1187 lines
39 KiB
C
1187 lines
39 KiB
C
|
/****************************************************************************
|
||
|
|
||
|
Copyright (c) 2018 GeometryFactory Sarl (France).
|
||
|
Copyright (C) 2002-2014 Gilles Debunne. All rights reserved.
|
||
|
|
||
|
This file is part of a fork of the QGLViewer library version 2.7.0.
|
||
|
http://www.libqglviewer.com - contact@libqglviewer.com
|
||
|
|
||
|
This file may be used under the terms of the GNU General Public License
|
||
|
version 3.0 as published by the Free Software Foundation and
|
||
|
appearing in the LICENSE file included in the packaging of this file.
|
||
|
|
||
|
This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||
|
WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
|
||
|
*****************************************************************************/
|
||
|
// $URL$
|
||
|
// $Id$
|
||
|
// SPDX-License-Identifier: GPL-3.0
|
||
|
|
||
|
#ifdef CGAL_HEADER_ONLY
|
||
|
#define CGAL_INLINE_FUNCTION inline
|
||
|
|
||
|
#include <CGAL/license/GraphicsView.h>
|
||
|
|
||
|
#else
|
||
|
#define CGAL_INLINE_FUNCTION
|
||
|
#endif
|
||
|
|
||
|
#include <CGAL/Qt/frame.h>
|
||
|
#include <CGAL/Qt/constraint.h>
|
||
|
#include <CGAL/Qt/domUtils.h>
|
||
|
#include <math.h>
|
||
|
|
||
|
namespace CGAL{
|
||
|
namespace qglviewer{
|
||
|
|
||
|
|
||
|
/*! Creates a default Frame.
|
||
|
|
||
|
Its position() is (0,0,0) and it has an identity orientation() Quaternion. The
|
||
|
referenceFrame() and the constraint() are \c NULL. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Frame::Frame() : constraint_(NULL), referenceFrame_(NULL) {}
|
||
|
|
||
|
/*! Creates a Frame with a position() and an orientation().
|
||
|
|
||
|
See the Vec and Quaternion documentations for convenient constructors and
|
||
|
methods.
|
||
|
|
||
|
The Frame is defined in the world coordinate system (its referenceFrame() is \c
|
||
|
NULL). It has a \c NULL associated constraint(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Frame::Frame(const Vec &position, const Quaternion &orientation)
|
||
|
: t_(position), q_(orientation), constraint_(NULL), referenceFrame_(NULL) {}
|
||
|
|
||
|
/*! Equal operator.
|
||
|
|
||
|
The referenceFrame() and constraint() pointers are copied.
|
||
|
|
||
|
\attention Signal and slot connections are not copied. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Frame &Frame::operator=(const Frame &frame) {
|
||
|
// Automatic compiler generated version would not emit the modified() signals
|
||
|
// as is done in setTranslationAndRotation.
|
||
|
setTranslationAndRotation(frame.translation(), frame.rotation());
|
||
|
setConstraint(frame.constraint());
|
||
|
setReferenceFrame(frame.referenceFrame());
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
/*! Copy constructor.
|
||
|
|
||
|
The translation() and rotation() as well as constraint() and referenceFrame()
|
||
|
pointers are copied. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Frame::Frame(const Frame &frame) : QObject() { (*this) = frame; }
|
||
|
|
||
|
/////////////////////////////// MATRICES //////////////////////////////////////
|
||
|
|
||
|
/*! Returns the 4x4 OpenGL transformation matrix represented by the Frame.
|
||
|
|
||
|
This method should be used in conjunction with \c glMultMatrixd() to modify
|
||
|
the OpenGL modelview matrix from a Frame hierarchy. With this Frame hierarchy:
|
||
|
\code
|
||
|
Frame* body = new Frame();
|
||
|
Frame* leftArm = new Frame();
|
||
|
Frame* rightArm = new Frame();
|
||
|
leftArm->setReferenceFrame(body);
|
||
|
rightArm->setReferenceFrame(body);
|
||
|
\endcode
|
||
|
|
||
|
The associated OpenGL drawing code should look like:
|
||
|
\code
|
||
|
void Viewer::draw()
|
||
|
{
|
||
|
glPushMatrix();
|
||
|
glMultMatrixd(body->matrix());
|
||
|
drawBody();
|
||
|
|
||
|
glPushMatrix();
|
||
|
glMultMatrixd(leftArm->matrix());
|
||
|
drawArm();
|
||
|
glPopMatrix();
|
||
|
|
||
|
glPushMatrix();
|
||
|
glMultMatrixd(rightArm->matrix());
|
||
|
drawArm();
|
||
|
glPopMatrix();
|
||
|
|
||
|
glPopMatrix();
|
||
|
}
|
||
|
\endcode
|
||
|
Note the use of nested \c glPushMatrix() and \c glPopMatrix() blocks to
|
||
|
represent the frame hierarchy: \c leftArm and \c rightArm are both correctly
|
||
|
drawn with respect to the \c body coordinate system.
|
||
|
|
||
|
This matrix only represents the local Frame transformation (i.e. with respect
|
||
|
to the referenceFrame()). Use worldMatrix() to get the full Frame
|
||
|
transformation matrix (i.e. from the world to the Frame coordinate system).
|
||
|
These two match when the referenceFrame() is \c NULL.
|
||
|
|
||
|
The result is only valid until the next call to matrix(), getMatrix(),
|
||
|
worldMatrix() or getWorldMatrix(). Use it immediately (as above) or use
|
||
|
getMatrix() instead.
|
||
|
|
||
|
\attention The OpenGL format of the result is the transpose of the actual
|
||
|
mathematical European representation (translation is on the last \e line
|
||
|
instead of the last \e column).
|
||
|
|
||
|
\note The scaling factor of the 4x4 matrix is 1.0. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
const GLdouble *Frame::matrix() const {
|
||
|
static GLdouble m[4][4];
|
||
|
getMatrix(m);
|
||
|
return (const GLdouble *)(m);
|
||
|
}
|
||
|
|
||
|
/*! \c GLdouble[4][4] version of matrix(). See also getWorldMatrix() and
|
||
|
* matrix(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getMatrix(GLdouble m[4][4]) const {
|
||
|
q_.getMatrix(m);
|
||
|
|
||
|
m[3][0] = t_[0];
|
||
|
m[3][1] = t_[1];
|
||
|
m[3][2] = t_[2];
|
||
|
}
|
||
|
|
||
|
/*! \c GLdouble[16] version of matrix(). See also getWorldMatrix() and matrix().
|
||
|
*/
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getMatrix(GLdouble m[16]) const {
|
||
|
q_.getMatrix(m);
|
||
|
|
||
|
m[12] = t_[0];
|
||
|
m[13] = t_[1];
|
||
|
m[14] = t_[2];
|
||
|
}
|
||
|
|
||
|
/*! Returns a Frame representing the inverse of the Frame space transformation.
|
||
|
|
||
|
The rotation() of the new Frame is the Quaternion::inverse() of the original
|
||
|
rotation. Its translation() is the negated inverse rotated image of the
|
||
|
original translation.
|
||
|
|
||
|
If a Frame is considered as a space rigid transformation (translation and
|
||
|
rotation), the inverse() Frame performs the inverse transformation.
|
||
|
|
||
|
Only the local Frame transformation (i.e. defined with respect to the
|
||
|
referenceFrame()) is inverted. Use worldInverse() for a global inverse.
|
||
|
|
||
|
The resulting Frame has the same referenceFrame() as the Frame and a \c NULL
|
||
|
constraint().
|
||
|
|
||
|
\note The scaling factor of the 4x4 matrix is 1.0. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Frame Frame::inverse() const {
|
||
|
Frame fr(-(q_.inverseRotate(t_)), q_.inverse());
|
||
|
fr.setReferenceFrame(referenceFrame());
|
||
|
return fr;
|
||
|
}
|
||
|
|
||
|
/*! Returns the 4x4 OpenGL transformation matrix represented by the Frame.
|
||
|
|
||
|
This method should be used in conjunction with \c glMultMatrixd() to modify
|
||
|
the OpenGL modelview matrix from a Frame:
|
||
|
\code
|
||
|
// The modelview here corresponds to the world coordinate system.
|
||
|
Frame fr(pos, Quaternion(from, to));
|
||
|
glPushMatrix();
|
||
|
glMultMatrixd(fr.worldMatrix());
|
||
|
// draw object in the fr coordinate system.
|
||
|
glPopMatrix();
|
||
|
\endcode
|
||
|
|
||
|
This matrix represents the global Frame transformation: the entire
|
||
|
referenceFrame() hierarchy is taken into account to define the Frame
|
||
|
transformation from the world coordinate system. Use matrix() to get the local
|
||
|
Frame transformation matrix (i.e. defined with respect to the
|
||
|
referenceFrame()). These two match when the referenceFrame() is \c NULL.
|
||
|
|
||
|
The OpenGL format of the result is the transpose of the actual mathematical
|
||
|
European representation (translation is on the last \e line instead of the
|
||
|
last \e column).
|
||
|
|
||
|
\attention The result is only valid until the next call to matrix(),
|
||
|
getMatrix(), worldMatrix() or getWorldMatrix(). Use it immediately (as above)
|
||
|
or use getWorldMatrix() instead.
|
||
|
|
||
|
\note The scaling factor of the 4x4 matrix is 1.0. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
const GLdouble *Frame::worldMatrix() const {
|
||
|
// This test is done for efficiency reasons (creates lots of temp objects
|
||
|
// otherwise).
|
||
|
if (referenceFrame()) {
|
||
|
static Frame fr;
|
||
|
fr.setTranslation(position());
|
||
|
fr.setRotation(orientation());
|
||
|
return fr.matrix();
|
||
|
} else
|
||
|
return matrix();
|
||
|
}
|
||
|
|
||
|
/*! qreal[4][4] parameter version of worldMatrix(). See also getMatrix() and
|
||
|
* matrix(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getWorldMatrix(GLdouble m[4][4]) const {
|
||
|
const GLdouble *mat = worldMatrix();
|
||
|
for (int i = 0; i < 4; ++i)
|
||
|
for (int j = 0; j < 4; ++j)
|
||
|
m[i][j] = mat[i * 4 + j];
|
||
|
}
|
||
|
|
||
|
/*! qreal[16] parameter version of worldMatrix(). See also getMatrix() and
|
||
|
* matrix(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getWorldMatrix(GLdouble m[16]) const {
|
||
|
const GLdouble *mat = worldMatrix();
|
||
|
for (int i = 0; i < 16; ++i)
|
||
|
m[i] = mat[i];
|
||
|
}
|
||
|
|
||
|
/*! This is an overloaded method provided for convenience. Same as
|
||
|
* setFromMatrix(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::setFromMatrix(const GLdouble m[4][4]) {
|
||
|
if (fabs(m[3][3]) < 1E-8) {
|
||
|
qWarning("Frame::setFromMatrix: Null homogeneous coefficient");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
qreal rot[3][3];
|
||
|
for (int i = 0; i < 3; ++i) {
|
||
|
t_[i] = m[3][i] / m[3][3];
|
||
|
for (int j = 0; j < 3; ++j)
|
||
|
// Beware of the transposition (OpenGL to European math)
|
||
|
rot[i][j] = m[j][i] / m[3][3];
|
||
|
}
|
||
|
q_.setFromRotationMatrix(rot);
|
||
|
Q_EMIT modified();
|
||
|
}
|
||
|
|
||
|
/*! Sets the Frame from an OpenGL matrix representation (rotation in the upper
|
||
|
left 3x3 matrix and translation on the last line).
|
||
|
|
||
|
Hence, if a code fragment looks like:
|
||
|
\code
|
||
|
GLdouble m[16]={...};
|
||
|
glMultMatrixd(m);
|
||
|
\endcode
|
||
|
It is equivalent to write:
|
||
|
\code
|
||
|
Frame fr;
|
||
|
fr.setFromMatrix(m);
|
||
|
glMultMatrixd(fr.matrix());
|
||
|
\endcode
|
||
|
|
||
|
Using this conversion, you can benefit from the powerful Frame transformation
|
||
|
methods to translate points and vectors to and from the Frame coordinate system
|
||
|
to any other Frame coordinate system (including the world coordinate system).
|
||
|
See coordinatesOf() and transformOf().
|
||
|
|
||
|
Emits the modified() signal. See also matrix(), getMatrix() and
|
||
|
Quaternion::setFromRotationMatrix().
|
||
|
|
||
|
\attention A Frame does not contain a scale factor. The possible scaling in \p
|
||
|
m will not be converted into the Frame by this method. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::setFromMatrix(const GLdouble m[16]) {
|
||
|
GLdouble mat[4][4];
|
||
|
for (int i = 0; i < 4; ++i)
|
||
|
for (int j = 0; j < 4; ++j)
|
||
|
mat[i][j] = m[i * 4 + j];
|
||
|
setFromMatrix(mat);
|
||
|
}
|
||
|
|
||
|
//////////////////// SET AND GET LOCAL TRANSLATION AND ROTATION
|
||
|
//////////////////////////////////
|
||
|
|
||
|
/*! Same as setTranslation(), but with \p qreal parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::setTranslation(qreal x, qreal y, qreal z) {
|
||
|
setTranslation(Vec(x, y, z));
|
||
|
}
|
||
|
|
||
|
/*! Fill \c x, \c y and \c z with the translation() of the Frame. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getTranslation(qreal &x, qreal &y, qreal &z) const {
|
||
|
const Vec t = translation();
|
||
|
x = t[0];
|
||
|
y = t[1];
|
||
|
z = t[2];
|
||
|
}
|
||
|
|
||
|
/*! Same as setRotation() but with \c qreal Quaternion parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::setRotation(qreal q0, qreal q1, qreal q2, qreal q3) {
|
||
|
setRotation(Quaternion(q0, q1, q2, q3));
|
||
|
}
|
||
|
|
||
|
/*! The \p q are set to the rotation() of the Frame.
|
||
|
|
||
|
See Quaternion::Quaternion(qreal, qreal, qreal, qreal) for details on \c q. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getRotation(qreal &q0, qreal &q1, qreal &q2, qreal &q3) const {
|
||
|
const Quaternion q = rotation();
|
||
|
q0 = q[0];
|
||
|
q1 = q[1];
|
||
|
q2 = q[2];
|
||
|
q3 = q[3];
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
/*! Translates the Frame of \p t (defined in the Frame coordinate system).
|
||
|
|
||
|
The translation actually applied to the Frame may differ from \p t since it
|
||
|
can be filtered by the constraint(). Use translate(Vec&) or
|
||
|
setTranslationWithConstraint() to retrieve the filtered translation value. Use
|
||
|
setTranslation() to directly translate the Frame without taking the
|
||
|
constraint() into account.
|
||
|
|
||
|
See also rotate(const Quaternion&). Emits the modified() signal. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::translate(const Vec &t) {
|
||
|
Vec tbis = t;
|
||
|
translate(tbis);
|
||
|
}
|
||
|
|
||
|
/*! Same as translate(const Vec&) but \p t may be modified to satisfy the
|
||
|
translation constraint(). Its new value corresponds to the translation that
|
||
|
has actually been applied to the Frame. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::translate(Vec &t) {
|
||
|
if (constraint())
|
||
|
constraint()->constrainTranslation(t, this);
|
||
|
t_ += t;
|
||
|
Q_EMIT modified();
|
||
|
}
|
||
|
|
||
|
/*! Same as translate(const Vec&) but with \c qreal parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::translate(qreal x, qreal y, qreal z) {
|
||
|
Vec t(x, y, z);
|
||
|
translate(t);
|
||
|
}
|
||
|
|
||
|
/*! Same as translate(Vec&) but with \c qreal parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::translate(qreal &x, qreal &y, qreal &z) {
|
||
|
Vec t(x, y, z);
|
||
|
translate(t);
|
||
|
x = t[0];
|
||
|
y = t[1];
|
||
|
z = t[2];
|
||
|
}
|
||
|
|
||
|
/*! Rotates the Frame by \p q (defined in the Frame coordinate system): R = R*q.
|
||
|
|
||
|
The rotation actually applied to the Frame may differ from \p q since it can
|
||
|
be filtered by the constraint(). Use rotate(Quaternion&) or
|
||
|
setRotationWithConstraint() to retrieve the filtered rotation value. Use
|
||
|
setRotation() to directly rotate the Frame without taking the constraint()
|
||
|
into account.
|
||
|
|
||
|
See also translate(const Vec&). Emits the modified() signal. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::rotate(const Quaternion &q) {
|
||
|
Quaternion qbis = q;
|
||
|
rotate(qbis);
|
||
|
}
|
||
|
|
||
|
/*! Same as rotate(const Quaternion&) but \p q may be modified to satisfy the
|
||
|
rotation constraint(). Its new value corresponds to the rotation that has
|
||
|
actually been applied to the Frame. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::rotate(Quaternion &q) {
|
||
|
if (constraint())
|
||
|
constraint()->constrainRotation(q, this);
|
||
|
q_ *= q;
|
||
|
q_.normalize(); // Prevents numerical drift
|
||
|
Q_EMIT modified();
|
||
|
}
|
||
|
|
||
|
/*! Same as rotate(Quaternion&) but with \c qreal Quaternion parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::rotate(qreal &q0, qreal &q1, qreal &q2, qreal &q3) {
|
||
|
Quaternion q(q0, q1, q2, q3);
|
||
|
rotate(q);
|
||
|
q0 = q[0];
|
||
|
q1 = q[1];
|
||
|
q2 = q[2];
|
||
|
q3 = q[3];
|
||
|
}
|
||
|
|
||
|
/*! Same as rotate(const Quaternion&) but with \c qreal Quaternion parameters.
|
||
|
*/
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::rotate(qreal q0, qreal q1, qreal q2, qreal q3) {
|
||
|
Quaternion q(q0, q1, q2, q3);
|
||
|
rotate(q);
|
||
|
}
|
||
|
|
||
|
/*! Makes the Frame rotate() by \p rotation around \p point.
|
||
|
|
||
|
\p point is defined in the world coordinate system, while the \p rotation axis
|
||
|
is defined in the Frame coordinate system.
|
||
|
|
||
|
If the Frame has a constraint(), \p rotation is first constrained using
|
||
|
Constraint::constrainRotation(). The translation which results from the
|
||
|
filtered rotation around \p point is then computed and filtered using
|
||
|
Constraint::constrainTranslation(). The new \p rotation value corresponds to
|
||
|
the rotation that has actually been applied to the Frame.
|
||
|
|
||
|
Emits the modified() signal. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::rotateAroundPoint(Quaternion &rotation, const Vec &point) {
|
||
|
if (constraint())
|
||
|
constraint()->constrainRotation(rotation, this);
|
||
|
q_ *= rotation;
|
||
|
q_.normalize(); // Prevents numerical drift
|
||
|
Vec trans = point +
|
||
|
Quaternion(inverseTransformOf(rotation.axis()), rotation.angle())
|
||
|
.rotate(position() - point) -
|
||
|
t_;
|
||
|
if (constraint())
|
||
|
constraint()->constrainTranslation(trans, this);
|
||
|
t_ += trans;
|
||
|
Q_EMIT modified();
|
||
|
}
|
||
|
|
||
|
/*! Same as rotateAroundPoint(), but with a \c const \p rotation Quaternion.
|
||
|
Note that the actual rotation may differ since it can be filtered by the
|
||
|
constraint(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::rotateAroundPoint(const Quaternion &rotation, const Vec &point) {
|
||
|
Quaternion rot = rotation;
|
||
|
rotateAroundPoint(rot, point);
|
||
|
}
|
||
|
|
||
|
//////////////////// SET AND GET WORLD POSITION AND ORIENTATION
|
||
|
//////////////////////////////////
|
||
|
|
||
|
/*! Sets the position() of the Frame, defined in the world coordinate system.
|
||
|
Emits the modified() signal.
|
||
|
|
||
|
Use setTranslation() to define the \e local frame translation (with respect to
|
||
|
the referenceFrame()). The potential constraint() of the Frame is not taken into
|
||
|
account, use setPositionWithConstraint() instead. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::setPosition(const Vec &position) {
|
||
|
if (referenceFrame())
|
||
|
setTranslation(referenceFrame()->coordinatesOf(position));
|
||
|
else
|
||
|
setTranslation(position);
|
||
|
}
|
||
|
|
||
|
/*! Same as setPosition(), but with \c qreal parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::setPosition(qreal x, qreal y, qreal z) {
|
||
|
setPosition(Vec(x, y, z));
|
||
|
}
|
||
|
|
||
|
/*! Same as successive calls to setPosition() and then setOrientation().
|
||
|
|
||
|
Only one modified() signal is emitted, which is convenient if this signal is
|
||
|
connected to a CGAL::QGLViewer::update() slot. See also setTranslationAndRotation()
|
||
|
and setPositionAndOrientationWithConstraint(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::setPositionAndOrientation(const Vec &position,
|
||
|
const Quaternion &orientation) {
|
||
|
if (referenceFrame()) {
|
||
|
t_ = referenceFrame()->coordinatesOf(position);
|
||
|
q_ = referenceFrame()->orientation().inverse() * orientation;
|
||
|
} else {
|
||
|
t_ = position;
|
||
|
q_ = orientation;
|
||
|
}
|
||
|
Q_EMIT modified();
|
||
|
}
|
||
|
|
||
|
/*! Same as successive calls to setTranslation() and then setRotation().
|
||
|
|
||
|
Only one modified() signal is emitted, which is convenient if this signal is
|
||
|
connected to a CGAL::QGLViewer::update() slot. See also setPositionAndOrientation()
|
||
|
and setTranslationAndRotationWithConstraint(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::setTranslationAndRotation(const Vec &translation,
|
||
|
const Quaternion &rotation) {
|
||
|
t_ = translation;
|
||
|
q_ = rotation;
|
||
|
Q_EMIT modified();
|
||
|
}
|
||
|
|
||
|
/*! \p x, \p y and \p z are set to the position() of the Frame. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getPosition(qreal &x, qreal &y, qreal &z) const {
|
||
|
Vec p = position();
|
||
|
x = p.x;
|
||
|
y = p.y;
|
||
|
z = p.z;
|
||
|
}
|
||
|
|
||
|
/*! Sets the orientation() of the Frame, defined in the world coordinate system.
|
||
|
Emits the modified() signal.
|
||
|
|
||
|
Use setRotation() to define the \e local frame rotation (with respect to the
|
||
|
referenceFrame()). The potential constraint() of the Frame is not taken into
|
||
|
account, use setOrientationWithConstraint() instead. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::setOrientation(const Quaternion &orientation) {
|
||
|
if (referenceFrame())
|
||
|
setRotation(referenceFrame()->orientation().inverse() * orientation);
|
||
|
else
|
||
|
setRotation(orientation);
|
||
|
}
|
||
|
|
||
|
/*! Same as setOrientation(), but with \c qreal parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::setOrientation(qreal q0, qreal q1, qreal q2, qreal q3) {
|
||
|
setOrientation(Quaternion(q0, q1, q2, q3));
|
||
|
}
|
||
|
|
||
|
/*! Get the current orientation of the frame (same as orientation()).
|
||
|
Parameters are the orientation Quaternion values.
|
||
|
See also setOrientation(). */
|
||
|
|
||
|
/*! The \p q are set to the orientation() of the Frame.
|
||
|
|
||
|
See Quaternion::Quaternion(qreal, qreal, qreal, qreal) for details on \c q. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getOrientation(qreal &q0, qreal &q1, qreal &q2, qreal &q3) const {
|
||
|
Quaternion o = orientation();
|
||
|
q0 = o[0];
|
||
|
q1 = o[1];
|
||
|
q2 = o[2];
|
||
|
q3 = o[3];
|
||
|
}
|
||
|
|
||
|
/*! Returns the position of the Frame, defined in the world coordinate system.
|
||
|
See also orientation(), setPosition() and translation(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Vec Frame::position() const {
|
||
|
if (referenceFrame_)
|
||
|
return inverseCoordinatesOf(Vec(0.0, 0.0, 0.0));
|
||
|
else
|
||
|
return t_;
|
||
|
}
|
||
|
|
||
|
/*! Returns the orientation of the Frame, defined in the world coordinate
|
||
|
system. See also position(), setOrientation() and rotation(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Quaternion Frame::orientation() const {
|
||
|
Quaternion res = rotation();
|
||
|
const Frame *fr = referenceFrame();
|
||
|
while (fr != NULL) {
|
||
|
res = fr->rotation() * res;
|
||
|
fr = fr->referenceFrame();
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
////////////////////// C o n s t r a i n t V e r s i o n s
|
||
|
/////////////////////////////
|
||
|
|
||
|
/*! Same as setTranslation(), but \p translation is modified so that the
|
||
|
potential constraint() of the Frame is satisfied.
|
||
|
|
||
|
Emits the modified() signal. See also setRotationWithConstraint() and
|
||
|
setPositionWithConstraint(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::setTranslationWithConstraint(Vec &translation) {
|
||
|
Vec deltaT = translation - this->translation();
|
||
|
if (constraint())
|
||
|
constraint()->constrainTranslation(deltaT, this);
|
||
|
|
||
|
setTranslation(this->translation() + deltaT);
|
||
|
translation = this->translation();
|
||
|
}
|
||
|
|
||
|
/*! Same as setRotation(), but \p rotation is modified so that the potential
|
||
|
constraint() of the Frame is satisfied.
|
||
|
|
||
|
Emits the modified() signal. See also setTranslationWithConstraint() and
|
||
|
setOrientationWithConstraint(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::setRotationWithConstraint(Quaternion &rotation) {
|
||
|
Quaternion deltaQ = this->rotation().inverse() * rotation;
|
||
|
if (constraint())
|
||
|
constraint()->constrainRotation(deltaQ, this);
|
||
|
|
||
|
// Prevent numerical drift
|
||
|
deltaQ.normalize();
|
||
|
|
||
|
setRotation(this->rotation() * deltaQ);
|
||
|
q_.normalize();
|
||
|
rotation = this->rotation();
|
||
|
}
|
||
|
|
||
|
/*! Same as setTranslationAndRotation(), but \p translation and \p orientation
|
||
|
are modified to satisfy the constraint(). Emits the modified() signal. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::setTranslationAndRotationWithConstraint(Vec &translation,
|
||
|
Quaternion &rotation) {
|
||
|
Vec deltaT = translation - this->translation();
|
||
|
Quaternion deltaQ = this->rotation().inverse() * rotation;
|
||
|
|
||
|
if (constraint()) {
|
||
|
constraint()->constrainTranslation(deltaT, this);
|
||
|
constraint()->constrainRotation(deltaQ, this);
|
||
|
}
|
||
|
|
||
|
// Prevent numerical drift
|
||
|
deltaQ.normalize();
|
||
|
|
||
|
t_ += deltaT;
|
||
|
q_ *= deltaQ;
|
||
|
q_.normalize();
|
||
|
|
||
|
translation = this->translation();
|
||
|
rotation = this->rotation();
|
||
|
|
||
|
Q_EMIT modified();
|
||
|
}
|
||
|
|
||
|
/*! Same as setPosition(), but \p position is modified so that the potential
|
||
|
constraint() of the Frame is satisfied. See also
|
||
|
setOrientationWithConstraint() and setTranslationWithConstraint(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::setPositionWithConstraint(Vec &position) {
|
||
|
if (referenceFrame())
|
||
|
position = referenceFrame()->coordinatesOf(position);
|
||
|
|
||
|
setTranslationWithConstraint(position);
|
||
|
}
|
||
|
|
||
|
/*! Same as setOrientation(), but \p orientation is modified so that the
|
||
|
potential constraint() of the Frame is satisfied. See also
|
||
|
setPositionWithConstraint() and setRotationWithConstraint(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::setOrientationWithConstraint(Quaternion &orientation) {
|
||
|
if (referenceFrame())
|
||
|
orientation = referenceFrame()->orientation().inverse() * orientation;
|
||
|
|
||
|
setRotationWithConstraint(orientation);
|
||
|
}
|
||
|
|
||
|
/*! Same as setPositionAndOrientation() but \p position and \p orientation are
|
||
|
modified to satisfy the constraint. Emits the modified() signal. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::setPositionAndOrientationWithConstraint(Vec &position,
|
||
|
Quaternion &orientation) {
|
||
|
if (referenceFrame()) {
|
||
|
position = referenceFrame()->coordinatesOf(position);
|
||
|
orientation = referenceFrame()->orientation().inverse() * orientation;
|
||
|
}
|
||
|
setTranslationAndRotationWithConstraint(position, orientation);
|
||
|
}
|
||
|
|
||
|
///////////////////////////// REFERENCE FRAMES
|
||
|
//////////////////////////////////////////
|
||
|
|
||
|
/*! Sets the referenceFrame() of the Frame.
|
||
|
|
||
|
The Frame translation() and rotation() are then defined in the referenceFrame()
|
||
|
coordinate system. Use position() and orientation() to express these in the
|
||
|
world coordinate system.
|
||
|
|
||
|
Emits the modified() signal if \p refFrame differs from the current
|
||
|
referenceFrame().
|
||
|
|
||
|
Using this method, you can create a hierarchy of Frames. This hierarchy needs to
|
||
|
be a tree, which root is the world coordinate system (i.e. a \c NULL
|
||
|
referenceFrame()). A warning is printed and no action is performed if setting \p
|
||
|
refFrame as the referenceFrame() would create a loop in the Frame hierarchy (see
|
||
|
settingAsReferenceFrameWillCreateALoop()). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::setReferenceFrame(const Frame *const refFrame) {
|
||
|
if (settingAsReferenceFrameWillCreateALoop(refFrame))
|
||
|
qWarning("Frame::setReferenceFrame would create a loop in Frame hierarchy");
|
||
|
else {
|
||
|
bool identical = (referenceFrame_ == refFrame);
|
||
|
referenceFrame_ = refFrame;
|
||
|
if (!identical)
|
||
|
Q_EMIT modified();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*! Returns \c true if setting \p frame as the Frame's referenceFrame() would
|
||
|
create a loop in the Frame hierarchy. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
bool Frame::settingAsReferenceFrameWillCreateALoop(const Frame *const frame) {
|
||
|
const Frame *f = frame;
|
||
|
while (f != NULL) {
|
||
|
if (f == this)
|
||
|
return true;
|
||
|
f = f->referenceFrame();
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
///////////////////////// FRAME TRANSFORMATIONS OF 3D POINTS
|
||
|
/////////////////////////////////
|
||
|
|
||
|
/*! Returns the Frame coordinates of a point \p src defined in the world
|
||
|
coordinate system (converts from world to Frame).
|
||
|
|
||
|
inverseCoordinatesOf() performs the inverse convertion. transformOf() converts
|
||
|
3D vectors instead of 3D coordinates.
|
||
|
|
||
|
See the <a href="../examples/frameTransform.html">frameTransform example</a>
|
||
|
for an illustration. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Vec Frame::coordinatesOf(const Vec &src) const {
|
||
|
if (referenceFrame())
|
||
|
return localCoordinatesOf(referenceFrame()->coordinatesOf(src));
|
||
|
else
|
||
|
return localCoordinatesOf(src);
|
||
|
}
|
||
|
|
||
|
/*! Returns the world coordinates of the point whose position in the Frame
|
||
|
coordinate system is \p src (converts from Frame to world).
|
||
|
|
||
|
coordinatesOf() performs the inverse convertion. Use inverseTransformOf() to
|
||
|
transform 3D vectors instead of 3D coordinates. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Vec Frame::inverseCoordinatesOf(const Vec &src) const {
|
||
|
const Frame *fr = this;
|
||
|
Vec res = src;
|
||
|
while (fr != NULL) {
|
||
|
res = fr->localInverseCoordinatesOf(res);
|
||
|
fr = fr->referenceFrame();
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
/*! Returns the Frame coordinates of a point \p src defined in the
|
||
|
referenceFrame() coordinate system (converts from referenceFrame() to Frame).
|
||
|
|
||
|
localInverseCoordinatesOf() performs the inverse convertion. See also
|
||
|
localTransformOf(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Vec Frame::localCoordinatesOf(const Vec &src) const {
|
||
|
return rotation().inverseRotate(src - translation());
|
||
|
}
|
||
|
|
||
|
/*! Returns the referenceFrame() coordinates of a point \p src defined in the
|
||
|
Frame coordinate system (converts from Frame to referenceFrame()).
|
||
|
|
||
|
localCoordinatesOf() performs the inverse convertion. See also
|
||
|
localInverseTransformOf(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Vec Frame::localInverseCoordinatesOf(const Vec &src) const {
|
||
|
return rotation().rotate(src) + translation();
|
||
|
}
|
||
|
|
||
|
/*! Returns the Frame coordinates of the point whose position in the \p from
|
||
|
coordinate system is \p src (converts from \p from to Frame).
|
||
|
|
||
|
coordinatesOfIn() performs the inverse transformation. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Vec Frame::coordinatesOfFrom(const Vec &src, const Frame *const from) const {
|
||
|
if (this == from)
|
||
|
return src;
|
||
|
else if (referenceFrame())
|
||
|
return localCoordinatesOf(referenceFrame()->coordinatesOfFrom(src, from));
|
||
|
else
|
||
|
return localCoordinatesOf(from->inverseCoordinatesOf(src));
|
||
|
}
|
||
|
|
||
|
/*! Returns the \p in coordinates of the point whose position in the Frame
|
||
|
coordinate system is \p src (converts from Frame to \p in).
|
||
|
|
||
|
coordinatesOfFrom() performs the inverse transformation. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Vec Frame::coordinatesOfIn(const Vec &src, const Frame *const in) const {
|
||
|
const Frame *fr = this;
|
||
|
Vec res = src;
|
||
|
while ((fr != NULL) && (fr != in)) {
|
||
|
res = fr->localInverseCoordinatesOf(res);
|
||
|
fr = fr->referenceFrame();
|
||
|
}
|
||
|
|
||
|
if (fr != in)
|
||
|
// in was not found in the branch of this, res is now expressed in the world
|
||
|
// coordinate system. Simply convert to in coordinate system.
|
||
|
res = in->coordinatesOf(res);
|
||
|
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
////// qreal[3] versions
|
||
|
|
||
|
/*! Same as coordinatesOf(), but with \c qreal parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getCoordinatesOf(const qreal src[3], qreal res[3]) const {
|
||
|
const Vec r = coordinatesOf(Vec(src));
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
res[i] = r[i];
|
||
|
}
|
||
|
|
||
|
/*! Same as inverseCoordinatesOf(), but with \c qreal parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getInverseCoordinatesOf(const qreal src[3], qreal res[3]) const {
|
||
|
const Vec r = inverseCoordinatesOf(Vec(src));
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
res[i] = r[i];
|
||
|
}
|
||
|
|
||
|
/*! Same as localCoordinatesOf(), but with \c qreal parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getLocalCoordinatesOf(const qreal src[3], qreal res[3]) const {
|
||
|
const Vec r = localCoordinatesOf(Vec(src));
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
res[i] = r[i];
|
||
|
}
|
||
|
|
||
|
/*! Same as localInverseCoordinatesOf(), but with \c qreal parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getLocalInverseCoordinatesOf(const qreal src[3],
|
||
|
qreal res[3]) const {
|
||
|
const Vec r = localInverseCoordinatesOf(Vec(src));
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
res[i] = r[i];
|
||
|
}
|
||
|
|
||
|
/*! Same as coordinatesOfIn(), but with \c qreal parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getCoordinatesOfIn(const qreal src[3], qreal res[3],
|
||
|
const Frame *const in) const {
|
||
|
const Vec r = coordinatesOfIn(Vec(src), in);
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
res[i] = r[i];
|
||
|
}
|
||
|
|
||
|
/*! Same as coordinatesOfFrom(), but with \c qreal parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getCoordinatesOfFrom(const qreal src[3], qreal res[3],
|
||
|
const Frame *const from) const {
|
||
|
const Vec r = coordinatesOfFrom(Vec(src), from);
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
res[i] = r[i];
|
||
|
}
|
||
|
|
||
|
///////////////////////// FRAME TRANSFORMATIONS OF VECTORS
|
||
|
/////////////////////////////////
|
||
|
|
||
|
/*! Returns the Frame transform of a vector \p src defined in the world
|
||
|
coordinate system (converts vectors from world to Frame).
|
||
|
|
||
|
inverseTransformOf() performs the inverse transformation. coordinatesOf()
|
||
|
converts 3D coordinates instead of 3D vectors (here only the rotational part of
|
||
|
the transformation is taken into account).
|
||
|
|
||
|
See the <a href="../examples/frameTransform.html">frameTransform example</a>
|
||
|
for an illustration. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Vec Frame::transformOf(const Vec &src) const {
|
||
|
if (referenceFrame())
|
||
|
return localTransformOf(referenceFrame()->transformOf(src));
|
||
|
else
|
||
|
return localTransformOf(src);
|
||
|
}
|
||
|
|
||
|
/*! Returns the world transform of the vector whose coordinates in the Frame
|
||
|
coordinate system is \p src (converts vectors from Frame to world).
|
||
|
|
||
|
transformOf() performs the inverse transformation. Use inverseCoordinatesOf()
|
||
|
to transform 3D coordinates instead of 3D vectors. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Vec Frame::inverseTransformOf(const Vec &src) const {
|
||
|
const Frame *fr = this;
|
||
|
Vec res = src;
|
||
|
while (fr != NULL) {
|
||
|
res = fr->localInverseTransformOf(res);
|
||
|
fr = fr->referenceFrame();
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
/*! Returns the Frame transform of a vector \p src defined in the
|
||
|
referenceFrame() coordinate system (converts vectors from referenceFrame() to
|
||
|
Frame).
|
||
|
|
||
|
localInverseTransformOf() performs the inverse transformation. See also
|
||
|
localCoordinatesOf(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Vec Frame::localTransformOf(const Vec &src) const {
|
||
|
return rotation().inverseRotate(src);
|
||
|
}
|
||
|
|
||
|
/*! Returns the referenceFrame() transform of a vector \p src defined in the
|
||
|
Frame coordinate system (converts vectors from Frame to referenceFrame()).
|
||
|
|
||
|
localTransformOf() performs the inverse transformation. See also
|
||
|
localInverseCoordinatesOf(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Vec Frame::localInverseTransformOf(const Vec &src) const {
|
||
|
return rotation().rotate(src);
|
||
|
}
|
||
|
|
||
|
/*! Returns the Frame transform of the vector whose coordinates in the \p from
|
||
|
coordinate system is \p src (converts vectors from \p from to Frame).
|
||
|
|
||
|
transformOfIn() performs the inverse transformation. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Vec Frame::transformOfFrom(const Vec &src, const Frame *const from) const {
|
||
|
if (this == from)
|
||
|
return src;
|
||
|
else if (referenceFrame())
|
||
|
return localTransformOf(referenceFrame()->transformOfFrom(src, from));
|
||
|
else
|
||
|
return localTransformOf(from->inverseTransformOf(src));
|
||
|
}
|
||
|
|
||
|
/*! Returns the \p in transform of the vector whose coordinates in the Frame
|
||
|
coordinate system is \p src (converts vectors from Frame to \p in).
|
||
|
|
||
|
transformOfFrom() performs the inverse transformation. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
Vec Frame::transformOfIn(const Vec &src, const Frame *const in) const {
|
||
|
const Frame *fr = this;
|
||
|
Vec res = src;
|
||
|
while ((fr != NULL) && (fr != in)) {
|
||
|
res = fr->localInverseTransformOf(res);
|
||
|
fr = fr->referenceFrame();
|
||
|
}
|
||
|
|
||
|
if (fr != in)
|
||
|
// in was not found in the branch of this, res is now expressed in the world
|
||
|
// coordinate system. Simply convert to in coordinate system.
|
||
|
res = in->transformOf(res);
|
||
|
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
///////////////// qreal[3] versions //////////////////////
|
||
|
|
||
|
/*! Same as transformOf(), but with \c qreal parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getTransformOf(const qreal src[3], qreal res[3]) const {
|
||
|
Vec r = transformOf(Vec(src));
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
res[i] = r[i];
|
||
|
}
|
||
|
|
||
|
/*! Same as inverseTransformOf(), but with \c qreal parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getInverseTransformOf(const qreal src[3], qreal res[3]) const {
|
||
|
Vec r = inverseTransformOf(Vec(src));
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
res[i] = r[i];
|
||
|
}
|
||
|
|
||
|
/*! Same as localTransformOf(), but with \c qreal parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getLocalTransformOf(const qreal src[3], qreal res[3]) const {
|
||
|
Vec r = localTransformOf(Vec(src));
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
res[i] = r[i];
|
||
|
}
|
||
|
|
||
|
/*! Same as localInverseTransformOf(), but with \c qreal parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getLocalInverseTransformOf(const qreal src[3], qreal res[3]) const {
|
||
|
Vec r = localInverseTransformOf(Vec(src));
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
res[i] = r[i];
|
||
|
}
|
||
|
|
||
|
/*! Same as transformOfIn(), but with \c qreal parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getTransformOfIn(const qreal src[3], qreal res[3],
|
||
|
const Frame *const in) const {
|
||
|
Vec r = transformOfIn(Vec(src), in);
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
res[i] = r[i];
|
||
|
}
|
||
|
|
||
|
/*! Same as transformOfFrom(), but with \c qreal parameters. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::getTransformOfFrom(const qreal src[3], qreal res[3],
|
||
|
const Frame *const from) const {
|
||
|
Vec r = transformOfFrom(Vec(src), from);
|
||
|
for (int i = 0; i < 3; ++i)
|
||
|
res[i] = r[i];
|
||
|
}
|
||
|
|
||
|
//////////////////////////// STATE //////////////////////////////
|
||
|
|
||
|
/*! Returns an XML \c QDomElement that represents the Frame.
|
||
|
|
||
|
\p name is the name of the QDomElement tag. \p doc is the \c QDomDocument
|
||
|
factory used to create QDomElement.
|
||
|
|
||
|
The resulting QDomElement looks like:
|
||
|
\code
|
||
|
<name>
|
||
|
<position x=".." y=".." z=".." />
|
||
|
<orientation q0=".." q1=".." q2=".." q3=".." />
|
||
|
</name>
|
||
|
\endcode
|
||
|
|
||
|
Use initFromDOMElement() to restore the Frame state from the resulting \c
|
||
|
QDomElement.
|
||
|
|
||
|
|
||
|
See Vec::domElement() for a complete example. See also
|
||
|
|
||
|
Quaternion::domElement(), Camera::domElement()...
|
||
|
|
||
|
\attention The constraint() and referenceFrame() are not saved in the
|
||
|
QDomElement. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
QDomElement Frame::domElement(const QString &name,
|
||
|
QDomDocument &document) const {
|
||
|
// TODO: use translation and rotation instead when referenceFrame is coded...
|
||
|
QDomElement e = document.createElement(name);
|
||
|
e.appendChild(position().domElement("position", document));
|
||
|
e.appendChild(orientation().domElement("orientation", document));
|
||
|
return e;
|
||
|
}
|
||
|
|
||
|
/*! Restores the Frame state from a \c QDomElement created by domElement().
|
||
|
|
||
|
See domElement() for the \c QDomElement syntax. See the
|
||
|
Vec::initFromDOMElement() and Quaternion::initFromDOMElement() documentations
|
||
|
for details on default values if an argument is missing.
|
||
|
|
||
|
\attention The constraint() and referenceFrame() are not restored by this
|
||
|
method and are left unchanged. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::initFromDOMElement(const QDomElement &element) {
|
||
|
// TODO: use translation and rotation instead when referenceFrame is coded...
|
||
|
|
||
|
// Reset default values. Attention: destroys constraint.
|
||
|
// *this = Frame();
|
||
|
// This instead ? Better : what is not set is not changed.
|
||
|
// setPositionAndOrientation(Vec(), Quaternion());
|
||
|
|
||
|
QDomElement child = element.firstChild().toElement();
|
||
|
while (!child.isNull()) {
|
||
|
if (child.tagName() == "position")
|
||
|
setPosition(Vec(child));
|
||
|
if (child.tagName() == "orientation")
|
||
|
setOrientation(Quaternion(child).normalized());
|
||
|
|
||
|
child = child.nextSibling().toElement();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///////////////////////////////// ALIGN /////////////////////////////////
|
||
|
|
||
|
/*! Aligns the Frame with \p frame, so that two of their axis are parallel.
|
||
|
|
||
|
If one of the X, Y and Z axis of the Frame is almost parallel to any of the X,
|
||
|
Y, or Z axis of \p frame, the Frame is rotated so that these two axis actually
|
||
|
become parallel.
|
||
|
|
||
|
If, after this first rotation, two other axis are also almost parallel, a second
|
||
|
alignment is performed. The two frames then have identical orientations, up to
|
||
|
90 degrees rotations.
|
||
|
|
||
|
\p threshold measures how close two axis must be to be considered parallel. It
|
||
|
is compared with the absolute values of the dot product of the normalized axis.
|
||
|
As a result, useful range is sqrt(2)/2 (systematic alignment) to 1 (no
|
||
|
alignment).
|
||
|
|
||
|
When \p move is set to \c true, the Frame position() is also affected by the
|
||
|
alignment. The new Frame's position() is such that the \p frame position
|
||
|
(computed with coordinatesOf(), in the Frame coordinates system) does not
|
||
|
change.
|
||
|
|
||
|
\p frame may be \c NULL and then represents the world coordinate system (same
|
||
|
convention than for the referenceFrame()).
|
||
|
|
||
|
The rotation (and translation when \p move is \c true) applied to the Frame are
|
||
|
filtered by the possible constraint(). */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::alignWithFrame(const Frame *const frame, bool move,
|
||
|
qreal threshold) {
|
||
|
Vec directions[2][3];
|
||
|
for (unsigned short d = 0; d < 3; ++d) {
|
||
|
Vec dir((d == 0) ? 1.0 : 0.0, (d == 1) ? 1.0 : 0.0, (d == 2) ? 1.0 : 0.0);
|
||
|
if (frame)
|
||
|
directions[0][d] = frame->inverseTransformOf(dir);
|
||
|
else
|
||
|
directions[0][d] = dir;
|
||
|
directions[1][d] = inverseTransformOf(dir);
|
||
|
}
|
||
|
|
||
|
qreal maxProj = 0.0;
|
||
|
qreal proj;
|
||
|
unsigned short index[2];
|
||
|
index[0] = index[1] = 0;
|
||
|
for (unsigned short i = 0; i < 3; ++i)
|
||
|
for (unsigned short j = 0; j < 3; ++j)
|
||
|
if ((proj = fabs(directions[0][i] * directions[1][j])) >= maxProj) {
|
||
|
index[0] = i;
|
||
|
index[1] = j;
|
||
|
maxProj = proj;
|
||
|
}
|
||
|
|
||
|
Frame old;
|
||
|
old = *this;
|
||
|
|
||
|
qreal coef = directions[0][index[0]] * directions[1][index[1]];
|
||
|
if (fabs(coef) >= threshold) {
|
||
|
const Vec axis = cross(directions[0][index[0]], directions[1][index[1]]);
|
||
|
qreal angle = asin(axis.norm());
|
||
|
if (coef >= 0.0)
|
||
|
angle = -angle;
|
||
|
rotate(rotation().inverse() * Quaternion(axis, angle) * orientation());
|
||
|
|
||
|
// Try to align an other axis direction
|
||
|
unsigned short d = (unsigned short)((index[1] + 1) % 3);
|
||
|
Vec dir((d == 0) ? 1.0 : 0.0, (d == 1) ? 1.0 : 0.0, (d == 2) ? 1.0 : 0.0);
|
||
|
dir = inverseTransformOf(dir);
|
||
|
|
||
|
qreal max = 0.0;
|
||
|
for (unsigned short i = 0; i < 3; ++i) {
|
||
|
qreal proj = fabs(directions[0][i] * dir);
|
||
|
if (proj > max) {
|
||
|
index[0] = i;
|
||
|
max = proj;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (max >= threshold) {
|
||
|
const Vec axis = cross(directions[0][index[0]], dir);
|
||
|
qreal angle = asin(axis.norm());
|
||
|
if (directions[0][index[0]] * dir >= 0.0)
|
||
|
angle = -angle;
|
||
|
rotate(rotation().inverse() * Quaternion(axis, angle) * orientation());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (move) {
|
||
|
Vec center;
|
||
|
if (frame)
|
||
|
center = frame->position();
|
||
|
|
||
|
translate(center - orientation().rotate(old.coordinatesOf(center)) -
|
||
|
translation());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*! Translates the Frame so that its position() lies on the line defined by \p
|
||
|
origin and \p direction (defined in the world coordinate system).
|
||
|
|
||
|
Simply uses an orthogonal projection. \p direction does not need to be
|
||
|
normalized. */
|
||
|
CGAL_INLINE_FUNCTION
|
||
|
void Frame::projectOnLine(const Vec &origin, const Vec &direction) {
|
||
|
// If you are trying to find a bug here, because of memory problems, you waste
|
||
|
// your time. This is a bug in the gcc 3.3 compiler. Compile the library in
|
||
|
// debug mode and test. Uncommenting this line also seems to solve the
|
||
|
// problem. Horrible. cout << "position = " << position() << endl; If you
|
||
|
// found a problem or are using a different compiler, please let me know.
|
||
|
const Vec shift = origin - position();
|
||
|
Vec proj = shift;
|
||
|
proj.projectOnAxis(direction);
|
||
|
translate(shift - proj);
|
||
|
}
|
||
|
}}
|