111 lines
3.5 KiB
C++
111 lines
3.5 KiB
C++
|
// This file is part of libigl, a simple c++ geometry processing library.
|
||
|
//
|
||
|
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
#include "edge_topology.h"
|
||
|
#include "is_edge_manifold.h"
|
||
|
#include <algorithm>
|
||
|
|
||
|
template<typename DerivedV, typename DerivedF>
|
||
|
IGL_INLINE void igl::edge_topology(
|
||
|
const Eigen::PlainObjectBase<DerivedV>& V,
|
||
|
const Eigen::PlainObjectBase<DerivedF>& F,
|
||
|
Eigen::MatrixXi& EV,
|
||
|
Eigen::MatrixXi& FE,
|
||
|
Eigen::MatrixXi& EF)
|
||
|
{
|
||
|
// Only needs to be edge-manifold
|
||
|
if (V.rows() ==0 || F.rows()==0)
|
||
|
{
|
||
|
EV = Eigen::MatrixXi::Constant(0,2,-1);
|
||
|
FE = Eigen::MatrixXi::Constant(0,3,-1);
|
||
|
EF = Eigen::MatrixXi::Constant(0,2,-1);
|
||
|
return;
|
||
|
}
|
||
|
assert(igl::is_edge_manifold(F));
|
||
|
std::vector<std::vector<int> > ETT;
|
||
|
for(int f=0;f<F.rows();++f)
|
||
|
for (int i=0;i<3;++i)
|
||
|
{
|
||
|
// v1 v2 f vi
|
||
|
int v1 = F(f,i);
|
||
|
int v2 = F(f,(i+1)%3);
|
||
|
if (v1 > v2) std::swap(v1,v2);
|
||
|
std::vector<int> r(4);
|
||
|
r[0] = v1; r[1] = v2;
|
||
|
r[2] = f; r[3] = i;
|
||
|
ETT.push_back(r);
|
||
|
}
|
||
|
std::sort(ETT.begin(),ETT.end());
|
||
|
|
||
|
// count the number of edges (assume manifoldness)
|
||
|
int En = 1; // the last is always counted
|
||
|
for(int i=0;i<int(ETT.size())-1;++i)
|
||
|
if (!((ETT[i][0] == ETT[i+1][0]) && (ETT[i][1] == ETT[i+1][1])))
|
||
|
++En;
|
||
|
|
||
|
EV = Eigen::MatrixXi::Constant((int)(En),2,-1);
|
||
|
FE = Eigen::MatrixXi::Constant((int)(F.rows()),3,-1);
|
||
|
EF = Eigen::MatrixXi::Constant((int)(En),2,-1);
|
||
|
En = 0;
|
||
|
|
||
|
for(unsigned i=0;i<ETT.size();++i)
|
||
|
{
|
||
|
if (i == ETT.size()-1 ||
|
||
|
!((ETT[i][0] == ETT[i+1][0]) && (ETT[i][1] == ETT[i+1][1]))
|
||
|
)
|
||
|
{
|
||
|
// Border edge
|
||
|
std::vector<int>& r1 = ETT[i];
|
||
|
EV(En,0) = r1[0];
|
||
|
EV(En,1) = r1[1];
|
||
|
EF(En,0) = r1[2];
|
||
|
FE(r1[2],r1[3]) = En;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
std::vector<int>& r1 = ETT[i];
|
||
|
std::vector<int>& r2 = ETT[i+1];
|
||
|
EV(En,0) = r1[0];
|
||
|
EV(En,1) = r1[1];
|
||
|
EF(En,0) = r1[2];
|
||
|
EF(En,1) = r2[2];
|
||
|
FE(r1[2],r1[3]) = En;
|
||
|
FE(r2[2],r2[3]) = En;
|
||
|
++i; // skip the next one
|
||
|
}
|
||
|
++En;
|
||
|
}
|
||
|
|
||
|
// Sort the relation EF, accordingly to EV
|
||
|
// the first one is the face on the left of the edge
|
||
|
for(unsigned i=0; i<EF.rows(); ++i)
|
||
|
{
|
||
|
int fid = EF(i,0);
|
||
|
bool flip = true;
|
||
|
// search for edge EV.row(i)
|
||
|
for (unsigned j=0; j<3; ++j)
|
||
|
{
|
||
|
if ((F(fid,j) == EV(i,0)) && (F(fid,(j+1)%3) == EV(i,1)))
|
||
|
flip = false;
|
||
|
}
|
||
|
|
||
|
if (flip)
|
||
|
{
|
||
|
int tmp = EF(i,0);
|
||
|
EF(i,0) = EF(i,1);
|
||
|
EF(i,1) = tmp;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
#ifdef IGL_STATIC_LIBRARY
|
||
|
// Explicit template instantiation
|
||
|
template void igl::edge_topology<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1>&, Eigen::Matrix<int, -1, -1, 0, -1, -1>&, Eigen::Matrix<int, -1, -1, 0, -1, -1>&);
|
||
|
template void igl::edge_topology<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1>&, Eigen::Matrix<int, -1, -1, 0, -1, -1>&, Eigen::Matrix<int, -1, -1, 0, -1, -1>&);
|
||
|
#endif
|