116 lines
4.7 KiB
C++
116 lines
4.7 KiB
C++
|
// This file is part of libigl, a simple c++ geometry processing library.
|
||
|
//
|
||
|
// Copyright (C) 2017 Alec Jacobson <alecjacobson@gmail.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
#include "bijective_composite_harmonic_mapping.h"
|
||
|
|
||
|
#include "slice.h"
|
||
|
#include "doublearea.h"
|
||
|
#include "harmonic.h"
|
||
|
//#include "matlab/MatlabWorkspace.h"
|
||
|
#include <iostream>
|
||
|
|
||
|
template <
|
||
|
typename DerivedV,
|
||
|
typename DerivedF,
|
||
|
typename Derivedb,
|
||
|
typename Derivedbc,
|
||
|
typename DerivedU>
|
||
|
IGL_INLINE bool igl::bijective_composite_harmonic_mapping(
|
||
|
const Eigen::MatrixBase<DerivedV> & V,
|
||
|
const Eigen::MatrixBase<DerivedF> & F,
|
||
|
const Eigen::MatrixBase<Derivedb> & b,
|
||
|
const Eigen::MatrixBase<Derivedbc> & bc,
|
||
|
Eigen::PlainObjectBase<DerivedU> & U)
|
||
|
{
|
||
|
return bijective_composite_harmonic_mapping(V,F,b,bc,1,200,20,true,U);
|
||
|
}
|
||
|
|
||
|
template <
|
||
|
typename DerivedV,
|
||
|
typename DerivedF,
|
||
|
typename Derivedb,
|
||
|
typename Derivedbc,
|
||
|
typename DerivedU>
|
||
|
IGL_INLINE bool igl::bijective_composite_harmonic_mapping(
|
||
|
const Eigen::MatrixBase<DerivedV> & V,
|
||
|
const Eigen::MatrixBase<DerivedF> & F,
|
||
|
const Eigen::MatrixBase<Derivedb> & b,
|
||
|
const Eigen::MatrixBase<Derivedbc> & bc,
|
||
|
const int min_steps,
|
||
|
const int max_steps,
|
||
|
const int num_inner_iters,
|
||
|
const bool test_for_flips,
|
||
|
Eigen::PlainObjectBase<DerivedU> & U)
|
||
|
{
|
||
|
typedef typename Derivedbc::Scalar Scalar;
|
||
|
assert(V.cols() == 2 && bc.cols() == 2 && "Input should be 2D");
|
||
|
assert(F.cols() == 3 && "F should contain triangles");
|
||
|
int tries = 0;
|
||
|
int nsteps = min_steps;
|
||
|
Derivedbc bc0;
|
||
|
slice(V,b,1,bc0);
|
||
|
|
||
|
// It's difficult to check for flips "robustly" in the sense that the input
|
||
|
// mesh might not have positive/consistent sign to begin with.
|
||
|
|
||
|
while(nsteps<=max_steps)
|
||
|
{
|
||
|
U = V;
|
||
|
int flipped = 0;
|
||
|
int nans = 0;
|
||
|
int step = 0;
|
||
|
for(;step<=nsteps;step++)
|
||
|
{
|
||
|
const Scalar t = ((Scalar)step)/((Scalar)nsteps);
|
||
|
// linearly interpolate boundary conditions
|
||
|
// TODO: replace this with something that guarantees a homotopic "morph"
|
||
|
// of the boundary conditions. Something like "Homotopic Morphing of
|
||
|
// Planar Curves" [Dym et al. 2015] but also handling multiple connected
|
||
|
// components.
|
||
|
Derivedbc bct = bc0 + t*(bc - bc0);
|
||
|
// Compute dsicrete harmonic map using metric of previous step
|
||
|
for(int iter = 0;iter<num_inner_iters;iter++)
|
||
|
{
|
||
|
//std::cout<<nsteps<<" t: "<<t<<" iter: "<<iter;
|
||
|
//igl::matlab::MatlabWorkspace mw;
|
||
|
//mw.save(U,"U");
|
||
|
//mw.save_index(F,"F");
|
||
|
//mw.save_index(b,"b");
|
||
|
//mw.save(bct,"bct");
|
||
|
//mw.write("numerical.mat");
|
||
|
harmonic(DerivedU(U),F,b,bct,1,U);
|
||
|
igl::slice(U,b,1,bct);
|
||
|
nans = (U.array() != U.array()).count();
|
||
|
if(test_for_flips)
|
||
|
{
|
||
|
Eigen::Matrix<Scalar,Eigen::Dynamic,1> A;
|
||
|
doublearea(U,F,A);
|
||
|
flipped = (A.array() < 0 ).count();
|
||
|
//std::cout<<" "<<flipped<<" nan? "<<(U.array() != U.array()).any()<<std::endl;
|
||
|
if(flipped == 0 && nans == 0) break;
|
||
|
}
|
||
|
}
|
||
|
if(flipped > 0 || nans>0) break;
|
||
|
}
|
||
|
if(flipped == 0 && nans == 0)
|
||
|
{
|
||
|
return step == nsteps+1;
|
||
|
}
|
||
|
nsteps *= 2;
|
||
|
}
|
||
|
//std::cout<<"failed to finish in "<<nsteps<<"..."<<std::endl;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
#ifdef IGL_STATIC_LIBRARY
|
||
|
// Explicit template instantiation
|
||
|
// generated by autoexplicit.sh
|
||
|
template bool igl::bijective_composite_harmonic_mapping<Eigen::Matrix<double, -1, -1, 1, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 1, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 1, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 1, -1, -1> >&);
|
||
|
// generated by autoexplicit.sh
|
||
|
template bool igl::bijective_composite_harmonic_mapping<Eigen::Matrix<double, -1, -1, 1, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 1, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 1, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, int, int, int, bool, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 1, -1, -1> >&);
|
||
|
#endif
|