149 lines
4.4 KiB
C++
149 lines
4.4 KiB
C++
|
// This file is part of libigl, a simple c++ geometry processing library.
|
||
|
//
|
||
|
// Copyright (C) 2016 Alec Jacobson <alecjacobson@gmail.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
#include "bbw.h"
|
||
|
#include "min_quad_with_fixed.h"
|
||
|
#include "harmonic.h"
|
||
|
#include "parallel_for.h"
|
||
|
#include <Eigen/Sparse>
|
||
|
#include <iostream>
|
||
|
#include <mutex>
|
||
|
#include <cstdio>
|
||
|
|
||
|
igl::BBWData::BBWData():
|
||
|
partition_unity(false),
|
||
|
W0(),
|
||
|
active_set_params(),
|
||
|
verbosity(0)
|
||
|
{
|
||
|
// We know that the Bilaplacian is positive semi-definite
|
||
|
active_set_params.Auu_pd = true;
|
||
|
}
|
||
|
|
||
|
void igl::BBWData::print()
|
||
|
{
|
||
|
using namespace std;
|
||
|
cout<<"partition_unity: "<<partition_unity<<endl;
|
||
|
cout<<"W0=["<<endl<<W0<<endl<<"];"<<endl;
|
||
|
}
|
||
|
|
||
|
|
||
|
template <
|
||
|
typename DerivedV,
|
||
|
typename DerivedEle,
|
||
|
typename Derivedb,
|
||
|
typename Derivedbc,
|
||
|
typename DerivedW>
|
||
|
IGL_INLINE bool igl::bbw(
|
||
|
const Eigen::PlainObjectBase<DerivedV> & V,
|
||
|
const Eigen::PlainObjectBase<DerivedEle> & Ele,
|
||
|
const Eigen::PlainObjectBase<Derivedb> & b,
|
||
|
const Eigen::PlainObjectBase<Derivedbc> & bc,
|
||
|
igl::BBWData & data,
|
||
|
Eigen::PlainObjectBase<DerivedW> & W
|
||
|
)
|
||
|
{
|
||
|
using namespace std;
|
||
|
using namespace Eigen;
|
||
|
assert(!data.partition_unity && "partition_unity not implemented yet");
|
||
|
// number of domain vertices
|
||
|
int n = V.rows();
|
||
|
// number of handles
|
||
|
int m = bc.cols();
|
||
|
// Build biharmonic operator
|
||
|
Eigen::SparseMatrix<typename DerivedV::Scalar> Q;
|
||
|
harmonic(V,Ele,2,Q);
|
||
|
W.derived().resize(n,m);
|
||
|
// No linear terms
|
||
|
VectorXd c = VectorXd::Zero(n);
|
||
|
// No linear constraints
|
||
|
SparseMatrix<typename DerivedW::Scalar> A(0,n),Aeq(0,n),Aieq(0,n);
|
||
|
VectorXd Beq(0,1),Bieq(0,1);
|
||
|
// Upper and lower box constraints (Constant bounds)
|
||
|
VectorXd ux = VectorXd::Ones(n);
|
||
|
VectorXd lx = VectorXd::Zero(n);
|
||
|
active_set_params eff_params = data.active_set_params;
|
||
|
if(data.verbosity >= 1)
|
||
|
{
|
||
|
cout<<"BBW: max_iter: "<<data.active_set_params.max_iter<<endl;
|
||
|
cout<<"BBW: eff_max_iter: "<<eff_params.max_iter<<endl;
|
||
|
}
|
||
|
if(data.verbosity >= 1)
|
||
|
{
|
||
|
cout<<"BBW: Computing initial weights for "<<m<<" handle"<<
|
||
|
(m!=1?"s":"")<<"."<<endl;
|
||
|
}
|
||
|
min_quad_with_fixed_data<typename DerivedW::Scalar > mqwf;
|
||
|
min_quad_with_fixed_precompute(Q,b,Aeq,true,mqwf);
|
||
|
min_quad_with_fixed_solve(mqwf,c,bc,Beq,W);
|
||
|
// decrement
|
||
|
eff_params.max_iter--;
|
||
|
bool error = false;
|
||
|
// Loop over handles
|
||
|
std::mutex critical;
|
||
|
const auto & optimize_weight = [&](const int i)
|
||
|
{
|
||
|
// Quicker exit for paralle_for
|
||
|
if(error)
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
if(data.verbosity >= 1)
|
||
|
{
|
||
|
std::lock_guard<std::mutex> lock(critical);
|
||
|
cout<<"BBW: Computing weight for handle "<<i+1<<" out of "<<m<<
|
||
|
"."<<endl;
|
||
|
}
|
||
|
VectorXd bci = bc.col(i);
|
||
|
VectorXd Wi;
|
||
|
// use initial guess
|
||
|
Wi = W.col(i);
|
||
|
SolverStatus ret = active_set(
|
||
|
Q,c,b,bci,Aeq,Beq,Aieq,Bieq,lx,ux,eff_params,Wi);
|
||
|
switch(ret)
|
||
|
{
|
||
|
case SOLVER_STATUS_CONVERGED:
|
||
|
break;
|
||
|
case SOLVER_STATUS_MAX_ITER:
|
||
|
cerr<<"active_set: max iter without convergence."<<endl;
|
||
|
break;
|
||
|
case SOLVER_STATUS_ERROR:
|
||
|
default:
|
||
|
cerr<<"active_set error."<<endl;
|
||
|
error = true;
|
||
|
}
|
||
|
W.col(i) = Wi;
|
||
|
};
|
||
|
#ifdef WIN32
|
||
|
for (int i = 0; i < m; ++i)
|
||
|
optimize_weight(i);
|
||
|
#else
|
||
|
parallel_for(m,optimize_weight,2);
|
||
|
#endif
|
||
|
if(error)
|
||
|
{
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
const double min_rowsum = W.rowwise().sum().array().abs().minCoeff();
|
||
|
if(min_rowsum < 0.1)
|
||
|
{
|
||
|
cerr<<"bbw.cpp: Warning, minimum row sum is very low. Consider more "
|
||
|
"active set iterations or enforcing partition of unity."<<endl;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
#ifdef IGL_STATIC_LIBRARY
|
||
|
// Explicit template instantiation
|
||
|
template bool igl::bbw<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, igl::BBWData&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
|
||
|
#endif
|
||
|
|