267 lines
7.4 KiB
C
267 lines
7.4 KiB
C
|
// Copyright (c) 1999,2007
|
||
|
// Utrecht University (The Netherlands),
|
||
|
// ETH Zurich (Switzerland),
|
||
|
// INRIA Sophia-Antipolis (France),
|
||
|
// Max-Planck-Institute Saarbruecken (Germany),
|
||
|
// and Tel-Aviv University (Israel). All rights reserved.
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU Lesser General Public License as
|
||
|
// published by the Free Software Foundation; either version 3 of the License,
|
||
|
// or (at your option) any later version.
|
||
|
//
|
||
|
// Licensees holding a valid commercial license may use this file in
|
||
|
// accordance with the commercial license agreement provided with the software.
|
||
|
//
|
||
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
//
|
||
|
// $URL$
|
||
|
// $Id$
|
||
|
// SPDX-License-Identifier: LGPL-3.0+
|
||
|
//
|
||
|
//
|
||
|
// Author(s) : Andreas Fabri, Michael Hemmer
|
||
|
|
||
|
#ifndef CGAL_LEDA_INTEGER_H
|
||
|
#define CGAL_LEDA_INTEGER_H
|
||
|
|
||
|
#include <CGAL/number_type_basic.h>
|
||
|
|
||
|
#include <utility>
|
||
|
|
||
|
#include <CGAL/leda_coercion_traits.h>
|
||
|
#include <CGAL/Interval_nt.h>
|
||
|
|
||
|
#include <CGAL/LEDA_basic.h>
|
||
|
#include <LEDA/numbers/integer.h>
|
||
|
#include <LEDA/numbers/bigfloat.h>// for To_interval
|
||
|
|
||
|
#include <CGAL/Residue.h>
|
||
|
#include <CGAL/Modular_traits.h>
|
||
|
|
||
|
namespace CGAL {
|
||
|
|
||
|
|
||
|
template <> class Algebraic_structure_traits< leda_integer >
|
||
|
: public Algebraic_structure_traits_base< leda_integer,
|
||
|
Euclidean_ring_tag > {
|
||
|
public:
|
||
|
typedef Tag_true Is_exact;
|
||
|
typedef Tag_false Is_numerical_sensitive;
|
||
|
|
||
|
typedef INTERN_AST::Is_square_per_sqrt< Type >
|
||
|
Is_square;
|
||
|
|
||
|
class Gcd
|
||
|
: public CGAL::cpp98::binary_function< Type, Type,
|
||
|
Type > {
|
||
|
public:
|
||
|
Type operator()( const Type& x,
|
||
|
const Type& y ) const {
|
||
|
// By definition gcd(0,0) == 0
|
||
|
if( x == Type(0) && y == Type(0) )
|
||
|
return Type(0);
|
||
|
|
||
|
return CGAL_LEDA_SCOPE::gcd( x, y );
|
||
|
}
|
||
|
|
||
|
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
|
||
|
};
|
||
|
|
||
|
// Unfortunately the behaviour of leda has changed here several times
|
||
|
// The following Div_mod is invariant under these changes
|
||
|
// However, the Div and Mod defined below might be more efficient
|
||
|
// TODO: recover Div Mod implementation for all leda versions
|
||
|
class Div_mod {
|
||
|
public:
|
||
|
typedef Type first_argument_type;
|
||
|
typedef Type second_argument_type;
|
||
|
typedef Type& third_argument_type;
|
||
|
typedef Type& fourth_argument_type;
|
||
|
typedef void result_type;
|
||
|
|
||
|
void operator()(const Type& x, const Type& y, Type& q, Type& r) const {
|
||
|
|
||
|
q = x / y;
|
||
|
r = x - q*y;
|
||
|
CGAL_postcondition(x == y*q + r);
|
||
|
|
||
|
if (r == 0) return;
|
||
|
|
||
|
// round q towards zero
|
||
|
if ( r.sign() != x.sign() ){
|
||
|
q -= x.sign();
|
||
|
r -= x.sign()*y;
|
||
|
}
|
||
|
|
||
|
CGAL_postcondition(x == y*q + r);
|
||
|
CGAL_postcondition(r.sign() == x.sign());
|
||
|
}
|
||
|
};
|
||
|
// Div defined via base using Div_mod
|
||
|
// Mod defined via base using Div_mod
|
||
|
|
||
|
// This code results in an inconsisten div/mod for some leda versions
|
||
|
// TODO: reactivate this code
|
||
|
|
||
|
// typedef INTERN_AST::Div_per_operator< Type > Div;
|
||
|
// class Mod
|
||
|
// : public CGAL::cpp98::binary_function< Type, Type,
|
||
|
// Type > {
|
||
|
// public:
|
||
|
// Type operator()( const Type& x, const Type& y ) const {
|
||
|
// Type m = x % y;
|
||
|
// return m;
|
||
|
// }
|
||
|
// CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
|
||
|
// };
|
||
|
|
||
|
class Sqrt
|
||
|
: public CGAL::cpp98::unary_function< Type, Type > {
|
||
|
public:
|
||
|
Type operator()( const Type& x ) const {
|
||
|
return CGAL_LEDA_SCOPE::sqrt( x );
|
||
|
}
|
||
|
};
|
||
|
};
|
||
|
|
||
|
template <> class Real_embeddable_traits< leda_integer >
|
||
|
: public INTERN_RET::Real_embeddable_traits_base< leda_integer , CGAL::Tag_true > {
|
||
|
public:
|
||
|
|
||
|
class Abs
|
||
|
: public CGAL::cpp98::unary_function< Type, Type > {
|
||
|
public:
|
||
|
Type operator()( const Type& x ) const {
|
||
|
return CGAL_LEDA_SCOPE::abs( x );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class Sgn
|
||
|
: public CGAL::cpp98::unary_function< Type, ::CGAL::Sign > {
|
||
|
public:
|
||
|
::CGAL::Sign operator()( const Type& x ) const {
|
||
|
return (::CGAL::Sign) CGAL_LEDA_SCOPE::sign( x );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class Compare
|
||
|
: public CGAL::cpp98::binary_function< Type, Type,
|
||
|
Comparison_result > {
|
||
|
public:
|
||
|
Comparison_result operator()( const Type& x,
|
||
|
const Type& y ) const {
|
||
|
return (Comparison_result) CGAL_LEDA_SCOPE::compare( x, y );
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
class To_double
|
||
|
: public CGAL::cpp98::unary_function< Type, double > {
|
||
|
public:
|
||
|
double operator()( const Type& x ) const {
|
||
|
return x.to_double();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class To_interval
|
||
|
: public CGAL::cpp98::unary_function< Type, std::pair< double, double > > {
|
||
|
public:
|
||
|
std::pair<double, double> operator()( const Type& x ) const {
|
||
|
leda::bigfloat h(x);
|
||
|
double abs_err = 0;
|
||
|
double low =h.to_double(abs_err, leda::TO_N_INF);
|
||
|
double high =h.to_double(abs_err, leda::TO_P_INF);
|
||
|
return std::make_pair(low,high);
|
||
|
}
|
||
|
};
|
||
|
};
|
||
|
|
||
|
template<>
|
||
|
class Modular_traits< ::leda::integer > {
|
||
|
typedef Residue MOD;
|
||
|
public:
|
||
|
typedef ::leda::integer NT;
|
||
|
typedef ::CGAL::Tag_true Is_modularizable;
|
||
|
typedef MOD Residue_type;
|
||
|
|
||
|
struct Modular_image{
|
||
|
Residue_type operator()(const NT& a){
|
||
|
return Residue_type ((a%NT(MOD::get_current_prime())).to_long());
|
||
|
}
|
||
|
};
|
||
|
struct Modular_image_representative{
|
||
|
NT operator()(const Residue_type& x){
|
||
|
return NT(x.get_value());
|
||
|
}
|
||
|
};
|
||
|
};
|
||
|
|
||
|
//
|
||
|
// Needs_parens_as_product
|
||
|
//
|
||
|
template <>
|
||
|
struct Needs_parens_as_product<leda_integer> {
|
||
|
bool operator()(const leda_integer& x) {
|
||
|
return CGAL_NTS is_negative(x);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// missing mixed operators
|
||
|
inline
|
||
|
bool
|
||
|
operator==(int a, const leda_integer& b)
|
||
|
{ return b == a; }
|
||
|
|
||
|
inline
|
||
|
bool
|
||
|
operator!=(int a, const leda_integer& b)
|
||
|
{ return b != a; }
|
||
|
|
||
|
|
||
|
template <>
|
||
|
struct Split_double<leda_integer>
|
||
|
{
|
||
|
void operator()(double d, leda_integer &num, leda_integer &den) const
|
||
|
{
|
||
|
std::pair<double, double> p = split_numerator_denominator(d);
|
||
|
num = leda_integer(p.first);
|
||
|
den = leda_integer(p.second);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// Benchmark_rep specialization
|
||
|
template<>
|
||
|
class Benchmark_rep< leda_integer > {
|
||
|
const leda_integer& t;
|
||
|
public:
|
||
|
//! initialize with a const reference to \a t.
|
||
|
Benchmark_rep( const leda_integer& tt) : t(tt) {}
|
||
|
//! perform the output, calls \c operator\<\< by default.
|
||
|
std::ostream& operator()( std::ostream& out) const {
|
||
|
out << t;
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
static std::string get_benchmark_name() {
|
||
|
return "Integer";
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
} //namespace CGAL
|
||
|
|
||
|
// Unary + is missing for leda::integer
|
||
|
namespace leda {
|
||
|
inline integer operator+( const integer& i) { return i; }
|
||
|
} // namespace leda
|
||
|
|
||
|
//since types are included by LEDA_coercion_traits.h:
|
||
|
#include <CGAL/leda_rational.h>
|
||
|
#include <CGAL/leda_bigfloat.h>
|
||
|
#include <CGAL/leda_real.h>
|
||
|
#include <CGAL/LEDA_arithmetic_kernel.h>
|
||
|
|
||
|
#endif // CGAL_LEDA_INTEGER_H
|