dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Arr_tracing_traits_2.h

1281 lines
41 KiB
C
Raw Normal View History

// Copyright (c) 2007,2009,2010,2011 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Efi Fogel <efif@post.tau.ac.il>
#ifndef CGAL_ARR_TRACING_TRAITS_H
#define CGAL_ARR_TRACING_TRAITS_H
#include <CGAL/license/Arrangement_on_surface_2.h>
#include <CGAL/disable_warnings.h>
/*! \file
* A tracing traits-class for the arrangement package.
* This is a meta-traits class. It is parameterized with another traits class
* and inherits from it. For each traits method it prints out its input
* parameters and its output result
*/
#include <iostream>
#include <list>
#include <CGAL/basic.h>
#include <CGAL/Arr_enums.h>
#include <CGAL/Arr_tags.h>
namespace CGAL {
/*! \class
* A model of the ArrangementTraits_2 concept that counts the methods invoked.
*/
template <typename Base_traits>
class Arr_tracing_traits_2 : public Base_traits {
public:
enum Operation_id {
COMPARE_X_OP = 0,
COMPARE_XY_OP,
CONSTRUCT_MIN_VERTEX_OP,
CONSTRUCT_MAX_VERTEX_OP,
IS_VERTICAL_OP,
COMPARE_Y_AT_X_OP,
EQUAL_POINTS_OP,
EQUAL_CURVES_OP,
COMPARE_Y_AT_X_LEFT_OP,
COMPARE_Y_AT_X_RIGHT_OP,
MAKE_X_MONOTONE_OP,
SPLIT_OP,
INTERSECT_OP,
ARE_MERGEABLE_OP,
MERGE_OP,
CONSTRUCT_OPPOSITE_OP,
COMPARE_ENDPOINTS_XY_OP,
PARAMETER_SPACE_IN_X_OP,
IS_ON_X_IDENTIFICATION_OP,
COMPARE_Y_ON_BOUNDARY_OP,
COMPARE_Y_NEAR_BOUNDARY_OP,
PARAMETER_SPACE_IN_Y_OP,
IS_ON_Y_IDENTIFICATION_OP,
COMPARE_X_AT_LIMIT_OP,
COMPARE_X_NEAR_LIMIT_OP,
COMPARE_X_ON_BOUNDARY_OP,
COMPARE_X_NEAR_BOUNDARY_OP,
NUMBER_OF_OPERATIONS
};
private:
typedef Base_traits Base;
typedef Arr_tracing_traits_2<Base> Self;
/*! A set of bits that indicate whether operations should be traced */
unsigned int m_flags;
bool compare_x_op() const
{ return (0 != (m_flags & (0x1 << COMPARE_X_OP))); }
bool compare_xy_op() const
{ return (0 != (m_flags & (0x1 << COMPARE_XY_OP))); }
bool construct_min_vertex_op() const
{ return (0 != (m_flags & (0x1 << CONSTRUCT_MIN_VERTEX_OP))); }
bool construct_max_vertex_op() const
{ return (0 != (m_flags & (0x1 << CONSTRUCT_MAX_VERTEX_OP))); }
bool is_vertical_op() const
{ return (0 != (m_flags & (0x1 << IS_VERTICAL_OP))); }
bool compare_y_at_x_op() const
{ return (0 != (m_flags & (0x1 << COMPARE_Y_AT_X_OP))); }
bool equal_points_op() const
{ return (0 != (m_flags & (0x1 << EQUAL_POINTS_OP))); }
bool equal_curves_op() const
{ return (0 != (m_flags & (0x1 << EQUAL_CURVES_OP))); }
bool compare_y_at_x_left_op() const
{ return (0 != (m_flags & (0x1 << COMPARE_Y_AT_X_LEFT_OP))); }
bool compare_y_at_x_right_op() const
{ return (0 != (m_flags & (0x1 << COMPARE_Y_AT_X_RIGHT_OP))); }
bool make_x_monotone_op() const
{ return (0 != (m_flags & (0x1 << MAKE_X_MONOTONE_OP))); }
bool split_op() const
{ return (0 != (m_flags & (0x1 << SPLIT_OP))); }
bool intersect_op() const
{ return (0 != (m_flags & (0x1 << INTERSECT_OP))); }
bool are_mergeable_op() const
{ return (0 != (m_flags & (0x1 << ARE_MERGEABLE_OP))); }
bool merge_op() const
{ return (0 != (m_flags & (0x1 << MERGE_OP))); }
bool construct_opposite_op() const
{ return (0 != (m_flags & (0x1 << CONSTRUCT_OPPOSITE_OP))); }
bool compare_endpoints_xy_op() const
{ return (0 != (m_flags & (0x1 << COMPARE_ENDPOINTS_XY_OP))); }
// left-right
bool parameter_space_in_x_op() const
{ return (0 != (m_flags & (0x1 << PARAMETER_SPACE_IN_X_OP))); }
bool is_on_x_identification_op() const
{ return m_flags & (0x1 << IS_ON_X_IDENTIFICATION_OP); }
bool compare_y_on_boundary_op() const
{ return (0 != (m_flags & (0x1 << COMPARE_Y_ON_BOUNDARY_OP))); }
bool compare_y_near_boundary_op() const
{ return m_flags & (0x1 << COMPARE_Y_NEAR_BOUNDARY_OP); }
// bottom-top
bool parameter_space_in_y_op() const
{ return (0 != (m_flags & (0x1 << PARAMETER_SPACE_IN_Y_OP))); }
bool is_on_y_identification_op() const
{ return m_flags & (0x1 << IS_ON_Y_IDENTIFICATION_OP); }
bool compare_x_at_limit_op() const
{ return m_flags & (0x1 << COMPARE_X_AT_LIMIT_OP); }
bool compare_x_near_limit_op() const
{ return m_flags & (0x1 << COMPARE_X_NEAR_LIMIT_OP); }
bool compare_x_on_boundary_op() const
{ return (0 != (m_flags & (0x1 << COMPARE_X_ON_BOUNDARY_OP))); }
bool compare_x_near_boundary_op() const
{ return m_flags & (0x1 << COMPARE_X_NEAR_BOUNDARY_OP); }
public:
/*! Default constructor */
Arr_tracing_traits_2() :
Base()
{
enable_all_traces();
}
/*! Enable the trace of a traits operation
* \param id the operation identifier
*/
void enable_trace(Operation_id id) { m_flags |= 0x1 << id; }
/*! Enable the trace of all traits operations
* \param id the operation identifier
*/
void enable_all_traces() { m_flags = 0xffffffff; }
/*! Disable the trace of a traits operation
* \param id the operation identifier
*/
void disable_trace(Operation_id id) { m_flags &= ~(0x1 << id); }
/*! Disable the trace of all traits operations
* \param id the operation identifier
*/
void disable_all_traces() { m_flags = 0x0; }
/// \name Types and functors inherited from the base
//@{
// Traits types:
typedef typename Base::Has_left_category Has_left_category;
typedef typename Base::Has_merge_category Has_merge_category;
typedef typename Base::Has_do_intersect_category Has_do_intersect_category;
typedef typename internal::Arr_complete_left_side_category< Base >::Category
Left_side_category;
typedef typename internal::Arr_complete_bottom_side_category< Base >::Category
Bottom_side_category;
typedef typename internal::Arr_complete_top_side_category< Base >::Category
Top_side_category;
typedef typename internal::Arr_complete_right_side_category< Base >::Category
Right_side_category;
typedef typename Base::Point_2 Point_2;
typedef typename Base::X_monotone_curve_2 X_monotone_curve_2;
typedef typename Base::Curve_2 Curve_2;
typedef typename Base::Multiplicity Multiplicity;
/*! A functor that compares the x-coordinates of two points */
class Compare_x_2 {
private:
typename Base::Compare_x_2 m_object;
bool m_enabled;
public:
/*! Construct */
Compare_x_2(const Base * base, bool enabled = true) :
m_object(base->compare_x_2_object()), m_enabled(enabled) {}
/*! Operate
* \param p1 first point
* \param p2 second point
* \return the comparison result
*/
Comparison_result operator()(const Point_2 & p1, const Point_2 & p2) const
{
if (!m_enabled) return m_object(p1, p2);
std::cout << "compare_x" << std::endl
<< " p1: " << p1 << std::endl
<< " p2: " << p2 << std::endl;
Comparison_result cr = m_object(p1, p2);
std::cout << " result: " << cr << std::endl;
return cr;
}
};
/*! A functor that compares two points lexigoraphically: by x, then by y. */
class Compare_xy_2 {
private:
typename Base::Compare_xy_2 m_object;
bool m_enabled;
public:
/*! Construct */
Compare_xy_2(const Base * base, bool enabled = true) :
m_object(base->compare_xy_2_object()), m_enabled(enabled) {}
/*! Operate
* \param p1 the first point
* \param p2 the second point
* \return the comparison result
*/
Comparison_result operator()(const Point_2 & p1, const Point_2 & p2) const
{
if (!m_enabled) return m_object(p1, p2);
std::cout << "compare_xy" << std::endl
<< " p1: " << p1 << std::endl
<< " p2: " << p2 << std::endl;
Comparison_result cr = m_object(p1, p2);
std::cout << " result: " << cr << std::endl;
return cr;
}
};
/*! A functor that obtains the left endpoint of an x-monotone curve. */
class Construct_min_vertex_2 {
private:
typename Base::Construct_min_vertex_2 m_object;
bool m_enabled;
public:
/*! Construct */
Construct_min_vertex_2(const Base * base, bool enabled = true) :
m_object(base->construct_min_vertex_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xcv the curev the left endpoint of which is obtained
* \return the left endpoint
*/
const Point_2 operator()(const X_monotone_curve_2 & xcv) const
{
if (!m_enabled) return m_object(xcv);
std::cout << "construct_min_vertex" << std::endl
<< " xcv: " << xcv << std::endl;
Point_2 p = m_object(xcv);
std::cout << " result: " << p << std::endl;
return p;
}
};
/*! A functor that obtains the right endpoint of an x-monotone curve. */
class Construct_max_vertex_2 {
private:
typename Base::Construct_max_vertex_2 m_object;
bool m_enabled;
public:
/*! Construct */
Construct_max_vertex_2(const Base * base, bool enabled = true) :
m_object(base->construct_max_vertex_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xcv the curev the right endpoint of which is obtained
* \return the right endpoint
*/
const Point_2 operator()(const X_monotone_curve_2 & xcv) const
{
if (!m_enabled) return m_object(xcv);
std::cout << "construct_max_vertex" << std::endl
<< " xcv: " << xcv << std::endl;
Point_2 p = m_object(xcv);
std::cout << " result: " << p << std::endl;
return p;
}
};
/*! A functor that checks whether a given x-monotone curve is vertical. */
class Is_vertical_2 {
private:
typename Base::Is_vertical_2 m_object;
bool m_enabled;
public:
/*! Construct */
Is_vertical_2(const Base * base, bool enabled = true) :
m_object(base->is_vertical_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xcv the curve
* \return a Boolean that indicates whether the curve is vertical or not
*/
bool operator()(const X_monotone_curve_2 & xcv) const
{
if (!m_enabled) return m_object(xcv);
std::cout << "is_vertical" << std::endl
<< " xcv: " << xcv << std::endl;
bool is_vertical = m_object(xcv);
std::cout << " result: " << is_vertical << std::endl;
return is_vertical;
}
};
/*! A functor that compares the y-coordinates of a point and an
* x-monotone curve at the point x-coordinate.
*/
class Compare_y_at_x_2 {
private:
typename Base::Compare_y_at_x_2 m_object;
bool m_enabled;
public:
/*! Construct */
Compare_y_at_x_2(const Base * base, bool enabled = true) :
m_object(base->compare_y_at_x_2_object()), m_enabled(enabled) {}
/*! Operate
* \param p the point
* \param xcv the curve
* \return the comparison result
*/
Comparison_result operator()(const Point_2 & p,
const X_monotone_curve_2 & xcv) const
{
if (!m_enabled) return m_object(p, xcv);
std::cout << "compare_y_at_x" << std::endl
<< " p: " << p << std::endl
<< " xcv: " << xcv << std::endl;
Comparison_result cr = m_object(p, xcv);
std::cout << " result: " << cr << std::endl;
return cr;
}
};
/*! A functor that checks whether two points and two x-monotone curves are
* identical.
*/
class Equal_2 {
private:
typename Base::Equal_2 m_object;
bool m_enabled_point;
bool m_enabled_curve;
public:
/*! Construct */
Equal_2(const Base * base,
bool enabled_point = true, bool enabled_curve = true) :
m_object(base->equal_2_object()),
m_enabled_point(enabled_point),
m_enabled_curve(enabled_curve)
{}
/*! Operate
* \param xcv1 the first curve
* \param xcv2 the second curve
* \return true if the x-monotone curves are equal and false otherwise
*/
bool operator()(const X_monotone_curve_2 & xcv1,
const X_monotone_curve_2 & xcv2) const
{
if (!m_enabled_curve) return m_object(xcv1, xcv2);
std::cout << "equal 1" << std::endl
<< " xcv1: " << xcv1 << std::endl
<< " xcv1: " << xcv1 << std::endl;
bool equal = m_object(xcv1, xcv2);
std::cout << " result: " << equal << std::endl;
return equal;
}
/*! Operate
* \param p1 the first point
* \param p2 the second point
* \return true if the points are equal and false otherwise
*/
bool operator()(const Point_2 & p1, const Point_2 & p2) const
{
if (!m_enabled_point) return m_object(p1, p2);
std::cout << "equal 2" << std::endl
<< " p1: " << p1 << std::endl
<< " p2: " << p2 << std::endl;
bool equal = m_object(p1, p2);
std::cout << " result: " << equal << std::endl;
return equal;
}
};
/*! A functor that compares compares the y-coordinates of two x-monotone
* curves immediately to the left of their intersection point.
*/
class Compare_y_at_x_left_2 {
private:
typename Base::Compare_y_at_x_left_2 m_object;
bool m_enabled;
public:
/*! Construct */
Compare_y_at_x_left_2(const Base * base, bool enabled = true) :
m_object(base->compare_y_at_x_left_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xcv1 the first curve
* \param xcv2 the second curve
* \param p the reference point
* \return the comparison result
*/
Comparison_result operator()(const X_monotone_curve_2 & xcv1,
const X_monotone_curve_2 & xcv2,
const Point_2 & p) const
{
if (!m_enabled) return m_object(xcv1, xcv2, p);
std::cout << "compare_y_at_x_left" << std::endl
<< " p: " << p << std::endl
<< " xcv1: " << xcv1 << std::endl
<< " xcv2: " << xcv2 << std::endl;
Comparison_result cr = m_object(xcv1, xcv2, p);
std::cout << " result:" << cr << std::endl;
return cr;
}
};
/*! A functor that compares compares the y-coordinates of two x-monotone
* curves immediately to the right of their intersection point.
*/
class Compare_y_at_x_right_2 {
private:
typename Base::Compare_y_at_x_right_2 m_object;
bool m_enabled;
public:
/*! Construct */
Compare_y_at_x_right_2(const Base * base, bool enabled = true) :
m_object(base->compare_y_at_x_right_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xcv1 the first curve
* \param xcv2 the second curve
* \param p the reference point
* \return the comparison result
*/
Comparison_result operator()(const X_monotone_curve_2 & xcv1,
const X_monotone_curve_2 & xcv2,
const Point_2 & p) const
{
if (!m_enabled) return m_object(xcv1, xcv2, p);
std::cout << "compare_y_at_x_right" << std::endl
<< " p: " << p << std::endl
<< " xcv1: " << xcv1 << std::endl
<< " xcv2: " << xcv2 << std::endl;
Comparison_result cr = m_object(xcv1, xcv2, p);
std::cout << " result: " << cr << std::endl;
return cr;
}
};
/*! A functor that divides a curve into x-monotone curves. */
class Make_x_monotone_2 {
private:
typename Base::Make_x_monotone_2 m_object;
bool m_enabled;
public:
/*! Construct */
Make_x_monotone_2(const Base * base, bool enabled = true) :
m_object(base->make_x_monotone_2_object()), m_enabled(enabled) {}
/*! Operate
* \param cv the curve
* \param oi an output iterator that contains the result. It's value
* type is CGAL::Object, which wraps either an x-monotone curve or a point
* \return the output iterator
*/
template<typename OutputIterator>
OutputIterator operator()(const Curve_2 & cv, OutputIterator oi) const
{
if (!m_enabled) return m_object(cv, oi);
std::cout << "make_x_monotone" << std::endl
<< " cv: " << cv << std::endl;
std::list<CGAL::Object> container;
m_object(cv, std::back_inserter(container));
if (container.empty()) return oi;
std::list<CGAL::Object>::iterator it;
unsigned int i = 0;
for (it = container.begin(); it != container.end(); ++it) {
X_monotone_curve_2 xcv;
if (assign (xcv, *it)) {
std::cout << " result[" << i++ << "]: xcv: " << xcv << std::endl;
continue;
}
Point_2 p;
if (assign (p, *it)) {
std::cout << " result[" << i++ << "]: p: " << p << std::endl;
continue;
}
}
for (it = container.begin(); it != container.end(); ++it) *oi++ = *it;
container.clear();
return oi;
}
};
/*! A functor that splits an x-monotone curve at a point. */
class Split_2 {
private:
typename Base::Split_2 m_object;
bool m_enabled;
public:
/*! Construct */
Split_2(const Base * base, bool enabled = true) :
m_object(base->split_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xcv
* \param p
* \param xcv1
* \param xcv2
*/
void operator()(const X_monotone_curve_2 & xcv, const Point_2 & p,
X_monotone_curve_2 & xcv1, X_monotone_curve_2 & xcv2) const
{
if (!m_enabled) {
m_object(xcv, p, xcv1, xcv2);
return;
}
std::cout << "split: " << std::endl
<< " xcv: " << xcv << std::endl
<< " p: " << p << std::endl;
m_object(xcv, p, xcv1, xcv2);
std::cout << " result xcv1: " << xcv1 << std::endl
<< " xcv2: " << xcv2 << std::endl;
}
};
/*! A functor that computes intersections between two x-monotone curves. */
class Intersect_2 {
private:
typename Base::Intersect_2 m_object;
bool m_enabled;
public:
/*! Construct */
Intersect_2(const Base * base, bool enabled = true) :
m_object(base->intersect_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xcv1 the first curve
* \param xcv2 the ssecond curve
* \param oi an output iterator that contains the result. It's value
* type is CGAL::Object, which wraps either an x-monotone overlapping
* curve or pair that consists of an intersection point and its
* multiplicity
* \return the output iterator
*/
template<typename OutputIterator>
OutputIterator operator()(const X_monotone_curve_2 & xcv1,
const X_monotone_curve_2 & xcv2,
OutputIterator oi) const
{
if (!m_enabled) return m_object(xcv1, xcv2, oi);
std::cout << "intersect" << std::endl
<< " xcv1: " << xcv1 << std::endl
<< " xcv2: " << xcv2 << std::endl;
std::list<CGAL::Object> container;
m_object(xcv1, xcv2, std::back_inserter(container));
if (container.empty()) return oi;
std::list<CGAL::Object>::iterator it;
unsigned int i = 0;
for (it = container.begin(); it != container.end(); ++it) {
X_monotone_curve_2 xcv;
if (assign (xcv, *it)) {
std::cout << " result[" << i++ << "]: xcv: " << xcv << std::endl;
continue;
}
std::pair<Point_2,Multiplicity> point_pair;
if (assign (point_pair, *it)) {
std::cout << " result[" << i++ << "]: p: " << point_pair.first
<< ", multiplicity: " << point_pair.second << std::endl;
continue;
}
}
for (it = container.begin(); it != container.end(); ++it) *oi++ = *it;
container.clear();
return oi;
}
};
/*! A functor that tests whether two x-monotone curves can be merged. */
class Are_mergeable_2 {
private:
typename Base::Are_mergeable_2 m_object;
bool m_enabled;
public:
/*! Construct */
Are_mergeable_2(const Base * base, bool enabled = true) :
m_object(base->are_mergeable_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xcv1 the first curve
* \param xcv2 the second curve
* \return true if the the two curve are mergeable and false otherwise.
* Two curves are mergeable if they have the same underlying theoretical
* curve
*/
bool operator()(const X_monotone_curve_2 & xcv1,
const X_monotone_curve_2 & xcv2) const
{
if (!m_enabled) return m_object(xcv1, xcv2);
std::cout << "are_mergeable" << std::endl
<< " xcv1: " << xcv1 << std::endl
<< " xcv2: " << xcv2 << std::endl;
bool are_mergeable = m_object(xcv1, xcv2);
std::cout << " result: " << are_mergeable << std::endl;
return are_mergeable;
}
};
/*! A functor that merges two x-monotone curves into one. */
class Merge_2 {
private:
typename Base::Merge_2 m_object;
bool m_enabled;
public:
/*! Construct */
Merge_2(const Base * base, bool enabled = true) :
m_object(base->merge_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xcv1 the first curve
* \param xcv2 the second curve
* \param xcv the merged curve
*/
void operator()(const X_monotone_curve_2 & xcv1,
const X_monotone_curve_2 & xcv2,
X_monotone_curve_2 & xcv) const
{
std::cout << "merge" << std::endl
<< " xcv1: " << xcv1 << std::endl
<< " xcv2: " << xcv2 << std::endl;
return m_object(xcv1, xcv2, xcv);
std::cout << " result: " << xcv << std::endl;
}
};
/*! A fnuctor that constructs an opposite x-monotone curve. */
class Construct_opposite_2 {
private:
typename Base::Construct_opposite_2 m_object;
bool m_enabled;
public:
/*! Construct */
Construct_opposite_2(const Base * base, bool enabled = true) :
m_object(base->construct_opposite_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xcv the curve
* \return the opposite curve
*/
X_monotone_curve_2 operator()(const X_monotone_curve_2 & xcv)
{
if (!m_enabled) return m_object(xcv);
std::cout << "construct_opposite" << std::endl
<< " xcv: " << xcv << std::endl;
X_monotone_curve_2 xcv_out = m_object(xcv);
std::cout << " result: " << xcv_out << std::endl;
return xcv;
}
};
/*! A functor that compares the two endpoints of an x-monotone curve
* lexigoraphically.
*/
class Compare_endpoints_xy_2 {
private:
typename Base::Compare_endpoints_xy_2 m_object;
bool m_enabled;
public:
/*! Construct */
Compare_endpoints_xy_2(const Base * base, bool enabled = true) :
m_object(base->compare_endpoints_xy_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xcv the curve
* \return the comparison result
*/
Comparison_result operator()(const X_monotone_curve_2 & xcv)
{
if (!m_enabled) return m_object(xcv);
std::cout << "compare_endpoints_xy" << std::endl
<< " xcv: " << xcv << std::endl;
Comparison_result cr = m_object(xcv);
std::cout << " result: " << cr << std::endl;
return cr;
}
};
// left-right
/*! A functor that determines whether an endpoint of an x-monotone curve lies
* on a boundary of the parameter space along the x axis.
*/
class Parameter_space_in_x_2 {
private:
typename Base::Parameter_space_in_x_2 m_object;
bool m_enabled;
public:
/*! Construct */
Parameter_space_in_x_2(const Base * base, bool enabled = true) :
m_object(base->parameter_space_in_x_2_object()), m_enabled(enabled)
{}
/*! Operate
* \param xcv the curve the end of which is tested
* \param ce the curve-end identifier
* \return the boundary type
*/
Arr_parameter_space operator()(const X_monotone_curve_2 & xcv,
Arr_curve_end ce) const
{
if (!m_enabled) return m_object(xcv, ce);
std::cout << "parameter_space_in_x" << std::endl
<< " ce: " << ce << ", xcv: " << xcv << std::endl;
Arr_parameter_space bt = m_object(xcv, ce);
std::cout << " result: " << bt << std::endl;
return bt;
}
};
/*! A functor that determines whether a point or curve is on
* x-identification.
*/
class Is_on_x_identification_2 {
private:
typename Base::Is_on_x_identification_2 m_object;
bool m_enabled;
public:
/*! Construct */
Is_on_x_identification_2(const Base * base, bool enabled = true) :
m_object(base->is_on_x_identification_2_object()), m_enabled(enabled) {}
/*! Operate
* \param p1 the point.
*/
Comparison_result operator()(const Point_2 & p) const
{
if (!m_enabled) return m_object(p);
std::cout << "is_on_x_identification" << std::endl
<< " p: " << p << std::endl;
Comparison_result cr = m_object(p);
std::cout << " result: " << cr << std::endl;
return cr;
}
/*! Operate
* \param xcv1 the curve
*/
Comparison_result operator()(const X_monotone_curve_2 & xcv) const
{
if (!m_enabled) return m_object(xcv);
std::cout << "is_on_x_identification" << std::endl
<< " xcv: " << xcv << std::endl;
Comparison_result cr = m_object(xcv);
std::cout << " result: " << cr << std::endl;
return cr;
}
};
/*! A functor that compares the y-coordinate of two given points
* that lie on vertical boundaries.
*/
class Compare_y_on_boundary_2 {
private:
typename Base::Compare_y_on_boundary_2 m_object;
bool m_enabled;
public:
/*! Construct */
Compare_y_on_boundary_2(const Base * base, bool enabled = true) :
m_object(base->compare_y_on_boundary_2_object()),
m_enabled(enabled)
{}
/*! Operate
* \param p1 the first point.
* \param p2 the second point.
*/
Comparison_result operator()(const Point_2 & p1, const Point_2 & p2) const
{
if (!m_enabled) return m_object(p1, p2);
std::cout << "compare_y_on_boundary" << std::endl
<< " p1: " << p1 << std::endl
<< " p2: " << p2 << std::endl;
Comparison_result cr = m_object(p1, p2);
std::cout << " result: " << cr << std::endl;
return cr;
}
};
/*! A functor that compares the y-coordinates of curve ends near the
* boundary of the parameter space.
*/
class Compare_y_near_boundary_2 {
private:
typename Base::Compare_y_near_boundary_2 m_object;
bool m_enabled;
public:
/*! Construct */
Compare_y_near_boundary_2(const Base * base, bool enabled = true) :
m_object(base->compare_y_near_boundary_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xcv1 the first curve the end point of which is tested
* \param xcv2 the second curve the end point of which is tested
* \param ce the curve-end identifier
* \return the comparison result
*/
Comparison_result operator()(const X_monotone_curve_2 & xcv1,
const X_monotone_curve_2 & xcv2,
Arr_curve_end ce) const
{
if (!m_enabled) return m_object(xcv1, xcv2, ce);
std::cout << "compare_y_near_boundary" << std::endl
<< " ce: " << ce << std::endl
<< " xcv1: " << xcv1 << std::endl
<< " xcv2: " << xcv2 << std::endl;
Comparison_result cr = m_object(xcv1, xcv2, ce);
std::cout << " result: " << cr << std::endl;
return cr;
}
};
// bottom-top
/*! A functor that determines whether an endpoint of an x-monotone arc lies
* on a boundary of the parameter space along the y axis.
*/
class Parameter_space_in_y_2 {
private:
typename Base::Parameter_space_in_y_2 m_object;
bool m_enabled;
public:
/*! Construct */
Parameter_space_in_y_2(const Base * base, bool enabled = true) :
m_object(base->parameter_space_in_y_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xcv the curve the end of which is tested
* \param ce the curve-end identifier
* \return the boundary type
*/
Arr_parameter_space operator()(const X_monotone_curve_2 & xcv,
Arr_curve_end ce) const
{
if (!m_enabled) return m_object(xcv, ce);
std::cout << "parameter_space_in_y" << std::endl
<< " ce: " << ce << ", xcv: " << xcv << std::endl;
Arr_parameter_space bt = m_object(xcv, ce);
std::cout << " result: " << bt << std::endl;
return bt;
}
/*! Operate
* \param p the point
* \return the boundary type
*/
Arr_parameter_space operator()(const Point_2 & p) const
{
if (!m_enabled) return m_object(p);
std::cout << "parameter_space_in_y" << std::endl
<< " point: " << p << std::endl;
Arr_parameter_space bt = m_object(p);
std::cout << " result: " << bt << std::endl;
return bt;
}
};
/*! A functor that determines whether a point or curve is on
* y-identification.
*/
class Is_on_y_identification_2 {
private:
typename Base::Is_on_y_identification_2 m_object;
bool m_enabled;
public:
/*! Construct */
Is_on_y_identification_2(const Base * base, bool enabled = true) :
m_object(base->is_on_y_identification_2_object()), m_enabled(enabled) {}
/*! Operate
* \param p1 the point.
*/
Comparison_result operator()(const Point_2 & p) const
{
if (!m_enabled) return m_object(p);
std::cout << "is_on_y_identification" << std::endl
<< " p: " << p << std::endl;
Comparison_result cr = m_object(p);
std::cout << " result: " << cr << std::endl;
return cr;
}
/*! Operate
* \param xcv1 the curve
*/
Comparison_result operator()(const X_monotone_curve_2 & xcv) const
{
if (!m_enabled) return m_object(xcv);
std::cout << "is_on_y_identification" << std::endl
<< " xcv: " << xcv << std::endl;
Comparison_result cr = m_object(xcv);
std::cout << " result: " << cr << std::endl;
return cr;
}
};
/*! A functor that compares the x-limits of curve ends on the
* boundary of the parameter space.
*/
class Compare_x_at_limit_2 {
private:
typename Base::Compare_x_at_limit_2 m_object;
bool m_enabled;
public:
/*! Construct */
Compare_x_at_limit_2(const Base * base, bool enabled = true) :
m_object(base->compare_x_at_limit_2_object()), m_enabled(enabled) {}
/*! Operate
* \param p the first point
* \param xcv the curve the end of which is to be compared
* \param ce the curve-end identifier
* \return the comparison result
*/
Comparison_result operator()(const Point_2 & p,
const X_monotone_curve_2 & xcv,
Arr_curve_end ce) const
{
if (!m_enabled) return m_object(p, xcv, ce);
std::cout << "compare_x_at_limit 1" << std::endl
<< " p: " << p << std::endl
<< " ce: " << ce << ", xcv: " << xcv << std::endl;
Comparison_result cr = m_object(p, xcv, ce);
std::cout << " result: " << std::endl;
return cr;
}
/*! Operate
* \param xcv1 the first curve the end of which is to be compared
* \param ce1 the identifier of the end of the first curve
* \param xcv2 the second curve the end of which is to be compared
* \param ce2 the identifier of the end of the second curve
* \return the comparison result
*/
Comparison_result operator()(const X_monotone_curve_2 & xcv1,
Arr_curve_end ce1,
const X_monotone_curve_2 & xcv2,
Arr_curve_end ce2) const
{
if (!m_enabled) return m_object(xcv1, ce1, xcv2, ce2);
std::cout << "compare_x_at_limit 2" << std::endl
<< " ce1: " << ce1 << ", xcv1: " << xcv1 << std::endl
<< " ce2: " << ce2 << ", xcv2: " << xcv2 << std::endl;
Comparison_result cr = m_object(xcv1, ce1, xcv2, ce2);
std::cout << " result: " << cr << std::endl;
return cr;
}
};
/*! A functor that compares the x-coordinates of curve ends near the
* boundary of the parameter space.
*/
class Compare_x_near_limit_2 {
private:
typename Base::Compare_x_near_limit_2 m_object;
bool m_enabled;
public:
/*! Construct */
Compare_x_near_limit_2(const Base * base, bool enabled = true) :
m_object(base->compare_x_near_limit_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xcv1 the first curve the end of which is to be compared
* \param ce1 the identifier of the end of the first curve
* \param xcv2 the second curve the end of which is to be compared
* \param ce2 the identifier of the end of the second curve
* \return the comparison result
*/
Comparison_result operator()(const X_monotone_curve_2 & xcv1,
const X_monotone_curve_2 & xcv2,
Arr_curve_end ce) const
{
if (!m_enabled) return m_object(xcv1, xcv2, ce);
std::cout << "compare_x_near_limit 2" << std::endl
<< " xcv1: " << xcv1 << std::endl
<< " xcv2: " << xcv2 << std::endl
<< " ce: " << ce << std::endl;
Comparison_result cr = m_object(xcv1, xcv2, ce);
std::cout << " result: " << cr << std::endl;
return cr;
}
};
/*! A functor that compares the x-coordinate of two given points
* that lie on horizontal boundaries.
*/
class Compare_x_on_boundary_2 {
private:
typename Base::Compare_x_on_boundary_2 m_object;
bool m_enabled;
public:
/*! Construct */
Compare_x_on_boundary_2(const Base * base, bool enabled = true) :
m_object(base->compare_x_on_boundary_2_object()), m_enabled(enabled) {}
/*! Operate
* \param p1 the first point.
* \param p2 the second point.
*/
Comparison_result operator()(const Point_2 & p1, const Point_2 & p2) const
{
if (!m_enabled) return m_object(p1, p2);
std::cout << "compare_x_on_boundary" << std::endl
<< " p1: " << p1 << std::endl
<< " p2: " << p2 << std::endl;
Comparison_result cr = m_object(p1, p2);
std::cout << " result: " << cr << std::endl;
return cr;
}
/*! Operate
* \param pt the point.
* \param xcv the curve.
* \param ce the curve-end
*/
Comparison_result operator()(const Point_2 & pt,
const X_monotone_curve_2 & xcv, Arr_curve_end ce) const
{
if (!m_enabled) return m_object(pt, xcv, ce);
std::cout << "compare_x_on_boundary" << std::endl
<< " pt: " << pt << std::endl
<< " xcv: " << xcv << std::endl
<< " ce: " << ce << std::endl;
Comparison_result cr = m_object(pt, xcv, ce);
std::cout << " result: " << cr << std::endl;
return cr;
}
/*! Operate
* \param xcv1 the first curve.
* \param ce1 the first curve-end
* \param xcv2 the second curve.
* \param ce2 the second curve-end
*/
Comparison_result operator()(const X_monotone_curve_2 & xcv1, Arr_curve_end ce1,
const X_monotone_curve_2 & xcv2, Arr_curve_end ce2) const
{
if (!m_enabled) return m_object(xcv2, ce1, xcv2, ce2);
std::cout << "compare_x_on_boundary" << std::endl
<< "xcv1: " << xcv1 << std::endl
<< " ce1: " << ce1 << std::endl
<< "xcv2: " << xcv2 << std::endl
<< " ce2: " << ce2 << std::endl;
Comparison_result cr = m_object(xcv1, ce1, xcv2, ce2);
std::cout << " result: " << cr << std::endl;
return cr;
}
};
/*! A functor that compares the x-coordinates of curve ends near the
* boundary of the parameter space.
*/
class Compare_x_near_boundary_2 {
private:
typename Base::Compare_x_near_boundary_2 m_object;
bool m_enabled;
public:
/*! Construct */
Compare_x_near_boundary_2(const Base * base, bool enabled = true) :
m_object(base->compare_x_near_boundary_2_object()), m_enabled(enabled) {}
/*! Operate
* \param xcv1 the first curve the end of which is to be compared
* \param ce1 the identifier of the end of the first curve
* \param xcv2 the second curve the end of which is to be compared
* \param ce2 the identifier of the end of the second curve
* \return the comparison result
*/
Comparison_result operator()(const X_monotone_curve_2 & xcv1,
const X_monotone_curve_2 & xcv2,
Arr_curve_end ce) const
{
if (!m_enabled) return m_object(xcv1, xcv2, ce);
std::cout << "compare_x_near_boundary 2" << std::endl
<< " xcv1: " << xcv1 << std::endl
<< " xcv2: " << xcv2 << std::endl
<< " ce: " << ce << std::endl;
Comparison_result cr = m_object(xcv1, xcv2, ce);
std::cout << " result: " << cr << std::endl;
return cr;
}
};
//@}
/// \name Obtain the appropriate functor
//@{
Compare_x_2 compare_x_2_object() const
{ return Compare_x_2(this, compare_x_op()); }
Compare_xy_2 compare_xy_2_object() const
{ return Compare_xy_2(this, compare_xy_op()); }
Construct_min_vertex_2 construct_min_vertex_2_object() const
{ return Construct_min_vertex_2(this, construct_min_vertex_op()); }
Construct_max_vertex_2 construct_max_vertex_2_object() const
{ return Construct_max_vertex_2(this, construct_max_vertex_op()); }
Is_vertical_2 is_vertical_2_object() const
{ return Is_vertical_2(this, is_vertical_op()); }
Compare_y_at_x_2 compare_y_at_x_2_object() const
{ return Compare_y_at_x_2(this, compare_y_at_x_op()); }
Equal_2 equal_2_object() const
{ return Equal_2(this, equal_points_op(), equal_curves_op()); }
Compare_y_at_x_left_2 compare_y_at_x_left_2_object() const
{ return Compare_y_at_x_left_2(this, compare_y_at_x_left_op()); }
Compare_y_at_x_right_2 compare_y_at_x_right_2_object() const
{ return Compare_y_at_x_right_2(this, compare_y_at_x_right_op()); }
Make_x_monotone_2 make_x_monotone_2_object() const
{ return Make_x_monotone_2(this, make_x_monotone_op()); }
Split_2 split_2_object() const
{ return Split_2(this, split_op()); }
Intersect_2 intersect_2_object() const
{ return Intersect_2(this, intersect_op()); }
Are_mergeable_2 are_mergeable_2_object() const
{ return Are_mergeable_2(this, are_mergeable_op()); }
Merge_2 merge_2_object() const
{ return Merge_2(this, merge_op()); }
Construct_opposite_2 construct_opposite_2_object() const
{ return Construct_opposite_2(this, construct_opposite_op()); }
Compare_endpoints_xy_2 compare_endpoints_xy_2_object() const
{ return Compare_endpoints_xy_2(this, compare_endpoints_xy_op()); }
// left-right
Parameter_space_in_x_2 parameter_space_in_x_2_object() const
{ return Parameter_space_in_x_2(this, parameter_space_in_x_op()); }
Is_on_x_identification_2 is_on_x_identification_2_object() const
{ return Is_on_x_identification_2(this, is_on_x_identification_op()); }
Compare_y_on_boundary_2 compare_y_on_boundary_2_object() const
{ return Compare_y_on_boundary_2(this, compare_y_on_boundary_op()); }
Compare_y_near_boundary_2 compare_y_near_boundary_2_object() const
{ return Compare_y_near_boundary_2(this, compare_y_near_boundary_op()); }
// bottom-top
Parameter_space_in_y_2 parameter_space_in_y_2_object() const
{ return Parameter_space_in_y_2(this, parameter_space_in_y_op()); }
Is_on_y_identification_2 is_on_y_identification_2_object() const
{ return Is_on_y_identification_2(this, is_on_y_identification_op()); }
Compare_x_at_limit_2 compare_x_at_limit_2_object() const
{ return Compare_x_at_limit_2(this, compare_x_at_limit_op()); }
Compare_x_near_limit_2 compare_x_near_limit_2_object() const
{ return Compare_x_near_limit_2(this, compare_x_near_limit_op()); }
Compare_x_on_boundary_2 compare_x_on_boundary_2_object() const
{ return Compare_x_on_boundary_2(this, compare_x_on_boundary_op()); }
Compare_x_near_boundary_2 compare_x_near_boundary_2_object() const
{ return Compare_x_near_boundary_2(this, compare_x_near_boundary_op()); }
//@}
};
template <class OutputStream>
OutputStream & operator<<(OutputStream & os, Comparison_result cr)
{
os << ((cr == SMALLER) ? "SMALLER" : (cr == EQUAL) ? "EQUAL" : "LARGER");
return os;
}
} //namespace CGAL
#include <CGAL/enable_warnings.h>
#endif