iCurrRightBHeight;
spineRightP = childP;
}
// In case we have an auxiliary right node that has not been inserted
// into the right tree, insert it now.
if (auxRightP != NULL)
{
if (rightTree.rootP != NULL)
{
// The right tree is not empty. Traverse its leftmost spine to
// locate the parent of auxRightP.
while (_is_valid (spineRightP->leftP))
spineRightP = spineRightP->leftP;
auxRightP->parentP = spineRightP;
auxRightP->color = Node::RED;
auxRightP->rightP = NULL;
auxRightP->leftP = NULL;
spineRightP->leftP = auxRightP;
// Perform a fixup on the right tree, following the insertion of
// the auxiliary right node.
rightTree._insert_fixup (auxRightP);
}
else
{
// auxRightP is the only node in the current right tree.
rightTree.rootP = auxRightP;
rightTree.iBlackHeight = 1;
auxRightP->parentP = NULL;
auxRightP->color = Node::BLACK;
auxRightP->rightP = NULL;
auxRightP->leftP = NULL;
}
// Assign spineRightP to be the auxiliary node.
spineRightP = auxRightP;
iRightBHeight = (_is_black (spineRightP)) ? 1 : 0;
auxRightP = NULL;
}
// Mark currP as the auxiliary right node.
auxRightP = currP;
}
if (path[depth] != SMALLER)
{
// We go right, so currP and its entire left sub-tree (T_l) should be
// included in the left split tree.
//
// (.) currP .
// / \ .
// / \ .
// T_l (.) .
//
// An exception to this rule is when currP is the split node (nodeP),
// so it should not be included in the left tree.
childP = currP->leftP;
nextP = currP->rightP;
if (_is_valid (childP) && leftTree.rootP == NULL)
{
// Assing T_l to leftTree.
leftTree.rootP = childP;
leftTree.iBlackHeight = iCurrBHeight;
// Make sure the root of leftTree is black.
leftTree.rootP->parentP = NULL;
if (_is_red (leftTree.rootP))
{
leftTree.rootP->color = Node::BLACK;
leftTree.iBlackHeight++;
}
// We store a black node along the rightmost spine of leftTree whose
// black-hieght is exactly iLeftBHeight.
iLeftBHeight = leftTree.iBlackHeight;
spineLeftP = leftTree.rootP;
}
else if (_is_valid (childP))
{
// Catenate T_l with the current leftTree.
CGAL_multiset_assertion (_is_valid (spineLeftP) &&
_is_valid(auxLeftP));
// Make sure the root of T_l is black.
size_t iCurrLeftBHeight = iCurrBHeight;
if (_is_red (childP))
{
childP->color = Node::BLACK;
iCurrLeftBHeight++;
}
// Go down the rightmost path of leftTree until locating a black
// node whose black height is exactly iCurrLeftBHeight.
CGAL_multiset_assertion (iLeftBHeight >= iCurrLeftBHeight);
while (iLeftBHeight > iCurrLeftBHeight)
{
if (spineLeftP->color == Node::BLACK)
iLeftBHeight--;
spineLeftP = spineLeftP->rightP;
}
if (_is_red (spineLeftP))
spineLeftP = spineLeftP->rightP;
CGAL_multiset_assertion (_is_valid (spineLeftP));
// Use the auxiliary node and make it the parent of T_l (which
// becomes its right sub-tree) and spineLeftP (which becomes its
// left child). We color the auxiliary node red, as both its
// children are black.
auxLeftP->parentP = spineLeftP->parentP;
auxLeftP->color = Node::RED;
auxLeftP->leftP = spineLeftP;
auxLeftP->rightP = childP;
if (auxLeftP->parentP != NULL)
auxLeftP->parentP->rightP = auxLeftP;
else
leftTree.rootP = auxLeftP;
childP->parentP = auxLeftP;
spineLeftP->parentP = auxLeftP;
// Perform a fixup on the left tree.
leftTree._insert_fixup (auxLeftP);
auxLeftP = NULL;
// Note that childP is now located on the rightmost spine of
// leftTree and its black-height is exactly iCurrLeftBHeight.
iLeftBHeight = iCurrLeftBHeight;
spineLeftP = childP;
}
// In case we have an auxiliary left node that has not been inserted
// into the left tree, insert it now.
if (auxLeftP != NULL)
{
if (leftTree.rootP != NULL)
{
// The left tree is not empty. Traverse its rightmost spine to
// locate the parent of auxLeftP.
while (_is_valid (spineLeftP->rightP))
spineLeftP = spineLeftP->rightP;
auxLeftP->parentP = spineLeftP;
auxLeftP->color = Node::RED;
auxLeftP->rightP = NULL;
auxLeftP->leftP = NULL;
spineLeftP->rightP = auxLeftP;
// Perform a fixup on the left tree, following the insertion of
// the auxiliary left node.
leftTree._insert_fixup (auxLeftP);
}
else
{
// auxLeftP is the only node in the left tree.
leftTree.rootP = auxLeftP;
leftTree.iBlackHeight = 1;
auxLeftP->parentP = NULL;
auxLeftP->color = Node::BLACK;
auxLeftP->rightP = NULL;
auxLeftP->leftP = NULL;
}
// Assign spineLeftP to be the auxiliary node.
spineLeftP = auxLeftP;
iLeftBHeight = (_is_black (spineLeftP)) ? 1 : 0;
auxLeftP = NULL;
}
// Mark currP as the auxiliary right node.
if (depth > 0)
auxLeftP = currP;
}
// Proceed to the next step in the path.
currP = nextP;
depth--;
}
// It is now possible to free the path.
delete[] path;
CGAL_multiset_assertion (auxLeftP == NULL && auxRightP == nodeP);
// Fix the properties of the left tree: We know its minimal node is the
// same as the current minimum.
leftTree.beginNode.parentP = beginNode.parentP;
leftTree.beginNode.parentP->leftP = &(leftTree.beginNode);
// Traverse the rightmost path of the left tree to find the its maximum.
CGAL_multiset_assertion (_is_valid (spineLeftP));
while (_is_valid (spineLeftP->rightP))
spineLeftP = spineLeftP->rightP;
leftTree.endNode.parentP = spineLeftP;
spineLeftP->rightP = &(leftTree.endNode);
// Fix the properties of the right tree: We know its maximal node is the
// same as the current maximum.
rightTree.endNode.parentP = endNode.parentP;
rightTree.endNode.parentP->rightP = &(rightTree.endNode);
// We still have to insert the split node as the minimum node of the right
// tree (we can traverse its leftmost path to find its parent).
if (rightTree.rootP != NULL)
{
while (_is_valid (spineRightP->leftP))
spineRightP = spineRightP->leftP;
nodeP->parentP = spineRightP;
nodeP->color = Node::RED;
nodeP->rightP = NULL;
nodeP->leftP = NULL;
spineRightP->leftP = nodeP;
// Perform a fixup on the right tree, following the insertion of the
// leftmost node.
rightTree._insert_fixup (nodeP);
}
else
{
// nodeP is the only node in the right tree.
rightTree.rootP = nodeP;
rightTree.iBlackHeight = 1;
nodeP->parentP = NULL;
nodeP->color = Node::BLACK;
nodeP->rightP = NULL;
nodeP->leftP = NULL;
// In this case we also know the tree sizes:
leftTree.iSize = iSize - 1;
rightTree.iSize = 1;
}
// Set nodeP as the minimal node is the right tree.
rightTree.beginNode.parentP = nodeP;
nodeP->leftP = &(rightTree.beginNode);
// Assign leftTree to (*this) and rightTree to the output tree.
_shallow_assign (leftTree);
tree.clear();
tree._shallow_assign (rightTree);
return;
}
//---------------------------------------------------------
// Move the contents of one tree to another without actually duplicating
// the nodes. This operation also clears the copied tree.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_shallow_assign (Self& tree)
{
// Copy the assigned tree properties.
rootP = tree.rootP;
iSize = tree.iSize;
iBlackHeight = tree.iBlackHeight;
// Properly mark the minimal and maximal tree nodes.
beginNode.parentP = tree.beginNode.parentP;
if (beginNode.parentP != NULL)
beginNode.parentP->leftP = &beginNode;
endNode.parentP = tree.endNode.parentP;
if (endNode.parentP != NULL)
endNode.parentP->rightP = &endNode;
// Clear the other tree (without actually deallocating the nodes).
tree._shallow_clear();
return;
}
//---------------------------------------------------------
// Clear the properties of the tree, without actually deallocating its nodes.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_shallow_clear ()
{
rootP = NULL;
iSize = 0;
iBlackHeight = 0;
beginNode.parentP = NULL;
endNode.parentP = NULL;
return;
}
//---------------------------------------------------------
// Remove the given tree node.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_remove_at (Node* nodeP)
{
CGAL_multiset_precondition (_is_valid (nodeP));
if (nodeP == rootP &&
! _is_valid (rootP->leftP) && ! _is_valid (rootP->rightP))
{
// In case of deleting the single object stored in the tree, free the root,
// thus emptying the tree.
_deallocate_node (rootP);
rootP = NULL;
beginNode.parentP = NULL;
endNode.parentP = NULL;
iSize = 0;
iBlackHeight = 0;
return;
}
// Remove the given node from the tree.
if (_is_valid (nodeP->leftP) && _is_valid (nodeP->rightP))
{
// If the node we want to remove has two children, find its successor,
// which is the leftmost child in its right sub-tree and has at most
// one child (it may have a right child).
Node *succP = _sub_minimum (nodeP->rightP);
CGAL_multiset_assertion (_is_valid (succP));
// Now physically swap nodeP and its successor. Notice this may temporarily
// violate the tree properties, but we are going to remove nodeP anyway.
// This way we have moved nodeP to a position were it is more convinient
// to delete it.
_swap (nodeP, succP);
}
// At this stage, the node we are going to remove has at most one child.
Node *childP = NULL;
if (_is_valid (nodeP->leftP))
{
CGAL_multiset_assertion (! _is_valid (nodeP->rightP));
childP = nodeP->leftP;
}
else
{
childP = nodeP->rightP;
}
// Splice out the node to be removed, by linking its parent straight to the
// removed node's single child.
if (_is_valid (childP))
childP->parentP = nodeP->parentP;
if (nodeP->parentP == NULL)
{
// If we are deleting the root, make the child the new tree node.
rootP = childP;
// If the deleted root is black, decrement the black height of the tree.
if (nodeP->color == Node::BLACK)
iBlackHeight--;
}
else
{
// Link the removed node parent to its child.
if (nodeP == nodeP->parentP->leftP)
{
nodeP->parentP->leftP = childP;
}
else
{
nodeP->parentP->rightP = childP;
}
}
// Fix-up the red-black properties that may have been damaged: If we have
// just removed a black node, the black-height property is no longer valid.
if (nodeP->color == Node::BLACK)
_remove_fixup (childP, nodeP->parentP);
// In case we delete the tree minimum of maximum, update the relevant
// pointers.
if (nodeP == beginNode.parentP)
{
beginNode.parentP = nodeP->successor();
if (_is_valid (beginNode.parentP))
beginNode.parentP->leftP = &beginNode;
else
beginNode.parentP = NULL;
}
else if (nodeP == endNode.parentP)
{
endNode.parentP = nodeP->predecessor();
if (_is_valid (endNode.parentP))
endNode.parentP->rightP = &endNode;
else
endNode.parentP = NULL;
}
// Delete the unnecessary node.
_deallocate_node (nodeP);
// Decrement the number of objects in the tree.
if (iSize > 0)
iSize--;
return;
}
//---------------------------------------------------------
// Swap the location two nodes in the tree.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_swap (Node* node1_P,
Node* node2_P)
{
CGAL_multiset_assertion (_is_valid (node1_P));
CGAL_multiset_assertion (_is_valid (node2_P));
// Store the properties of the first node.
typename Node::Node_color color1 = node1_P->color;
Node *parent1_P = node1_P->parentP;
Node *right1_P = node1_P->rightP;
Node *left1_P = node1_P->leftP;
// Copy the properties of the second node to the first node.
node1_P->color = node2_P->color;
if (node1_P != node2_P->parentP)
{
if (node2_P->parentP == NULL)
{
rootP = node1_P;
}
else
{
if (node2_P->parentP->leftP == node2_P)
node2_P->parentP->leftP = node1_P;
else
node2_P->parentP->rightP = node1_P;
}
node1_P->parentP = node2_P->parentP;
}
else
{
node1_P->parentP = node2_P;
}
if (node1_P != node2_P->rightP)
{
if (_is_valid (node2_P->rightP))
node2_P->rightP->parentP = node1_P;
node1_P->rightP = node2_P->rightP;
}
else
{
node1_P->rightP = node2_P;
}
if (node1_P != node2_P->leftP)
{
if (_is_valid (node2_P->leftP))
node2_P->leftP->parentP = node1_P;
node1_P->leftP = node2_P->leftP;
}
else
{
node1_P->leftP = node2_P;
}
// Copy the stored properties of the first node to the second node.
node2_P->color = color1;
if (node2_P != parent1_P)
{
if (parent1_P == NULL)
{
rootP = node2_P;
}
else
{
if (parent1_P->leftP == node1_P)
parent1_P->leftP = node2_P;
else
parent1_P->rightP = node2_P;
}
node2_P->parentP = parent1_P;
}
else
{
node2_P->parentP = node1_P;
}
if (node2_P != right1_P)
{
if (_is_valid (right1_P))
right1_P->parentP = node2_P;
node2_P->rightP = right1_P;
}
else
{
node2_P->rightP = node1_P;
}
if (node2_P != left1_P)
{
if (_is_valid (left1_P))
left1_P->parentP = node2_P;
node2_P->leftP = left1_P;
}
else
{
node2_P->leftP = node1_P;
}
// If one of the swapped nodes used to be the tree minimum, update
// the properties of the fictitious before-the-begin node.
if (beginNode.parentP == node1_P)
{
beginNode.parentP = node2_P;
node2_P->leftP = &beginNode;
}
else if (beginNode.parentP == node2_P)
{
beginNode.parentP = node1_P;
node1_P->leftP = &beginNode;
}
// If one of the swapped nodes used to be the tree maximum, update
// the properties of the fictitious past-the-end node.
if (endNode.parentP == node1_P)
{
endNode.parentP = node2_P;
node2_P->rightP = &endNode;
}
else if (endNode.parentP == node2_P)
{
endNode.parentP = node1_P;
node1_P->rightP = &endNode;
}
return;
}
//---------------------------------------------------------
// Swap the location two sibling nodes in the tree.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_swap_siblings (Node* node1_P,
Node* node2_P)
{
CGAL_multiset_assertion (_is_valid (node1_P));
CGAL_multiset_assertion (_is_valid (node2_P));
// Store the properties of the first node.
typename Node::Node_color color1 = node1_P->color;
Node *right1_P = node1_P->rightP;
Node *left1_P = node1_P->leftP;
// Copy the properties of the second node to the first node.
node1_P->color = node2_P->color;
node1_P->rightP = node2_P->rightP;
if (_is_valid (node1_P->rightP))
node1_P->rightP->parentP = node1_P;
node1_P->leftP = node2_P->leftP;
if (_is_valid (node1_P->leftP))
node1_P->leftP->parentP = node1_P;
// Copy the stored properties of the first node to the second node.
node2_P->color = color1;
node2_P->rightP = right1_P;
if (_is_valid (node2_P->rightP))
node2_P->rightP->parentP = node2_P;
node2_P->leftP = left1_P;
if (_is_valid (node2_P->leftP))
node2_P->leftP->parentP = node2_P;
// Swap the children of the common parent node.
Node *parent_P = node1_P->parentP;
Node *temp;
CGAL_multiset_assertion (parent_P == node2_P->parentP);
temp = parent_P->leftP;
parent_P->leftP = parent_P->rightP;
parent_P->rightP = temp;
// If one of the swapped nodes used to be the tree minimum, update
// the properties of the fictitious before-the-begin node.
if (beginNode.parentP == node1_P)
{
beginNode.parentP = node2_P;
node2_P->leftP = &beginNode;
}
else if (beginNode.parentP == node2_P)
{
beginNode.parentP = node1_P;
node1_P->leftP = &beginNode;
}
// If one of the swapped nodes used to be the tree maximum, update
// the properties of the fictitious past-the-end node.
if (endNode.parentP == node1_P)
{
endNode.parentP = node2_P;
node2_P->rightP = &endNode;
}
else if (endNode.parentP == node2_P)
{
endNode.parentP = node1_P;
node1_P->rightP = &endNode;
}
return;
}
//---------------------------------------------------------
// Calculate the height of the subtree spanned by a given node.
//
template <class Type, class Compare, typename Allocator>
size_t Multiset<Type, Compare, Allocator>::_sub_height
(const Node* nodeP) const
{
CGAL_multiset_assertion (_is_valid (nodeP));
// Recursively calculate the heights of the left and right sub-trees.
size_t iRightHeight = 0;
size_t iLeftHeight = 0;
if (_is_valid (nodeP->rightP))
iRightHeight = _sub_height (nodeP->rightP);
if (_is_valid (nodeP->leftP))
iLeftHeight = _sub_height (nodeP->leftP);
// Return the maximal child sub-height + 1 (the current node).
return ((iRightHeight > iLeftHeight) ? (iRightHeight + 1) :
(iLeftHeight + 1));
}
//---------------------------------------------------------
// Calculate the height of the subtree spanned by a given node.
//
template <class Type, class Compare, typename Allocator>
bool Multiset<Type, Compare, Allocator>::_sub_is_valid
(const Node* nodeP,
size_t& sub_size,
size_t& sub_bh) const
{
// Make sure that the node is valid.
if (! _is_valid (nodeP))
return (false);
// If the node is red, make sure that both it children are black (note that
// NULL nodes are also considered to be black).
if (_is_red (nodeP) &&
(! _is_black (nodeP->rightP) || ! _is_black (nodeP->leftP)))
{
return (false);
}
// Recursively calculate the black heights of the left and right sub-trees.
size_t iBlack = ((nodeP->color == Node::BLACK) ? 1 : 0);
size_t iLeftSize = 0;
size_t iLeftBHeight = 0;
size_t iRightSize = 0;
size_t iRightBHeight = 0;
if (_is_valid (nodeP->leftP))
{
// Make sure that the object stored at nodeP is not smaller than the one
// stored at its left child.
if (comp_f (nodeP->object, nodeP->leftP->object) == SMALLER)
return (false);
// Recursively check that the left sub-tree is valid.
if (! _sub_is_valid (nodeP->leftP, iLeftSize, iLeftBHeight))
return (false);
}
if (_is_valid (nodeP->rightP))
{
// Make sure that the object stored at nodeP is not larger than the one
// stored at its right child.
if (comp_f (nodeP->object, nodeP->rightP->object) == LARGER)
return (false);
// Recursively check that the right sub-tree is valid.
if (! _sub_is_valid (nodeP->rightP, iRightSize, iRightBHeight))
return (false);
}
// Compute the size of the entire sub-tree.
sub_size = iRightSize + iLeftSize + 1;
// Make sure that the black heights of both sub-trees are equal.
if (iRightBHeight != iLeftBHeight)
return (false);
sub_bh = iRightBHeight + iBlack;
// If we reached here, the subtree is valid.
return (true);
}
//---------------------------------------------------------
// Get the leftmost node in the sub-tree spanned by the given node.
//
template <class Type, class Compare, typename Allocator>
typename Multiset<Type, Compare, Allocator>::Node*
Multiset<Type, Compare, Allocator>::_sub_minimum (Node* nodeP) const
{
CGAL_multiset_assertion (_is_valid (nodeP));
Node *minP = nodeP;
while (_is_valid (minP->leftP))
minP = minP->leftP;
return (minP);
}
//---------------------------------------------------------
// Get the rightmost node in the sub-tree spanned by the given node.
//
template <class Type, class Compare, typename Allocator>
typename Multiset<Type, Compare, Allocator>::Node*
Multiset<Type, Compare, Allocator>::_sub_maximum (Node* nodeP) const
{
CGAL_multiset_assertion (_is_valid (nodeP));
Node *maxP = nodeP;
while (_is_valid (maxP->rightP))
maxP = maxP->rightP;
return (maxP);
}
//---------------------------------------------------------
// Left-rotate the sub-tree spanned by the given node:
//
// | RoateRight(y) |
// y --------------> x
// / \ / \ .
// x T3 RoatateLeft(x) T1 y .
// / \ <-------------- / \ .
// T1 T2 T2 T3
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_rotate_left (Node* xNodeP)
{
// Get the right child of the node.
Node *yNodeP = xNodeP->rightP;
CGAL_multiset_assertion (_is_valid (yNodeP));
// Change its left subtree (T2) to x's right subtree.
xNodeP->rightP = yNodeP->leftP;
// Link T2 to its new parent x.
if (_is_valid (yNodeP->leftP))
yNodeP->leftP->parentP = xNodeP;
// Assign x's parent to be y's parent.
yNodeP->parentP = xNodeP->parentP;
if (xNodeP->parentP == NULL)
{
// Make y the new tree root.
rootP = yNodeP;
}
else
{
// Assign a pointer to y from x's parent.
if (xNodeP == xNodeP->parentP->leftP)
{
xNodeP->parentP->leftP = yNodeP;
}
else
{
xNodeP->parentP->rightP = yNodeP;
}
}
// Assign x to be y's left child.
yNodeP->leftP = xNodeP;
xNodeP->parentP = yNodeP;
return;
}
//---------------------------------------------------------
// Right-rotate the sub-tree spanned by the given node.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_rotate_right (Node* yNodeP)
{
// Get the left child of the node.
Node *xNodeP = yNodeP->leftP;
CGAL_multiset_assertion (_is_valid (xNodeP));
// Change its right subtree (T2) to y's left subtree.
yNodeP->leftP = xNodeP->rightP;
// Link T2 to its new parent y.
if (_is_valid (xNodeP->rightP))
xNodeP->rightP->parentP = yNodeP;
// Assign y's parent to be x's parent.
xNodeP->parentP = yNodeP->parentP;
if (yNodeP->parentP == NULL)
{
// Make x the new tree root.
rootP = xNodeP;
}
else
{
// Assign a pointer to x from y's parent.
if (yNodeP == yNodeP->parentP->leftP)
{
yNodeP->parentP->leftP = xNodeP;
}
else
{
yNodeP->parentP->rightP = xNodeP;
}
}
// Assign y to be x's right child.
xNodeP->rightP = yNodeP;
yNodeP->parentP = xNodeP;
return;
}
//---------------------------------------------------------
// Duplicate the entire sub-tree rooted at the given node.
//
template <class Type, class Compare, typename Allocator>
typename Multiset<Type, Compare, Allocator>::Node*
Multiset<Type, Compare, Allocator>::_duplicate (const Node* nodeP)
{
CGAL_multiset_assertion (_is_valid (nodeP));
// Create a node of the same color, containing the same object.
Node *dupNodeP = _allocate_node(nodeP->object, nodeP->color);
// Duplicate the children recursively.
if (_is_valid (nodeP->rightP))
{
dupNodeP->rightP = _duplicate (nodeP->rightP);
dupNodeP->rightP->parentP = dupNodeP;
}
if (_is_valid (nodeP->leftP))
{
dupNodeP->leftP = _duplicate (nodeP->leftP);
dupNodeP->leftP->parentP = dupNodeP;
}
// Return the duplicated node.
return (dupNodeP);
}
//---------------------------------------------------------
// Destroy the entire sub-tree rooted at the given node.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_destroy (Node* nodeP)
{
CGAL_multiset_assertion (_is_valid (nodeP));
// Destroy the children recursively.
if (_is_valid (nodeP->rightP))
_destroy (nodeP->rightP);
nodeP->rightP = NULL;
if (_is_valid (nodeP->leftP))
_destroy (nodeP->leftP);
nodeP->leftP = NULL;
// Free the subtree root node.
_deallocate_node (nodeP);
return;
}
//---------------------------------------------------------
// Fix-up the tree so it maintains the red-black properties after insertion.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_insert_fixup (Node* nodeP)
{
CGAL_multiset_precondition (_is_red (nodeP));
// Fix the red-black propreties: we may have inserted a red leaf as the
// child of a red parent - so we have to fix the coloring of the parent
// recursively.
Node *currP = nodeP;
Node *grandparentP;
Node *uncleP;
while (currP != rootP && _is_red (currP->parentP))
{
// Get a pointer to the current node's grandparent (notice the root is
// always black, so the red parent must have a parent).
grandparentP = currP->parentP->parentP;
CGAL_multiset_precondition (grandparentP != NULL);
if (currP->parentP == grandparentP->leftP)
{
// If the red parent is a left child, the uncle is the right child of
// the grandparent.
uncleP = grandparentP->rightP;
if (_is_red (uncleP))
{
// If both parent and uncle are red, color them black and color the
// grandparent red.
// In case of a NULL uncle, we treat it as a black node.
currP->parentP->color = Node::BLACK;
uncleP->color = Node::BLACK;
grandparentP->color = Node::RED;
// Move to the grandparent.
currP = grandparentP;
}
else
{
// Make sure the current node is a left child. If not, left-rotate
// the parent's sub-tree so the parent becomes the left child of the
// current node (see _rotate_left).
if (currP == currP->parentP->rightP)
{
currP = currP->parentP;
_rotate_left (currP);
}
// Color the parent black and the grandparent red.
currP->parentP->color = Node::BLACK;
CGAL_multiset_assertion (grandparentP == currP->parentP->parentP);
grandparentP->color = Node::RED;
// Right-rotate the grandparent's sub-tree
_rotate_right (grandparentP);
}
}
else
{
// If the red parent is a right child, the uncle is the left child of
// the grandparent.
uncleP = grandparentP->leftP;
if (_is_red (uncleP))
{
// If both parent and uncle are red, color them black and color the
// grandparent red.
// In case of a NULL uncle, we treat it as a black node.
currP->parentP->color = Node::BLACK;
uncleP->color = Node::BLACK;
grandparentP->color = Node::RED;
// Move to the grandparent.
currP = grandparentP;
}
else
{
// Make sure the current node is a right child. If not, right-rotate
// the parent's sub-tree so the parent becomes the right child of the
// current node.
if (currP == currP->parentP->leftP)
{
currP = currP->parentP;
_rotate_right (currP);
}
// Color the parent black and the grandparent red.
currP->parentP->color = Node::BLACK;
CGAL_multiset_assertion(grandparentP == currP->parentP->parentP);
grandparentP->color = Node::RED;
// Left-rotate the grandparent's sub-tree
_rotate_left (grandparentP);
}
}
}
// Make sure that the root is black.
if (_is_red (rootP))
{
// In case we color a red root black, we should increment the black
// height of the tree.
rootP->color = Node::BLACK;
iBlackHeight++;
}
return;
}
//---------------------------------------------------------
// Fix-up the tree so it maintains the red-black properties after removal.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_remove_fixup (Node* nodeP,
Node* parentP)
{
Node *currP = nodeP;
Node *currParentP = parentP;
Node *siblingP;
while (currP != rootP && _is_black (currP))
{
// Get a pointer to the current node's sibling (notice that the node's
// parent must exist, since the node is not the rootP).
if (currP == currParentP->leftP)
{
// If the current node is a left child, its sibling is the right
// child of the parent.
siblingP = currParentP->rightP;
// Check the sibling's color. Notice that NULL nodes are treated
// as if they are colored black.
if (_is_red (siblingP))
{
// In case the sibling is red, color it black and rotate.
// Then color the parent red (and the grandparent is now black).
siblingP->color = Node::BLACK;
currParentP->color = Node::RED;
_rotate_left (currParentP);
siblingP = currParentP->rightP;
}
CGAL_multiset_assertion (_is_valid (siblingP));
if (_is_black (siblingP->leftP) && _is_black (siblingP->rightP))
{
// If the sibling has two black children, color it red.
siblingP->color = Node::RED;
// The black-height of the entire sub-tree rooted at the parent is
// now too small - fix it up recursively.
currP = currParentP;
currParentP = currParentP->parentP;
// In case the current node is the tree root, we have just decreased
// the black height of the entire tree.
if (currP == rootP)
{
CGAL_multiset_assertion (currParentP == NULL);
iBlackHeight--;
}
}
else
{
// In this case, at least one of the sibling's children is red.
// It is therfore obvious that the sibling itself is black.
if (_is_black (siblingP->rightP))
{
// The left child is red: Color it black, and color the sibling red.
siblingP->leftP->color = Node::BLACK;
siblingP->color = Node::RED;
_rotate_right (siblingP);
siblingP = currParentP->rightP;
}
// Color the parent black (it is now safe to color the sibling with
// the same color the parent used to have) and rotate left around it.
siblingP->color = currParentP->color;
currParentP->color = Node::BLACK;
if (_is_valid (siblingP->rightP))
siblingP->rightP->color = Node::BLACK;
_rotate_left (currParentP);
// We set currP to be the root node in order to terminate the loop.
currP = rootP;
}
}
else
{
// If the current node is a right child, its sibling is the left
// child of the parent.
siblingP = currParentP->leftP;
// Check the sibling's color. Notice that NULL nodes are treated
// as if they are colored black.
if (_is_red (siblingP))
{
// In case the sibling is red, color it black and rotate.
// Then color the parent red (and the grandparent is now black).
siblingP->color = Node::BLACK;
currParentP->color = Node::RED;
_rotate_right (currParentP);
siblingP = currParentP->leftP;
}
CGAL_multiset_assertion (_is_valid (siblingP));
if (_is_black (siblingP->leftP) && _is_black (siblingP->rightP))
{
// If the sibling has two black children, color it red.
siblingP->color = Node::RED;
// The black-height of the entire sub-tree rooted at the parent is
// now too small - fix it up recursively.
currP = currParentP;
currParentP = currParentP->parentP;
// In case the current node is the tree root, we have just decreased
// the black height of the entire tree.
if (currP == rootP)
{
CGAL_multiset_assertion (currParentP == NULL);
iBlackHeight--;
}
}
else
{
// In this case, at least one of the sibling's children is red.
// It is therfore obvious that the sibling itself is black.
if (_is_black (siblingP->leftP))
{
// The right child is red: Color it black, and color the sibling red.
siblingP->rightP->color = Node::BLACK;
siblingP->color = Node::RED;
_rotate_left (siblingP);
siblingP = currParentP->leftP;
}
// Color the parent black (it is now safe to color the sibling with
// the same color the parent used to have) and rotate right around it.
siblingP->color = currParentP->color;
currParentP->color = Node::BLACK;
if (_is_valid (siblingP->leftP))
siblingP->leftP->color = Node::BLACK;
_rotate_right (currParentP);
// We set currP to be the root node in order to terminate the loop.
currP = rootP;
}
}
}
// Make sure the current node is black.
if (_is_red (currP))
{
currP->color = Node::BLACK;
if (currP == rootP)
{
// In case we color a red root black, we should increment the black
// height of the tree.
iBlackHeight++;
}
}
return;
}
//---------------------------------------------------------
// Allocate and initialize new tree node.
//
#ifndef CGAL_CFG_OUTOFLINE_MEMBER_DEFINITION_BUG
template <class Type, class Compare, typename Allocator>
typename Multiset<Type, Compare, Allocator>::Node*
Multiset<Type, Compare, Allocator>::_allocate_node
(const Type& object,
typename Node::Node_color color)
{
CGAL_multiset_assertion (color != Node::DUMMY_BEGIN &&
color != Node::DUMMY_END);
Node* new_node = node_alloc.allocate(1);
#ifdef CGAL_CXX11
std::allocator_traits<Node_allocator>::construct(node_alloc, new_node, beginNode);
#else
node_alloc.construct(new_node, beginNode);
#endif
new_node->init(object, color);
return (new_node);
}
#endif
//---------------------------------------------------------
// De-allocate a tree node.
//
template <class Type, class Compare, typename Allocator>
void Multiset<Type, Compare, Allocator>::_deallocate_node (Node* nodeP)
{
#ifdef CGAL_CXX11
std::allocator_traits<Node_allocator>::destroy(node_alloc, nodeP);
#else
node_alloc.destroy (nodeP);
#endif
node_alloc.deallocate (nodeP, 1);
return;
}
} //namespace CGAL
#endif