dust3d/third_party/libigl/include/igl/grad.cpp

241 lines
8.2 KiB
C++
Raw Normal View History

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "grad.h"
#include <Eigen/Geometry>
#include <vector>
#include "PI.h"
#include "per_face_normals.h"
#include "volume.h"
#include "doublearea.h"
namespace igl {
namespace {
template <typename DerivedV, typename DerivedF>
IGL_INLINE void grad_tet(
const Eigen::MatrixBase<DerivedV>&V,
const Eigen::MatrixBase<DerivedF>&T,
Eigen::SparseMatrix<typename DerivedV::Scalar> &G,
bool uniform)
{
using namespace Eigen;
assert(T.cols() == 4);
const int n = V.rows(); int m = T.rows();
/*
F = [ ...
T(:,1) T(:,2) T(:,3); ...
T(:,1) T(:,3) T(:,4); ...
T(:,1) T(:,4) T(:,2); ...
T(:,2) T(:,4) T(:,3)]; */
MatrixXi F(4*m,3);
for (int i = 0; i < m; i++) {
F.row(0*m + i) << T(i,0), T(i,1), T(i,2);
F.row(1*m + i) << T(i,0), T(i,2), T(i,3);
F.row(2*m + i) << T(i,0), T(i,3), T(i,1);
F.row(3*m + i) << T(i,1), T(i,3), T(i,2);
}
// compute volume of each tet
Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 1> vol;
igl::volume(V,T,vol);
Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 1> A(F.rows());
Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, Eigen::Dynamic> N(F.rows(),3);
if (!uniform) {
// compute tetrahedron face normals
igl::per_face_normals(V,F,N); int norm_rows = N.rows();
for (int i = 0; i < norm_rows; i++)
N.row(i) /= N.row(i).norm();
igl::doublearea(V,F,A); A/=2.;
} else {
// Use a uniform tetrahedra as a reference, with the same volume as the original one:
//
// Use normals of the uniform tet (V = h*[0,0,0;1,0,0;0.5,sqrt(3)/2.,0;0.5,sqrt(3)/6.,sqrt(2)/sqrt(3)])
// 0 0 1.0000
// 0.8165 -0.4714 -0.3333
// 0 0.9428 -0.3333
// -0.8165 -0.4714 -0.3333
for (int i = 0; i < m; i++) {
N.row(0*m+i) << 0,0,1;
double a = sqrt(2)*std::cbrt(3*vol(i)); // area of a face in a uniform tet with volume = vol(i)
A(0*m+i) = (pow(a,2)*sqrt(3))/4.;
}
for (int i = 0; i < m; i++) {
N.row(1*m+i) << 0.8165,-0.4714,-0.3333;
double a = sqrt(2)*std::cbrt(3*vol(i));
A(1*m+i) = (pow(a,2)*sqrt(3))/4.;
}
for (int i = 0; i < m; i++) {
N.row(2*m+i) << 0,0.9428,-0.3333;
double a = sqrt(2)*std::cbrt(3*vol(i));
A(2*m+i) = (pow(a,2)*sqrt(3))/4.;
}
for (int i = 0; i < m; i++) {
N.row(3*m+i) << -0.8165,-0.4714,-0.3333;
double a = sqrt(2)*std::cbrt(3*vol(i));
A(3*m+i) = (pow(a,2)*sqrt(3))/4.;
}
}
/* G = sparse( ...
[0*m + repmat(1:m,1,4) ...
1*m + repmat(1:m,1,4) ...
2*m + repmat(1:m,1,4)], ...
repmat([T(:,4);T(:,2);T(:,3);T(:,1)],3,1), ...
repmat(A./(3*repmat(vol,4,1)),3,1).*N(:), ...
3*m,n);*/
std::vector<Triplet<double> > G_t;
for (int i = 0; i < 4*m; i++) {
int T_j; // j indexes : repmat([T(:,4);T(:,2);T(:,3);T(:,1)],3,1)
switch (i/m) {
case 0:
T_j = 3;
break;
case 1:
T_j = 1;
break;
case 2:
T_j = 2;
break;
case 3:
T_j = 0;
break;
}
int i_idx = i%m;
int j_idx = T(i_idx,T_j);
double val_before_n = A(i)/(3*vol(i_idx));
G_t.push_back(Triplet<double>(0*m+i_idx, j_idx, val_before_n * N(i,0)));
G_t.push_back(Triplet<double>(1*m+i_idx, j_idx, val_before_n * N(i,1)));
G_t.push_back(Triplet<double>(2*m+i_idx, j_idx, val_before_n * N(i,2)));
}
G.resize(3*m,n);
G.setFromTriplets(G_t.begin(), G_t.end());
}
template <typename DerivedV, typename DerivedF>
IGL_INLINE void grad_tri(
const Eigen::MatrixBase<DerivedV>&V,
const Eigen::MatrixBase<DerivedF>&F,
Eigen::SparseMatrix<typename DerivedV::Scalar> &G,
bool uniform)
{
// Number of faces
const int m = F.rows();
// Number of vertices
const int nv = V.rows();
// Number of dimensions
const int dims = V.cols();
Eigen::Matrix<typename DerivedV::Scalar,Eigen::Dynamic,3>
eperp21(m,3), eperp13(m,3);
for (int i=0;i<m;++i)
{
// renaming indices of vertices of triangles for convenience
int i1 = F(i,0);
int i2 = F(i,1);
int i3 = F(i,2);
// #F x 3 matrices of triangle edge vectors, named after opposite vertices
typedef Eigen::Matrix<typename DerivedV::Scalar, 1, 3> RowVector3S;
RowVector3S v32 = RowVector3S::Zero(1,3);
RowVector3S v13 = RowVector3S::Zero(1,3);
RowVector3S v21 = RowVector3S::Zero(1,3);
v32.head(V.cols()) = V.row(i3) - V.row(i2);
v13.head(V.cols()) = V.row(i1) - V.row(i3);
v21.head(V.cols()) = V.row(i2) - V.row(i1);
RowVector3S n = v32.cross(v13);
// area of parallelogram is twice area of triangle
// area of parallelogram is || v1 x v2 ||
// This does correct l2 norm of rows, so that it contains #F list of twice
// triangle areas
double dblA = std::sqrt(n.dot(n));
Eigen::Matrix<typename DerivedV::Scalar, 1, 3> u(0,0,1);
if (!uniform) {
// now normalize normals to get unit normals
u = n / dblA;
} else {
// Abstract equilateral triangle v1=(0,0), v2=(h,0), v3=(h/2, (sqrt(3)/2)*h)
// get h (by the area of the triangle)
double h = sqrt( (dblA)/sin(igl::PI / 3.0)); // (h^2*sin(60))/2. = Area => h = sqrt(2*Area/sin_60)
Eigen::Matrix<typename DerivedV::Scalar, 3, 1> v1,v2,v3;
v1 << 0,0,0;
v2 << h,0,0;
v3 << h/2.,(sqrt(3)/2.)*h,0;
// now fix v32,v13,v21 and the normal
v32 = v3-v2;
v13 = v1-v3;
v21 = v2-v1;
n = v32.cross(v13);
}
// rotate each vector 90 degrees around normal
double norm21 = std::sqrt(v21.dot(v21));
double norm13 = std::sqrt(v13.dot(v13));
eperp21.row(i) = u.cross(v21);
eperp21.row(i) = eperp21.row(i) / std::sqrt(eperp21.row(i).dot(eperp21.row(i)));
eperp21.row(i) *= norm21 / dblA;
eperp13.row(i) = u.cross(v13);
eperp13.row(i) = eperp13.row(i) / std::sqrt(eperp13.row(i).dot(eperp13.row(i)));
eperp13.row(i) *= norm13 / dblA;
}
// create sparse gradient operator matrix
G.resize(dims*m,nv);
std::vector<Eigen::Triplet<typename DerivedV::Scalar> > Gijv;
Gijv.reserve(4*dims*m);
for(int f = 0;f<F.rows();f++)
{
for(int d = 0;d<dims;d++)
{
Gijv.emplace_back(f+d*m,F(f,1), eperp13(f,d));
Gijv.emplace_back(f+d*m,F(f,0),-eperp13(f,d));
Gijv.emplace_back(f+d*m,F(f,2), eperp21(f,d));
Gijv.emplace_back(f+d*m,F(f,0),-eperp21(f,d));
}
}
G.setFromTriplets(Gijv.begin(), Gijv.end());
}
} // anonymous namespace
} // namespace igl
template <typename DerivedV, typename DerivedF>
IGL_INLINE void igl::grad(
const Eigen::MatrixBase<DerivedV>&V,
const Eigen::MatrixBase<DerivedF>&F,
Eigen::SparseMatrix<typename DerivedV::Scalar> &G,
bool uniform)
{
assert(F.cols() == 3 || F.cols() == 4);
switch(F.cols())
{
case 3:
return grad_tri(V,F,G,uniform);
case 4:
return grad_tet(V,F,G,uniform);
default:
assert(false);
}
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
// generated by autoexplicit.sh
template void igl::grad<Eigen::Matrix<double, -1, 2, 0, -1, 2>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, 2, 0, -1, 2> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<Eigen::Matrix<double, -1, 2, 0, -1, 2>::Scalar, 0, int>&, bool);
template void igl::grad<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<Eigen::Matrix<double, -1, -1, 0, -1, -1>::Scalar, 0, int>&, bool);
template void igl::grad<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3> >(Eigen::MatrixBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::MatrixBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::SparseMatrix<Eigen::Matrix<double, -1, 3, 0, -1, 3>::Scalar, 0, int>&, bool);
#endif