dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Approximate_min_ellipsoid_d.h

468 lines
16 KiB
C
Raw Normal View History

// Copyright (c) 1997-2001 ETH Zurich (Switzerland).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
//
// Author(s) : Kaspar Fischer <fischerk@inf.ethz.ch>
#ifndef CGAL_CGAL_APPROX_MIN_ELL_D_H
#define CGAL_CGAL_APPROX_MIN_ELL_D_H
#include <CGAL/license/Bounding_volumes.h>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <iostream>
#include <CGAL/Simple_cartesian.h>
#include <CGAL/Approximate_min_ellipsoid_d/Khachiyan_approximation.h>
namespace CGAL {
template<class Traits>
class Approximate_min_ellipsoid_d
// An instance of class Approximate_min_ellipsoid_d represents an
// eps-approximation of the smallest enclosing ellipsoid of the
// point set P in R^d, that is, an ellipsoid E satisfying
//
// (i) E contains P,
//
// (ii) the volume of E is at most (1+eps) times larger than the
// volume of the smallest enclosing ellipsoid of P.
{
public: // types:
typedef typename Traits::FT FT;
typedef typename Traits::Point Point;
typedef typename Traits::Cartesian_const_iterator Cartesian_const_iterator;
private:
typedef std::vector<Point> Point_list;
typedef typename Traits::Cartesian_const_iterator C_it;
protected: // member variables:
Traits tco; // traits class object
const Point_list P; // the input points in R^d
int d; // dimension of the input points
const double eps; // the desired epsilon
double e_eps; // (see below)
// We obtain our eps-approximating ellipsoid by embedding the input
// points P into R^{d+1} by mapping p to (p,1). Then we compute in
// R^{d+1} an (1+e_eps)-approximating centrally symmetric ellipsoid E for
// the embedded points from which the desired (1+eps)-approximating
// ellipsoid of the original points can be obtained by projection. The
// following variable E represents the e_eps-approximating centrally
// symmetric ellipsoid in R^{d+1}:
Khachiyan_approximation<true,Traits> *E;
// When the input points do not affinely span the whole space
// (i.e., if dim(aff(P)) < d), then the smallest enclosing
// ellipsoid of P has no volume in R^d and so the points are
// called "degnerate" (see is_degenerate()) below.
// As discussed below (before (*)), the centrally symmetric ellipsoid
// E':= sqrt{(1+a_eps)(d+1)} E contains (under exact arithmetic) the
// embedded points. (Here, a_eps is the value obtained by
// achieved_epsilon().) Denote by M the defining matrix of E; we
// then have
//
// p^T M p <= alpha,
//
// for all p in E and alpha = (1+a_eps)(d+1). Since this is equivalent
// to
//
// p^T M/alpha p <= 1, (***)
//
// we see that E' = sqrt{alpha} E has M/alpha as its defining
// matrix. Consequently, when we return M in the routines
// defining_matrix(), defining_vector(), and defining_scalar() below,
// these numbers need to be scaled (by the user) with the factor
// 1/alpha. (We do not perform the scaling ourselves because we cannot do
// it exactly in double arithmetic.)
public: // construction & destruction:
template<typename InputIterator>
Approximate_min_ellipsoid_d(double eps,
InputIterator first,InputIterator last,
const Traits& traits = Traits())
// Given a range [first,last) of n points P, constructs an
// (1+eps)-approximation of the smallest enclosing ellipsoid of P.
: tco(traits), P(first,last), eps(eps),
has_center(false), has_axes(false)
{
CGAL_APPEL_LOG("appel",
"Entering Approximate_min_ellpsoid_d." << std::endl);
// fetch ambient dimension:
d = tco.dimension(P[0]);
CGAL_APPEL_ASSERT(d >= 2 || eps >= 0.0);
// The ellipsoid E produced by Khachiyan's algorithm has the
// property that E':= sqrt{(1+e_eps) (d+1)} E contains all
// embedded points e_P and has volume bounded by
//
// vol(E') <= (1+e_eps)^{(d+1)/2} vol(E_emb*), (*)
//
// where E_emb* is the smallest centrally symmetric enclosing
// ellipsoid of the embedded points e_P. By requiring that (1+eps)
// <= (1+e_eps)^{(d+1)/2}, we get
//
// e_eps <= (1+eps)^{2/(d+1)} - 1 (**)
//
// and with this e_eps, we have vol(E') <= (1+eps) vol(E_emb*).
// An argument by Khachiyan (see "Rounding of polytopes in the
// real number model of computation", eq. (4.1)) then guarantees
// that the intersection E_int of E' with the hyperplane { (x,y)
// in R^{d+1} | y = 1} is an ellipsoid satisfying vol(E_int) <=
// (1+eps) vol(E*), where E* is the smallest enclosing ellipsoid
// of the original points P. According to (**) we thus set e_eps
// to (a lower bound on) (1+eps)^{2/(d+1)} - 1:
FPU_CW_t old = FPU_get_and_set_cw(CGAL_FE_TOWARDZERO); // round to zero
e_eps = std::exp(2.0/(d+1)*std::log(1.0+eps))-1.0;
FPU_set_cw(old); // restore
// rounding mode
// Find e (1+e_eps)-approximation for the embedded points. This
// only works when the points affinely span R^{d+1}.
E = new Khachiyan_approximation<true,Traits>(d, static_cast<int>(P.size()),tco);
const bool is_deg = !E->add(P.begin(),P.end(),e_eps);
// debugging:
CGAL_APPEL_ASSERT(is_deg == E->is_degenerate());
CGAL_APPEL_LOG("appel",
" Input points are " << (is_deg? "" : "not ") <<
"degnerate." << std::endl);
if (is_deg)
find_lower_dimensional_approximation();
CGAL_APPEL_LOG("appel",
"Leaving Approximate_min_ellipsoid_d." << std::endl);
}
~Approximate_min_ellipsoid_d()
{
// dispose of approximation:
if (E != static_cast<Khachiyan_approximation<true,Traits> *>(0))
delete E;
}
public: // access:
unsigned int number_of_points() const
// Returns the number of points, i.e., |P|.
{
return P.size();
}
bool is_empty() const
// Returns true iff the approximate ellipsoid is empty (which
// implies degeneracy). This is the case iff the number of input
// points was zero at construction time.
{
return P.size() == 0;
}
private: // access:
bool is_degenerate() const
// Returns true iff the approximate ellipsoid is degenerate, i.e.,
// iff the dimension of the affine hull of S doesn't match the
// dimension of the ambient space.
{
return E->is_degenerate();
}
public: // access:
// Here's how the routines defining_matrix(), defining_vector(),
// and defining_scalar() are implemented. From (***) we know that
// the ellipsoid E' = sqrt{alpha} E
//
// (a) encloses all embedded points (p,1), p in P,
// (b) has defining matrix M/alpha, i.e.,
//
// E' = { x | x^T M/alpha x <= 1 },
//
// where alpha = (1+a_eps)(d+1) with a_eps the return value
// of achieved_epsilon().
//
// The ellipsoid E* we actuallly want is the intersection of E' with
// the hyperplane { (y,z) in R^{d+1} | y = 1}. Writing
//
// [ M' m ] [ y ]
// M = [ m^T nu ] and x = [ 1 ] (*****)
//
// we thus obtain
//
// x^T M/alpha x = y^T y alpha/M + 2/alpha y^Tm + nu/alpha.
//
// It follows
//
// E* = { y | y^T M'/alpha y + 2/alpha y^Tm + (nu/alpha-1) <= 0 }. (****)
//
// This is what the routines defining_matrix(), defining_vector(),
// and defining_scalar() implement.
bool is_full_dimensional() const
// Returns !is_degenerate().
{
return !is_degenerate();
}
FT defining_matrix(int i,int j) const
// Returns the entry M(i,j) of the symmetric matrix M in the
// representation
//
// E* = { x | x^T M x + x^T m + mu <= 0 }
//
// of the computed approximation. More precisely, the routine does not
// return M(i,j) but the number (1+achieved_epsilon())*(d+1)*M(i,j).
//
// Precondition: !is_degenerate() && 0<=i<d && 0<=j<d
{
CGAL_APPEL_ASSERT(!is_degenerate() && 0<=i && i<d && 0<=j && j<d);
return E->matrix(i,j);
}
FT defining_vector(int i) const
// Returns the entry m(i) of the vector m in the representation
//
// E* = { x | x^T M x + x^T m + mu <= 0 }
//
// of the computed approximation. More precisely, the routine does not
// return m(i) but the number (1+achieved_epsilon())*(d+1)*m(i).
//
// Precondition: !is_degenerate() && 0<=i<d
{
CGAL_APPEL_ASSERT(!is_degenerate() && 0<=i && i<d);
return FT(2)*E->matrix(d,i); // Note: if FT is double, the
// multiplication by 2.0 is exact.
}
FT defining_scalar() const
// Returns the number mu in the representation
//
// E* = { x | x^T M x + x^T m + mu <= 0}
//
// of the computed approximation. More precisely, the routine does not
// return mu but the number (1+achieved_epsilon())*(d+1)*(mu+1).
//
// Precondition: !is_degenerate()
{
CGAL_APPEL_ASSERT(!is_degenerate());
return E->matrix(d,d);
}
double achieved_epsilon() const
// Returns the approximation ratio; more precisely, this returns a
// number r such that the computed ellipsoid is a (1+r)-approximation
// of MEL(P).
//
// Precondition: !is_degenerate()
{
CGAL_APPEL_ASSERT(!is_degenerate());
// From (*) we known that Khachian's algorithm produces a
// centrally-symmetric ellipsoid in R^{d+1} fulfilling
//
// vol(E') <= (1+k_eps)^{(d+1)/2} vol(E_emb*),
//
// where k_eps = E->exact_epsilon(). The projecting argument
// mentioned after (**) says that these approximation ratio also
// applies to the projected (d-dimensional) ellipsoids, and so the
// actual approximation ratio we obtain is
//
// ratio:= (1+k_eps)^{(d+1)/2}.
//
// So all we need to do is compute the smallest (let's say: a small)
// double number larger or equal to ratio.
//
// Todo: make the calculation below more stable, numerically?
const double k_eps = E->exact_epsilon();
FPU_CW_t old = FPU_get_and_set_cw(CGAL_FE_UPWARD); // round up
const double sum = 1.0 + k_eps;
double tmp = sum;
for (int i=0; i<d; ++i)
tmp *= sum;
const double eps = std::sqrt(tmp)-1.0;
FPU_set_cw(old); // restore
CGAL_APPEL_ASSERT(eps >= 0.0);
return eps;
}
Traits traits() const
{
return tco;
}
int dimension() const
{
return d;
}
public: // miscellaneous:
bool is_valid(bool verbose) const
// Returns true if and only if the computed ellipsoid is indeed an
// approximate ellipsoid, that is ... Todo.
{
return E->is_valid(verbose);
}
public: // miscellaneous 2D/3D support:
typedef std::vector<double>::const_iterator Center_coordinate_iterator;
typedef std::vector<double>::const_iterator Axes_lengths_iterator;
typedef std::vector<double>::const_iterator
Axes_direction_coordinate_iterator;
Center_coordinate_iterator center_cartesian_begin()
// Returns a STL random-access iterator pointing to the first of the d
// Cartesian coordinates of the computed ellipsoid's center. The center
// described in this way is a floating-point approximation to the
// ellipsoid's exact center; no guarantee is given w.r.t. the involved
// relative error.
//
// Precondition: !is_degenerate()
{
CGAL_APPEL_ASSERT(!is_degenerate());
if (!has_center)
compute_center();
return center_.begin();
}
Center_coordinate_iterator center_cartesian_end()
// Returns the past-the-end iterator corresponding to
// center_cartesian_begin().
//
// Precondition: !is_degenerate()
{
CGAL_APPEL_ASSERT(!is_degenerate());
if (!has_center)
compute_center();
return center_.end();
}
Axes_lengths_iterator axes_lengths_begin()
// Returns a STL random-access iterator to the first of the d lengths of
// the computed ellipsoid's axes. The d lengths are floating-point
// approximations to the exact axes-lengths of the computed ellipsoid; no
// guarantee is given w.r.t. the involved relative error. (See also method
// axes_direction_cartesian_begin().) The elements of the iterator are
// sorted descending.
//
// Precondition: !is_degenerate() && (d==2 || d==3)
{
CGAL_APPEL_ASSERT(!is_degenerate() && (d==2 || d==3));
if (!has_axes)
compute_axes_2_3();
return lengths_.begin();
}
Axes_lengths_iterator axes_lengths_end()
// Returns the past-the-end iterator corresponding to
// axes_lengths_begin().
//
// Precondition: !is_degenerate() && (d==2 || d==3)
{
CGAL_APPEL_ASSERT(!is_degenerate() && (d==2 || d==3));
if (!has_axes)
compute_axes_2_3();
return lengths_.end();
}
Axes_direction_coordinate_iterator axis_direction_cartesian_begin(int i)
// Returns a STL random-access iterator pointing to the first of the d
// Cartesian coordinates of the computed ellipsoid's i-th axis direction
// (i.e., unit vector in direction of the ellipsoid's i-th axis). The
// direction described by this iterator is a floating-point approximation
// to the exact axis direction of the computed ellipsoid; no guarantee is
// given w.r.t. the involved relative error. An approximation to the
// length of axis i is given by the i-th entry of axes_lengths_begin().
//
// Precondition: !is_degenerate() && (d==2 || d==3) && (0 <= i < d)
{
CGAL_APPEL_ASSERT(!is_degenerate() && (d==2 || d==3) &&
0 <= i && i < d);
if (!has_axes)
compute_axes_2_3();
return directions_[i].begin();
}
Axes_direction_coordinate_iterator axis_direction_cartesian_end(int i)
// Returns the past-the-end iterator corresponding to
// axis_direction_cartesian_begin().
//
// Precondition: !is_degenerate() && (d==2 || d==3) && (0 <= i < d)
{
CGAL_APPEL_ASSERT(!is_degenerate() && (d==2 || d==3) &&
0 <= i && i < d);
if (!has_axes)
compute_axes_2_3();
return directions_[i].end();
}
public: // internal members for 2D/3D axis/center computation:
bool has_center, has_axes; // true iff the center or axes-directions and
// -lengths, respectively, have already been
// computed
std::vector<double> center_;
std::vector<double> lengths_;
std::vector< std::vector<double> > directions_;
std::vector<double> mi; // contains M^{-1} (see (*****)
// above) iff has_center is true;
// mi[i+d*j] is entry (i,j) of
// M^{-1}
void compute_center();
void compute_axes_2_3();
void compute_axes_2(const double alpha, const double factor);
void compute_axes_3(const double alpha, const double factor);
public: // "debugging" routines:
void write_eps(const std::string& name);
// Writes the and the point set P to an EPS file. Returned is the
// id under which the file was stored (filename 'id.eps').
//
// Precondition: d==2 && !is_degenerate().
private: // internal routines:
void find_lower_dimensional_approximation(); // (does nothing right now)
};
}
#include <CGAL/Approximate_min_ellipsoid_d/Approximate_min_ellipsoid_d_impl.h>
#endif // CGAL_CGAL_APPROX_MIN_ELL_D_H