dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Arr_linear_traits_2.h

2033 lines
61 KiB
C
Raw Normal View History

// Copyright (c) 2006,2007,2009,2010,2011 Tel-Aviv University (Israel).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
//
// Author(s) : Ron Wein <wein@post.tau.ac.il>
// : Waqar Khan <wkhan@mpi-inf.mpg.de>
#ifndef CGAL_ARR_LINEAR_TRAITS_2_H
#define CGAL_ARR_LINEAR_TRAITS_2_H
#include <CGAL/license/Arrangement_on_surface_2.h>
#include <CGAL/disable_warnings.h>
/*! \file
* The traits-class for handling linear objects (lines, rays and segments)
* in the arrangement package.
*/
#include <CGAL/tags.h>
#include <CGAL/intersections.h>
#include <CGAL/Arr_tags.h>
#include <CGAL/Arr_enums.h>
#include <CGAL/Arr_geometry_traits/Segment_assertions.h>
#include <fstream>
namespace CGAL {
template <class Kernel_> class Arr_linear_object_2;
/*! \class
* A traits class for maintaining an arrangement of linear objects (lines,
* rays and segments), aoviding cascading of computations as much as possible.
*/
template <class Kernel_>
class Arr_linear_traits_2 : public Kernel_ {
friend class Arr_linear_object_2<Kernel_>;
public:
typedef Kernel_ Kernel;
typedef typename Kernel::FT FT;
typedef typename Algebraic_structure_traits<FT>::Is_exact
Has_exact_division;
// Category tags:
typedef Tag_true Has_left_category;
typedef Tag_true Has_merge_category;
typedef Tag_false Has_do_intersect_category;
typedef Arr_open_side_tag Left_side_category;
typedef Arr_open_side_tag Bottom_side_category;
typedef Arr_open_side_tag Top_side_category;
typedef Arr_open_side_tag Right_side_category;
typedef typename Kernel::Line_2 Line_2;
typedef typename Kernel::Ray_2 Ray_2;
typedef typename Kernel::Segment_2 Segment_2;
typedef CGAL::Segment_assertions<Arr_linear_traits_2<Kernel> >
Segment_assertions;
/*!
* \class Representation of a linear with cached data.
*/
class _Linear_object_cached_2
{
public:
typedef typename Kernel::Line_2 Line_2;
typedef typename Kernel::Ray_2 Ray_2;
typedef typename Kernel::Segment_2 Segment_2;
typedef typename Kernel::Point_2 Point_2;
protected:
Line_2 l; // The supporting line.
Point_2 ps; // The source point (if exists).
Point_2 pt; // The target point (if exists).
bool has_source; // Is the source point valid
// (false for a line).
bool has_target; // Is the target point valid
// (false for a line and for a ray).
bool is_right; // Is the object directed to the right
// (for segments and rays).
bool is_vert; // Is this a vertical object.
bool is_horiz; // Is this a horizontal object.
bool has_pos_slope; // Does the supporting line has a positive
// slope (if all three flags is_vert, is_horiz
// and has_pos_slope are false, then the line
// has a negative slope).
bool is_degen; // Is the object degenerate (a single point).
public:
/*!
* Default constructor.
*/
_Linear_object_cached_2 () :
has_source (true),
has_target (true),
is_vert (false),
is_horiz (false),
has_pos_slope (false),
is_degen (true)
{}
/*!
* Constructor for segment from two points.
* \param p1 source point.
* \param p2 target point.
* \pre The two points must not be equal.
*/
_Linear_object_cached_2(const Point_2& source, const Point_2& target) :
ps (source),
pt (target),
has_source (true),
has_target (true)
{
Kernel kernel;
Comparison_result res = kernel.compare_xy_2_object()(source, target);
is_degen = (res == EQUAL);
is_right = (res == SMALLER);
CGAL_precondition_msg (! is_degen,
"Cannot construct a degenerate segment.");
l = kernel.construct_line_2_object()(source, target);
is_vert = kernel.is_vertical_2_object()(l);
is_horiz = kernel.is_horizontal_2_object()(l);
has_pos_slope = _has_positive_slope();
}
/*!
* Constructor from a segment.
* \param seg The segment.
* \pre The segment is not degenerate.
*/
_Linear_object_cached_2 (const Segment_2& seg)
{
Kernel kernel;
CGAL_assertion_msg (! kernel.is_degenerate_2_object() (seg),
"Cannot construct a degenerate segment.");
typename Kernel_::Construct_vertex_2
construct_vertex = kernel.construct_vertex_2_object();
ps = construct_vertex(seg, 0);
has_source = true;
pt = construct_vertex(seg, 1);
has_target = true;
Comparison_result res = kernel.compare_xy_2_object()(ps, pt);
CGAL_assertion (res != EQUAL);
is_degen = false;
is_right = (res == SMALLER);
l = kernel.construct_line_2_object()(seg);
is_vert = kernel.is_vertical_2_object()(seg);
is_horiz = kernel.is_horizontal_2_object()(seg);
has_pos_slope = _has_positive_slope();
}
/*!
* Constructor from a ray.
* \param ray The ray.
* \pre The ray is not degenerate.
*/
_Linear_object_cached_2 (const Ray_2& ray)
{
Kernel kernel;
CGAL_assertion_msg (! kernel.is_degenerate_2_object() (ray),
"Cannot construct a degenerate ray.");
typename Kernel_::Construct_point_on_2
construct_vertex = kernel.construct_point_on_2_object();
ps = construct_vertex(ray, 0); // The source point.
has_source = true;
pt = construct_vertex(ray, 1); // Some point on the ray.
has_target = false;
Comparison_result res = kernel.compare_xy_2_object()(ps, pt);
CGAL_assertion (res != EQUAL);
is_degen = false;
is_right = (res == SMALLER);
l = kernel.construct_line_2_object()(ray);
is_vert = kernel.is_vertical_2_object()(ray);
is_horiz = kernel.is_horizontal_2_object()(ray);
has_pos_slope = _has_positive_slope();
}
/*!
* Constructor from a line.
* \param ln The line.
* \pre The line is not degenerate.
*/
_Linear_object_cached_2 (const Line_2& ln) :
l (ln),
has_source (false),
has_target (false)
{
Kernel kernel;
CGAL_assertion_msg (! kernel.is_degenerate_2_object() (ln),
"Cannot construct a degenerate line.");
typename Kernel_::Construct_point_on_2
construct_vertex = kernel.construct_point_on_2_object();
ps = construct_vertex(ln, 0); // Some point on the line.
has_source = false;
pt = construct_vertex(ln, 1); // Some point further on the line.
has_target = false;
Comparison_result res = kernel.compare_xy_2_object()(ps, pt);
CGAL_assertion (res != EQUAL);
is_degen = false;
is_right = (res == SMALLER);
is_vert = kernel.is_vertical_2_object()(ln);
is_horiz = kernel.is_horizontal_2_object()(ln);
has_pos_slope = _has_positive_slope();
}
/*!
* Check whether the x-coordinate of the left point is infinite.
* \return ARR_LEFT_BOUNDARY if the left point is near the boundary;
* ARR_INTERIOR if the x-coordinate is finite.
*/
Arr_parameter_space left_infinite_in_x () const
{
if (is_vert || is_degen)
return (ARR_INTERIOR);
return (is_right) ?
(has_source ? ARR_INTERIOR : ARR_LEFT_BOUNDARY) :
(has_target ? ARR_INTERIOR : ARR_LEFT_BOUNDARY);
}
/*!
* Check whether the y-coordinate of the left point is infinite.
* \return ARR_BOTTOM_BOUNDARY if the left point is at y = -oo;
* ARR_INTERIOR if the y-coordinate is finite.
* ARR_TOP_BOUNDARY if the left point is at y = +oo;
*/
Arr_parameter_space left_infinite_in_y () const
{
if (is_horiz || is_degen)
return ARR_INTERIOR;
if (is_vert) {
return (is_right) ?
(has_source ? ARR_INTERIOR : ARR_BOTTOM_BOUNDARY) :
(has_target ? ARR_INTERIOR : ARR_BOTTOM_BOUNDARY);
}
if ((is_right && has_source) || (! is_right && has_target))
return ARR_INTERIOR;
return (has_pos_slope ? ARR_BOTTOM_BOUNDARY : ARR_TOP_BOUNDARY);
}
/*!
* Check whether the left point is finite.
*/
bool has_left () const
{
if (is_right)
return (has_source);
else
return (has_target);
}
/*!
* Obtain the (lexicographically) left endpoint.
* \pre The left point is finite.
*/
const Point_2& left () const
{
CGAL_precondition (has_left());
return (is_right ? ps : pt);
}
/*!
* Set the (lexicographically) left endpoint.
* \param p The point to set.
* \pre p lies on the supporting line to the left of the right endpoint.
*/
void set_left (const Point_2& p, bool CGAL_assertion_code(check_validity) = true)
{
CGAL_precondition (! is_degen);
CGAL_precondition_code (
Kernel kernel;
);
CGAL_precondition
(Segment_assertions::_assert_is_point_on (p, l,
Has_exact_division()) &&
(! check_validity || ! has_right() ||
kernel.compare_xy_2_object() (p, right()) == SMALLER));
if (is_right)
{
ps = p;
has_source = true;
}
else
{
pt = p;
has_target = true;
}
}
/*!
* Set the (lexicographically) left endpoint as infinite.
*/
void set_left ()
{
CGAL_precondition (! is_degen);
if (is_right)
has_source = false;
else
has_target = false;
}
/*!
* Check whether the x-coordinate of the right point is infinite.
* \return ARR_RIGHT_BOUNDARY if the right point is near the boundary;
* ARR_INTERIOR if the x-coordinate is finite.
*/
Arr_parameter_space right_infinite_in_x () const
{
if (is_vert || is_degen)
return ARR_INTERIOR;
return (is_right) ?
(has_target ? ARR_INTERIOR : ARR_RIGHT_BOUNDARY) :
(has_source ? ARR_INTERIOR : ARR_RIGHT_BOUNDARY);
}
/*!
* Check whether the y-coordinate of the right point is infinite.
* \return ARR_BOTTOM_BOUNDARY if the right point is at y = -oo;
* ARR_INTERIOR if the y-coordinate is finite.
* ARR_TOP_BOUNDARY if the right point is at y = +oo;
*/
Arr_parameter_space right_infinite_in_y () const
{
if (is_horiz || is_degen)
return ARR_INTERIOR;
if (is_vert) {
return (is_right) ?
(has_target ? ARR_INTERIOR : ARR_TOP_BOUNDARY) :
(has_source ? ARR_INTERIOR : ARR_TOP_BOUNDARY);
}
if ((is_right && has_target) || (! is_right && has_source))
return ARR_INTERIOR;
return (has_pos_slope ? ARR_TOP_BOUNDARY : ARR_BOTTOM_BOUNDARY);
}
/*!
* Check whether the right point is finite.
*/
bool has_right () const
{
if (is_right)
return (has_target);
else
return (has_source);
}
/*!
* Obtain the (lexicographically) right endpoint.
* \pre The right endpoint is finite.
*/
const Point_2& right () const
{
CGAL_precondition (has_right());
return (is_right ? pt : ps);
}
/*!
* Set the (lexicographically) right endpoint.
* \param p The point to set.
* \pre p lies on the supporting line to the right of the left endpoint.
*/
void set_right (const Point_2& p, bool CGAL_assertion_code(check_validity) = true)
{
CGAL_precondition (! is_degen);
CGAL_precondition_code (
Kernel kernel;
);
CGAL_precondition
(Segment_assertions::_assert_is_point_on (p, l,
Has_exact_division()) &&
(! check_validity || ! has_left() ||
kernel.compare_xy_2_object() (p, left()) == LARGER));
if (is_right)
{
pt = p;
has_target = true;
}
else
{
ps = p;
has_source = true;
}
}
/*!
* Set the (lexicographically) right endpoint as infinite.
*/
void set_right ()
{
CGAL_precondition (! is_degen);
if (is_right)
has_target = false;
else
has_source = false;
}
/*!
* Obtain the supporting line.
*/
const Line_2& supp_line () const
{
CGAL_precondition (! is_degen);
return (l);
}
/*!
* Check whether the curve is vertical.
*/
bool is_vertical () const
{
CGAL_precondition (! is_degen);
return (is_vert);
}
/*!
* Check whether the curve is degenerate.
*/
bool is_degenerate () const
{
return (is_degen);
}
/*!
* Check whether the curve is directed lexicographic from left to right
*/
bool is_directed_right () const
{
return (is_right);
}
/*!
* Check whether the given point is in the x-range of the object.
* \param p The query point.
* \return (true) is in the x-range of the segment; (false) if it is not.
*/
bool is_in_x_range (const Point_2& p) const
{
Kernel kernel;
typename Kernel_::Compare_x_2 compare_x = kernel.compare_x_2_object();
Comparison_result res1;
if (left_infinite_in_x() == ARR_INTERIOR)
{
if (left_infinite_in_y() != ARR_INTERIOR)
// Compare with some point on the curve.
res1 = compare_x (p, ps);
else
res1 = compare_x (p, left());
}
else
{
// p is obviously to the right.
res1 = LARGER;
}
if (res1 == SMALLER)
return (false);
else if (res1 == EQUAL)
return (true);
Comparison_result res2;
if (right_infinite_in_x() == ARR_INTERIOR)
{
if (right_infinite_in_y() != ARR_INTERIOR)
// Compare with some point on the curve.
res2 = compare_x (p, ps);
else
res2 = compare_x (p, right());
}
else
{
// p is obviously to the right.
res2 = SMALLER;
}
return (res2 != LARGER);
}
/*!
* Check whether the given point is in the y-range of the object.
* \param p The query point.
* \pre The object is vertical.
* \return (true) is in the y-range of the segment; (false) if it is not.
*/
bool is_in_y_range (const Point_2& p) const
{
CGAL_precondition (is_vertical());
Kernel kernel;
typename Kernel_::Compare_y_2 compare_y = kernel.compare_y_2_object();
Arr_parameter_space inf = left_infinite_in_y();
Comparison_result res1;
CGAL_assertion (inf != ARR_TOP_BOUNDARY);
if (inf == ARR_INTERIOR)
res1 = compare_y (p, left());
else
res1 = LARGER; // p is obviously above.
if (res1 == SMALLER)
return (false);
else if (res1 == EQUAL)
return (true);
Comparison_result res2;
inf = right_infinite_in_y();
CGAL_assertion (inf != ARR_BOTTOM_BOUNDARY);
if (inf == ARR_INTERIOR)
res2 = compare_y (p, right());
else
res2 = SMALLER; // p is obviously below.
return (res2 != LARGER);
}
private:
/*!
* Determine if the supporting line has a positive slope.
*/
bool _has_positive_slope () const
{
if (is_vert)
return (true);
if (is_horiz)
return (false);
// Construct a horizontal line and compare its slope the that of l.
Kernel kernel;
Line_2 l_horiz = kernel.construct_line_2_object() (Point_2 (0, 0),
Point_2 (1, 0));
return (kernel.compare_slope_2_object() (l, l_horiz) == LARGER);
}
};
public:
// Traits objects
typedef typename Kernel::Point_2 Point_2;
typedef Arr_linear_object_2<Kernel> X_monotone_curve_2;
typedef Arr_linear_object_2<Kernel> Curve_2;
typedef unsigned int Multiplicity;
public:
/*!
* Default constructor.
*/
Arr_linear_traits_2 ()
{}
/// \name Basic functor definitions.
//@{
/*! A functor that compares the x-coordinates of two points */
class Compare_x_2 {
protected:
typedef Arr_linear_traits_2<Kernel> Traits;
/*! The traits (in case it has state) */
const Traits * m_traits;
/*! Constructor
* \param traits the traits (in case it has state)
* The constructor is declared private to allow only the functor
* obtaining function, which is a member of the nesting class,
* constructing it.
*/
Compare_x_2(const Traits * traits) : m_traits(traits) {}
//! Allow its functor obtaining function calling the private constructor.
friend class Arr_linear_traits_2<Kernel>;
public:
/*!
* Compare the x-coordinates of two points.
* \param p1 The first point.
* \param p2 The second point.
* \return LARGER if x(p1) > x(p2);
* SMALLER if x(p1) < x(p2);
* EQUAL if x(p1) = x(p2).
*/
Comparison_result operator() (const Point_2& p1, const Point_2& p2) const
{
const Kernel * kernel = m_traits;
return (kernel->compare_x_2_object()(p1, p2));
}
};
/*! Obtain a Compare_x_2 functor. */
Compare_x_2 compare_x_2_object () const
{
return Compare_x_2(this);
}
/*! A functor that compares the he endpoints of an $x$-monotone curve. */
class Compare_endpoints_xy_2{
public:
/*! Compare the endpoints of an $x$-monotone curve lexicographically.
* (assuming the curve has a designated source and target points).
* \param cv The curve.
* \return SMALLER if the curve is directed right;
* LARGER if the curve is directed left.
*/
Comparison_result operator() (const X_monotone_curve_2& xcv) const
{ return (xcv.is_directed_right()) ? (SMALLER) : (LARGER); }
};
Compare_endpoints_xy_2 compare_endpoints_xy_2_object() const
{
return Compare_endpoints_xy_2();
}
class Trim_2{
protected:
typedef Arr_linear_traits_2<Kernel> Traits;
/*! The traits (in case it has state) */
const Traits* m_traits;
/*! Constructor
* \param traits the traits (in case it has state)
* The constructor is declared private to allow only the functor
* obtaining function, which is a member of the nesting class,
* constructing it.
*/
Trim_2(const Traits * traits) : m_traits(traits) {}
//! Allow its functor obtaining function calling the private constructor.
friend class Arr_linear_traits_2<Kernel>;
public:
X_monotone_curve_2 operator()( const X_monotone_curve_2 xcv,
const Point_2 src,
const Point_2 tgt )
{
/*
* "Line_segment, line, and ray" will become line segments
* when trimmed.
*/
Equal_2 equal = Equal_2();
Compare_y_at_x_2 compare_y_at_x = m_traits->compare_y_at_x_2_object();
//preconditions
//check if source and taget are two distinct points and they lie on the line.
CGAL_precondition(!equal(src, tgt));
CGAL_precondition(compare_y_at_x(src, xcv) == EQUAL);
CGAL_precondition(compare_y_at_x(tgt, xcv) == EQUAL);
//create trimmed line_segment
X_monotone_curve_2 trimmed_segment;
if( xcv.is_directed_right() && tgt.x() < src.x() )
trimmed_segment = Segment_2(tgt, src);
else if( !xcv.is_directed_right() && tgt.x() > src.x())
trimmed_segment = Segment_2(tgt, src);
else
trimmed_segment = Segment_2(src, tgt);
return trimmed_segment;
}
};
Trim_2 trim_2_object() const
{
return Trim_2(this);
}
class Construct_opposite_2{
protected:
typedef Arr_linear_traits_2<Kernel> Traits;
/*! The traits (in case it has state) */
const Traits* m_traits;
/*! Constructor
* \param traits the traits (in case it has state)
* The constructor is declared private to allow only the functor
* obtaining function, which is a member of the nesting class,
* constructing it.
*/
Construct_opposite_2(const Traits * traits) : m_traits(traits) {}
//! Allow its functor obtaining function calling the private constructor.
friend class Arr_linear_traits_2<Kernel>;
public:
X_monotone_curve_2 operator()(const X_monotone_curve_2& xcv)const
{
CGAL_precondition (! xcv.is_degenerate());
X_monotone_curve_2 opp_xcv;
if( xcv.is_segment() )
{
opp_xcv = Segment_2(xcv.target(), xcv.source());
}
if( xcv.is_line() )
{
opp_xcv = Line_2(xcv.get_pt(), xcv.get_ps());
}
if( xcv.is_ray() )
{
Point_2 opp_tgt = Point_2( -(xcv.get_pt().x()), -(xcv.get_pt().y()));
opp_xcv = Ray_2( xcv.source(), opp_tgt);
}
return opp_xcv;
}
};
/*! Get a Construct_opposite_2 functor object. */
Construct_opposite_2 construct_opposite_2_object() const
{
return Construct_opposite_2(this);
}
/*! A functor that compares the x-coordinates of two points */
class Compare_xy_2 {
public:
/*!
* Compare two points lexigoraphically: by x, then by y.
* \param p1 The first point.
* \param p2 The second point.
* \return LARGER if x(p1) > x(p2), or if x(p1) = x(p2) and y(p1) > y(p2);
* SMALLER if x(p1) < x(p2), or if x(p1) = x(p2) and y(p1) < y(p2);
* EQUAL if the two points are equal.
*/
Comparison_result operator() (const Point_2& p1, const Point_2& p2) const
{
Kernel kernel;
return (kernel.compare_xy_2_object()(p1, p2));
}
};
/*! Obtain a Compare_xy_2 functor object. */
Compare_xy_2 compare_xy_2_object () const
{
return Compare_xy_2();
}
/*! A functor that obtains the left endpoint of a segment or a ray. */
class Construct_min_vertex_2
{
public:
/*!
* Get the left endpoint of the x-monotone curve (segment).
* \param cv The curve.
* \pre The left end of cv is a valid (bounded) point.
* \return The left endpoint.
*/
const Point_2& operator() (const X_monotone_curve_2& cv) const
{
CGAL_precondition (! cv.is_degenerate());
CGAL_precondition (cv.has_left());
return (cv.left());
}
};
/*! Obtain a Construct_min_vertex_2 functor object. */
Construct_min_vertex_2 construct_min_vertex_2_object () const
{
return Construct_min_vertex_2();
}
/*! A functor that obtains the right endpoint of a segment or a ray. */
class Construct_max_vertex_2
{
public:
/*!
* Get the right endpoint of the x-monotone curve (segment).
* \param cv The curve.
* \pre The right end of cv is a valid (bounded) point.
* \return The right endpoint.
*/
const Point_2& operator() (const X_monotone_curve_2& cv) const
{
CGAL_precondition (! cv.is_degenerate());
CGAL_precondition (cv.has_right());
return (cv.right());
}
};
/*! Obtain a Construct_max_vertex_2 functor object. */
Construct_max_vertex_2 construct_max_vertex_2_object () const
{
return Construct_max_vertex_2();
}
/*! A functor that checks whether a given linear curve is vertical. */
class Is_vertical_2
{
public:
/*!
* Check whether the given x-monotone curve is a vertical segment.
* \param cv The curve.
* \return (true) if the curve is a vertical segment; (false) otherwise.
*/
bool operator() (const X_monotone_curve_2& cv) const
{
CGAL_precondition (! cv.is_degenerate());
return (cv.is_vertical());
}
};
/*! Obtain an Is_vertical_2 functor object. */
Is_vertical_2 is_vertical_2_object () const
{
return Is_vertical_2();
}
/*! A functor that compares the y-coordinates of a point and a line at
* the point x-coordinate
*/
class Compare_y_at_x_2 {
protected:
typedef Arr_linear_traits_2<Kernel> Traits;
/*! The traits (in case it has state) */
const Traits* m_traits;
/*! Constructor
* \param traits the traits (in case it has state)
* The constructor is declared private to allow only the functor
* obtaining function, which is a member of the nesting class,
* constructing it.
*/
Compare_y_at_x_2(const Traits * traits) : m_traits(traits) {}
//! Allow its functor obtaining function calling the private constructor.
friend class Arr_linear_traits_2<Kernel>;
public:
/*!
* Return the location of the given point with respect to the input curve.
* \param cv The curve.
* \param p The point.
* \pre p is in the x-range of cv.
* \return SMALLER if y(p) < cv(x(p)), i.e. the point is below the curve;
* LARGER if y(p) > cv(x(p)), i.e. the point is above the curve;
* EQUAL if p lies on the curve.
*/
Comparison_result operator() (const Point_2& p,
const X_monotone_curve_2& cv) const
{
CGAL_precondition (! cv.is_degenerate());
CGAL_precondition (cv.is_in_x_range (p));
const Kernel * kernel = m_traits;
if (! cv.is_vertical())
// Compare p with the segment's supporting line.
return (kernel->compare_y_at_x_2_object()(p, cv.supp_line()));
// Compare with the vertical segment's end-points.
typename Kernel::Compare_y_2 compare_y = kernel->compare_y_2_object();
const Comparison_result res1 =
cv.has_left() ? compare_y (p, cv.left()) : LARGER;
const Comparison_result res2 =
cv.has_right() ? compare_y (p, cv.right()) : SMALLER;
return (res1 == res2) ? res1 : EQUAL;
}
};
/*! Obtain a Compare_y_at_x_2 functor object. */
Compare_y_at_x_2 compare_y_at_x_2_object () const
{
return Compare_y_at_x_2(this);
}
/*! A functor that compares compares the y-coordinates of two linear
* curves immediately to the left of their intersection point.
*/
class Compare_y_at_x_left_2
{
public:
/*!
* Compare the y value of two x-monotone curves immediately to the left
* of their intersection point.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param p The intersection point.
* \pre The point p lies on both curves, and both of them must be also be
* defined (lexicographically) to its left.
* \return The relative position of cv1 with respect to cv2 immdiately to
* the left of p: SMALLER, LARGER or EQUAL.
*/
Comparison_result operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
const Point_2& CGAL_precondition_code(p)) const
{
CGAL_precondition (! cv1.is_degenerate());
CGAL_precondition (! cv2.is_degenerate());
Kernel kernel;
// Make sure that p lies on both curves, and that both are defined to its
// left (so their left endpoint is lexicographically smaller than p).
CGAL_precondition_code (
typename Kernel::Compare_xy_2 compare_xy = kernel.compare_xy_2_object();
);
CGAL_precondition
(Segment_assertions::_assert_is_point_on (p, cv1,
Has_exact_division()) &&
Segment_assertions::_assert_is_point_on (p, cv2,
Has_exact_division()));
CGAL_precondition ((! cv1.has_left() ||
compare_xy(cv1.left(), p) == SMALLER) &&
(! cv2.has_left() ||
compare_xy(cv2.left(), p) == SMALLER));
// Compare the slopes of the two segments to determine thir relative
// position immediately to the left of q.
// Notice we use the supporting lines in order to compare the slopes,
// and that we swap the order of the curves in order to obtain the
// correct result to the left of p.
return (kernel.compare_slope_2_object()(cv2.supp_line(), cv1.supp_line()));
}
};
/*! Obtain a Compare_y_at_x_left_2 functor object. */
Compare_y_at_x_left_2 compare_y_at_x_left_2_object () const
{
return Compare_y_at_x_left_2();
}
/*! A functor that compares compares the y-coordinates of two linear
* curves immediately to the right of their intersection point.
*/
class Compare_y_at_x_right_2
{
public:
/*!
* Compare the y value of two x-monotone curves immediately to the right
* of their intersection point.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param p The intersection point.
* \pre The point p lies on both curves, and both of them must be also be
* defined (lexicographically) to its right.
* \return The relative position of cv1 with respect to cv2 immdiately to
* the right of p: SMALLER, LARGER or EQUAL.
*/
Comparison_result operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
const Point_2& CGAL_precondition_code(p)) const
{
CGAL_precondition (! cv1.is_degenerate());
CGAL_precondition (! cv2.is_degenerate());
Kernel kernel;
// Make sure that p lies on both curves, and that both are defined to its
// right (so their right endpoint is lexicographically larger than p).
CGAL_precondition_code (
typename Kernel::Compare_xy_2 compare_xy = kernel.compare_xy_2_object();
);
CGAL_precondition
(Segment_assertions::_assert_is_point_on (p, cv1,
Has_exact_division()) &&
Segment_assertions::_assert_is_point_on (p, cv2,
Has_exact_division()));
CGAL_precondition ((! cv1.has_right() ||
compare_xy(cv1.right(), p) == LARGER) &&
(! cv2.has_right() ||
compare_xy(cv2.right(), p) == LARGER));
// Compare the slopes of the two segments to determine thir relative
// position immediately to the left of q.
// Notice we use the supporting lines in order to compare the slopes.
return (kernel.compare_slope_2_object()(cv1.supp_line(),
cv2.supp_line()));
}
};
/*! Obtain a Compare_y_at_x_right_2 functor object. */
Compare_y_at_x_right_2 compare_y_at_x_right_2_object () const
{
return Compare_y_at_x_right_2();
}
/*! A functor that checks whether two points and two linear curves are
* identical.
*/
class Equal_2
{
public:
/*!
* Check whether the two x-monotone curves are the same (have the same
* graph).
* \param cv1 The first curve.
* \param cv2 The second curve.
* \return (true) if the two curves are the same; (false) otherwise.
*/
bool operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2) const
{
CGAL_precondition (! cv1.is_degenerate());
CGAL_precondition (! cv2.is_degenerate());
Kernel kernel;
typename Kernel::Equal_2 equal = kernel.equal_2_object();
// Check that the two supporting lines are the same.
if (! equal (cv1.supp_line(), cv2.supp_line()) &&
! equal (cv1.supp_line(),
kernel.construct_opposite_line_2_object()(cv2.supp_line())))
{
return (false);
}
// Check that either the two left endpoints are at infinity, or they
// are bounded and equal.
if ((cv1.has_left() != cv2.has_left()) ||
(cv1.has_left() && ! equal (cv1.left(), cv2.left())))
{
return (false);
}
// Check that either the two right endpoints are at infinity, or they
// are bounded and equal.
return ((cv1.has_right() == cv2.has_right()) &&
(! cv1.has_right() || equal (cv1.right(), cv2.right())));
}
/*!
* Check whether the two points are the same.
* \param p1 The first point.
* \param p2 The second point.
* \return (true) if the two point are the same; (false) otherwise.
*/
bool operator() (const Point_2& p1, const Point_2& p2) const
{
Kernel kernel;
return (kernel.equal_2_object()(p1, p2));
}
};
/*! Obtain an Equal_2 functor object. */
Equal_2 equal_2_object () const
{
return Equal_2();
}
//@}
/// \name Functor definitions to handle boundaries
//@{
/*! A function object that obtains the parameter space of a geometric
* entity along the x-axis
*/
class Parameter_space_in_x_2 {
public:
/*! Obtains the parameter space at the end of a line along the x-axis.
* \param xcv the line
* \param ce the line end indicator:
* ARR_MIN_END - the minimal end of xc or
* ARR_MAX_END - the maximal end of xc
* \return the parameter space at the ce end of the line xcv.
* ARR_LEFT_BOUNDARY - the line approaches the identification arc from
* the right at the line left end.
* ARR_INTERIOR - the line does not approache the identification arc.
* ARR_RIGHT_BOUNDARY - the line approaches the identification arc from
* the left at the line right end.
*/
Arr_parameter_space operator()(const X_monotone_curve_2 & xcv,
Arr_curve_end ce) const
{
CGAL_precondition (! xcv.is_degenerate());
return (ce == ARR_MIN_END) ?
xcv.left_infinite_in_x() : xcv.right_infinite_in_x();
}
/*! Obtains the parameter space at a point along the x-axis.
* \param p the point.
* \return the parameter space at p.
*/
Arr_parameter_space operator()(const Point_2 ) const
{
return ARR_INTERIOR;
}
};
/*! Obtain a Parameter_space_in_x_2 function object */
Parameter_space_in_x_2 parameter_space_in_x_2_object() const
{ return Parameter_space_in_x_2(); }
/*! A function object that obtains the parameter space of a geometric
* entity along the y-axis
*/
class Parameter_space_in_y_2 {
public:
/*! Obtains the parameter space at the end of a line along the y-axis .
* Note that if the line end coincides with a pole, then unless the line
* coincides with the identification arc, the line end is considered to
* be approaching the boundary, but not on the boundary.
* If the line coincides with the identification arc, it is assumed to
* be smaller than any other object.
* \param xcv the line
* \param ce the line end indicator:
* ARR_MIN_END - the minimal end of xc or
* ARR_MAX_END - the maximal end of xc
* \return the parameter space at the ce end of the line xcv.
* ARR_BOTTOM_BOUNDARY - the line approaches the south pole at the line
* left end.
* ARR_INTERIOR - the line does not approache a contraction point.
* ARR_TOP_BOUNDARY - the line approaches the north pole at the line
* right end.
*/
Arr_parameter_space operator()(const X_monotone_curve_2 & xcv,
Arr_curve_end ce) const
{
CGAL_precondition (! xcv.is_degenerate());
return (ce == ARR_MIN_END) ?
xcv.left_infinite_in_y() : xcv.right_infinite_in_y();
}
/*! Obtains the parameter space at a point along the y-axis.
* \param p the point.
* \return the parameter space at p.
*/
Arr_parameter_space operator()(const Point_2 ) const
{
return ARR_INTERIOR;
}
};
/*! Obtain a Parameter_space_in_y_2 function object */
Parameter_space_in_y_2 parameter_space_in_y_2_object() const
{ return Parameter_space_in_y_2(); }
/*! A function object that compares the x-limits of arc ends on the
* boundary of the parameter space
*/
class Compare_x_at_limit_2 {
protected:
typedef Arr_linear_traits_2<Kernel> Traits;
/*! The traits (in case it has state) */
const Traits* m_traits;
/*! Constructor
* \param traits the traits (in case it has state)
* The constructor is declared private to allow only the functor
* obtaining function, which is a member of the nesting class,
* constructing it.
*/
Compare_x_at_limit_2(const Traits* traits) : m_traits(traits) {}
//! Allow its functor obtaining function calling the private constructor.
friend class Arr_linear_traits_2<Kernel>;
public:
/*! Compare the x-limit of a vertical line at a point with the x-limit of
* a line end on the boundary at y = +/- oo.
* \param p the point direction.
* \param xcv the line, the endpoint of which is compared.
* \param ce the line-end indicator -
* ARR_MIN_END - the minimal end of xc or
* ARR_MAX_END - the maximal end of xc.
* \return the comparison result:
* SMALLER - x(p) < x(xc, ce);
* EQUAL - x(p) = x(xc, ce);
* LARGER - x(p) > x(xc, ce).
* \pre p lies in the interior of the parameter space.
* \pre the ce end of the line xcv lies on a boundary, implying
* that xcv1 is vertical.
*/
Comparison_result operator()(const Point_2 & p,
const X_monotone_curve_2 & xcv,
Arr_curve_end ) const
{
CGAL_precondition(! xcv.is_degenerate());
CGAL_precondition(xcv.is_vertical());
const Kernel* kernel = m_traits;
return (kernel->compare_x_at_y_2_object()(p, xcv.supp_line()));
}
/*! Compare the x-limits of 2 arcs ends on the boundary of the
* parameter space at y = +/- oo.
* \param xcv1 the first arc.
* \param ce1 the first arc end indicator -
* ARR_MIN_END - the minimal end of xcv1 or
* ARR_MAX_END - the maximal end of xcv1.
* \param xcv2 the second arc.
* \param ce2 the second arc end indicator -
* ARR_MIN_END - the minimal end of xcv2 or
* ARR_MAX_END - the maximal end of xcv2.
* \return the second comparison result:
* SMALLER - x(xcv1, ce1) < x(xcv2, ce2);
* EQUAL - x(xcv1, ce1) = x(xcv2, ce2);
* LARGER - x(xcv1, ce1) > x(xcv2, ce2).
* \pre the ce1 end of the line xcv1 lies on a boundary, implying
* that xcv1 is vertical.
* \pre the ce2 end of the line xcv2 lies on a boundary, implying
* that xcv2 is vertical.
*/
Comparison_result operator()(const X_monotone_curve_2 & xcv1,
Arr_curve_end /* ce1 */,
const X_monotone_curve_2 & xcv2,
Arr_curve_end /*! ce2 */) const
{
CGAL_precondition(! xcv1.is_degenerate());
CGAL_precondition(! xcv2.is_degenerate());
CGAL_precondition(xcv1.is_vertical());
CGAL_precondition(xcv2.is_vertical());
const Kernel* kernel = m_traits;
const Point_2 p = kernel->construct_point_2_object()(ORIGIN);
return (kernel->compare_x_at_y_2_object()(p, xcv1.supp_line(),
xcv2.supp_line()));
}
};
/*! Obtain a Compare_x_at_limit_2 function object */
Compare_x_at_limit_2 compare_x_at_limit_2_object() const
{ return Compare_x_at_limit_2(this); }
/*! A function object that compares the x-coordinates of arc ends near the
* boundary of the parameter space
*/
class Compare_x_near_limit_2 {
public:
/*! Compare the x-coordinates of 2 arcs ends near the boundary of the
* parameter space at y = +/- oo.
* \param xcv1 the first arc.
* \param ce1 the first arc end indicator -
* ARR_MIN_END - the minimal end of xcv1 or
* ARR_MAX_END - the maximal end of xcv1.
* \param xcv2 the second arc.
* \param ce2 the second arc end indicator -
* ARR_MIN_END - the minimal end of xcv2 or
* ARR_MAX_END - the maximal end of xcv2.
* \return the second comparison result:
* SMALLER - x(xcv1, ce1) < x(xcv2, ce2);
* EQUAL - x(xcv1, ce1) = x(xcv2, ce2);
* LARGER - x(xcv1, ce1) > x(xcv2, ce2).
* \pre the ce end of the line xcv1 lies on a boundary, implying
* that xcv1 is vertical.
* \pre the ce end of the line xcv2 lies on a boundary, implying
* that xcv2 is vertical.
* \pre the the $x$-coordinates of xcv1 and xcv2 at their ce ends are
* equal, implying that the curves overlap!
*/
Comparison_result
operator()(const X_monotone_curve_2& CGAL_precondition_code(xcv1),
const X_monotone_curve_2& CGAL_precondition_code(xcv2),
Arr_curve_end /*! ce2 */) const
{
CGAL_precondition(! xcv1.is_degenerate());
CGAL_precondition(! xcv2.is_degenerate());
CGAL_precondition(xcv1.is_vertical());
CGAL_precondition(xcv2.is_vertical());
return EQUAL;
}
};
/*! Obtain a Compare_x_near_limit_2 function object */
Compare_x_near_limit_2 compare_x_near_limit_2_object() const
{ return Compare_x_near_limit_2(); }
/*! A function object that compares the y-limits of arc ends on the
* boundary of the parameter space.
*/
class Compare_y_near_boundary_2 {
protected:
typedef Arr_linear_traits_2<Kernel> Traits;
/*! The traits (in case it has state) */
const Traits* m_traits;
/*! Constructor
* \param traits the traits (in case it has state)
* The constructor is declared private to allow only the functor
* obtaining function, which is a member of the nesting class,
* constructing it.
*/
Compare_y_near_boundary_2(const Traits* traits) : m_traits(traits) {}
//! Allow its functor obtaining function calling the private constructor.
friend class Arr_linear_traits_2<Kernel>;
public:
/*! Compare the y-limits of 2 lines at their ends on the boundary
* of the parameter space at x = +/- oo.
* \param xcv1 the first arc.
* \param xcv2 the second arc.
* \param ce the line end indicator.
* \return the second comparison result.
* \pre the ce ends of the lines xcv1 and xcv2 lie either on the left
* boundary or on the right boundary of the parameter space.
*/
Comparison_result operator()(const X_monotone_curve_2 & xcv1,
const X_monotone_curve_2 & xcv2,
Arr_curve_end ce) const
{
// Make sure both curves are defined at x = -oo (or at x = +oo).
CGAL_precondition(! xcv1.is_degenerate());
CGAL_precondition(! xcv2.is_degenerate());
CGAL_precondition((ce == ARR_MIN_END &&
xcv1.left_infinite_in_x() == ARR_LEFT_BOUNDARY &&
xcv2.left_infinite_in_x() == ARR_LEFT_BOUNDARY) ||
(ce == ARR_MAX_END &&
xcv1.right_infinite_in_x() == ARR_RIGHT_BOUNDARY &&
xcv2.right_infinite_in_x() == ARR_RIGHT_BOUNDARY));
// Compare the slopes of the two supporting lines.
const Kernel* kernel = m_traits;
const Comparison_result res_slopes =
kernel->compare_slope_2_object()(xcv1.supp_line(), xcv2.supp_line());
if (res_slopes == EQUAL) {
// In case the two supporting line are parallel, compare their
// relative position at x = 0, which is the same as their position
// at infinity.
const Point_2 p = kernel->construct_point_2_object()(ORIGIN);
return (kernel->compare_y_at_x_2_object()(p, xcv1.supp_line(),
xcv2.supp_line()));
}
// Flip the slope result if we compare at x = -oo:
return (ce == ARR_MIN_END) ? CGAL::opposite(res_slopes) : res_slopes;
}
};
/*! Obtain a Compare_y_limit_on_boundary_2 function object */
Compare_y_near_boundary_2 compare_y_near_boundary_2_object() const
{ return Compare_y_near_boundary_2(this); }
//@}
/// \name Functor definitions for supporting intersections.
//@{
class Make_x_monotone_2
{
public:
/*!
* Cut the given curve into x-monotone subcurves and insert them into the
* given output iterator. As segments are always x_monotone, only one
* object will be contained in the iterator.
* \param cv The curve.
* \param oi The output iterator, whose value-type is Object. The output
* object is a wrapper of an X_monotone_curve_2 which is
* essentially the same as the input curve.
* \return The past-the-end iterator.
*/
template<class OutputIterator>
OutputIterator operator() (const Curve_2& cv, OutputIterator oi) const
{
// Wrap the curve with an object.
*oi = make_object (cv);
++oi;
return (oi);
}
};
/*! Obtain a Make_x_monotone_2 functor object. */
Make_x_monotone_2 make_x_monotone_2_object () const
{
return Make_x_monotone_2();
}
class Split_2
{
public:
/*!
* Split a given x-monotone curve at a given point into two sub-curves.
* \param cv The curve to split
* \param p The split point.
* \param c1 Output: The left resulting subcurve (p is its right endpoint).
* \param c2 Output: The right resulting subcurve (p is its left endpoint).
* \pre p lies on cv but is not one of its end-points.
*/
void operator() (const X_monotone_curve_2& cv, const Point_2& p,
X_monotone_curve_2& c1, X_monotone_curve_2& c2) const
{
CGAL_precondition (! cv.is_degenerate());
// Make sure that p lies on the interior of the curve.
CGAL_precondition_code (
Kernel kernel;
typename Kernel::Compare_xy_2 compare_xy = kernel.compare_xy_2_object();
);
CGAL_precondition
(Segment_assertions::_assert_is_point_on (p, cv,
Has_exact_division()) &&
(! cv.has_left() || compare_xy(cv.left(), p) == SMALLER) &&
(! cv.has_right() || compare_xy(cv.right(), p) == LARGER));
// Perform the split.
c1 = cv;
c1.set_right (p);
c2 = cv;
c2.set_left (p);
return;
}
};
/*! Obtain a Split_2 functor object. */
Split_2 split_2_object () const
{
return Split_2();
}
class Intersect_2
{
public:
/*!
* Find the intersections of the two given curves and insert them into the
* given output iterator. As two segments may itersect only once, only a
* single intersection will be contained in the iterator.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param oi The output iterator.
* \return The past-the-end iterator.
*/
template<class OutputIterator>
OutputIterator operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
OutputIterator oi) const
{
CGAL_precondition (! cv1.is_degenerate());
CGAL_precondition (! cv2.is_degenerate());
// Intersect the two supporting lines.
Kernel kernel;
CGAL::Object obj = kernel.intersect_2_object()(cv1.supp_line(),
cv2.supp_line());
if (obj.is_empty())
{
// The supporting line are parallel lines and do not intersect:
return (oi);
}
// Check whether we have a single intersection point.
const Point_2 *ip = object_cast<Point_2> (&obj);
if (ip != NULL)
{
// Check whether the intersection point ip lies on both segments.
const bool ip_on_cv1 = cv1.is_vertical() ? cv1.is_in_y_range(*ip) :
cv1.is_in_x_range(*ip);
if (ip_on_cv1)
{
const bool ip_on_cv2 = cv2.is_vertical() ? cv2.is_in_y_range(*ip) :
cv2.is_in_x_range(*ip);
if (ip_on_cv2)
{
// Create a pair representing the point with its multiplicity,
// which is always 1 for line segments.
std::pair<Point_2,Multiplicity> ip_mult (*ip, 1);
*oi = make_object (ip_mult);
oi++;
}
}
return (oi);
}
// In this case, the two supporting lines overlap.
// We start with the entire cv1 curve as the overlapping subcurve,
// then clip it to form the true overlapping curve.
typename Kernel::Compare_xy_2 compare_xy = kernel.compare_xy_2_object();
X_monotone_curve_2 ovlp = cv1;
if (cv2.has_left())
{
// If the left endpoint of cv2 is to the right of cv1's left endpoint,
// clip the overlapping subcurve.
if (! cv1.has_left())
{
ovlp.set_left (cv2.left(), false);
}
else
{
if (compare_xy (cv1.left(), cv2.left()) == SMALLER)
ovlp.set_left (cv2.left(), false);
}
}
if (cv2.has_right())
{
// If the right endpoint of cv2 is to the left of cv1's right endpoint,
// clip the overlapping subcurve.
if (! cv1.has_right())
{
ovlp.set_right (cv2.right(), false);
}
else
{
if (compare_xy (cv1.right(), cv2.right()) == LARGER)
ovlp.set_right (cv2.right(), false);
}
}
// Examine the resulting subcurve.
Comparison_result res = SMALLER;
if (ovlp.has_left() && ovlp.has_right())
res = compare_xy (ovlp.left(), ovlp.right());
if (res == SMALLER)
{
// We have discovered a true overlapping subcurve:
*oi = make_object (ovlp);
oi++;
}
else if (res == EQUAL)
{
// The two objects have the same supporting line, but they just share
// a common endpoint. Thus we have an intersection point, but we leave
// the multiplicity of this point undefined.
std::pair<Point_2,Multiplicity> ip_mult (ovlp.left(), 0);
*oi = make_object (ip_mult);
oi++;
}
return (oi);
}
};
/*! Obtain an Intersect_2 functor object. */
Intersect_2 intersect_2_object () const
{
return Intersect_2();
}
class Are_mergeable_2
{
public:
/*!
* Check whether it is possible to merge two given x-monotone curves.
* \param cv1 The first curve.
* \param cv2 The second curve.
* \return (true) if the two curves are mergeable - if they are supported
* by the same line and share a common endpoint; (false) otherwise.
*/
bool operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2) const
{
CGAL_precondition (! cv1.is_degenerate());
CGAL_precondition (! cv2.is_degenerate());
Kernel kernel;
typename Kernel::Equal_2 equal = kernel.equal_2_object();
// Check whether the two curves have the same supporting line.
if (! equal (cv1.supp_line(), cv2.supp_line()) &&
! equal (cv1.supp_line(),
kernel.construct_opposite_line_2_object()(cv2.supp_line())))
return (false);
// Check whether the left endpoint of one curve is the right endpoint of the
// other.
return ((cv1.has_right() && cv2.has_left() &&
equal (cv1.right(), cv2.left())) ||
(cv2.has_right() && cv1.has_left() &&
equal (cv2.right(), cv1.left())));
}
};
/*! Obtain an Are_mergeable_2 functor object. */
Are_mergeable_2 are_mergeable_2_object () const
{
return Are_mergeable_2();
}
/*! \class Merge_2
* A functor that merges two x-monotone arcs into one.
*/
class Merge_2
{
protected:
typedef Arr_linear_traits_2<Kernel> Traits;
/*! The traits (in case it has state) */
const Traits* m_traits;
/*! Constructor
* \param traits the traits (in case it has state)
*/
Merge_2(const Traits* traits) : m_traits(traits) {}
friend class Arr_linear_traits_2<Kernel>;
public:
/*!
* Merge two given x-monotone curves into a single curve (segment).
* \param cv1 The first curve.
* \param cv2 The second curve.
* \param c Output: The merged curve.
* \pre The two curves are mergeable.
*/
void operator() (const X_monotone_curve_2& cv1,
const X_monotone_curve_2& cv2,
X_monotone_curve_2& c) const
{
CGAL_precondition(m_traits->are_mergeable_2_object()(cv2, cv1));
CGAL_precondition(!cv1.is_degenerate());
CGAL_precondition(!cv2.is_degenerate());
Equal_2 equal = m_traits->equal_2_object();
// Check which curve extends to the right of the other.
if (cv1.has_right() && cv2.has_left() &&
equal(cv1.right(), cv2.left()))
{
// cv2 extends cv1 to the right.
c = cv1;
if (cv2.has_right())
c.set_right(cv2.right());
else
c.set_right(); // Unbounded endpoint.
}
else {
CGAL_precondition(cv2.has_right() && cv1.has_left() &&
equal(cv2.right(), cv1.left()));
// cv1 extends cv2 to the right.
c = cv2;
if (cv1.has_right())
c.set_right(cv1.right());
else
c.set_right(); // Unbounded endpoint.
}
}
};
/*! Obtain a Merge_2 functor object. */
Merge_2 merge_2_object () const { return Merge_2(this); }
//@}
/// \name Functor definitions for the landmarks point-location strategy.
//@{
typedef double Approximate_number_type;
class Approximate_2
{
public:
/*!
* Return an approximation of a point coordinate.
* \param p The exact point.
* \param i The coordinate index (either 0 or 1).
* \pre i is either 0 or 1.
* \return An approximation of p's x-coordinate (if i == 0), or an
* approximation of p's y-coordinate (if i == 1).
*/
Approximate_number_type operator() (const Point_2& p,
int i) const
{
CGAL_precondition (i == 0 || i == 1);
if (i == 0)
return (CGAL::to_double(p.x()));
else
return (CGAL::to_double(p.y()));
}
};
/*! Obtain an Approximate_2 functor object. */
Approximate_2 approximate_2_object () const
{
return Approximate_2();
}
class Construct_x_monotone_curve_2
{
public:
/*!
* Return an x-monotone curve connecting the two given endpoints.
* \param p The first point.
* \param q The second point.
* \pre p and q must not be the same.
* \return A segment connecting p and q.
*/
X_monotone_curve_2 operator() (const Point_2& p,
const Point_2& q) const
{
Kernel kernel;
Segment_2 seg = kernel.construct_segment_2_object() (p, q);
return (X_monotone_curve_2 (seg));
}
};
/*! Obtain a Construct_x_monotone_curve_2 functor object. */
Construct_x_monotone_curve_2 construct_x_monotone_curve_2_object () const
{
return Construct_x_monotone_curve_2();
}
//@}
};
/*!
* \class A representation of a segment, as used by the Arr_segment_traits_2
* traits-class.
*/
template <class Kernel_>
class Arr_linear_object_2 :
public Arr_linear_traits_2<Kernel_>::_Linear_object_cached_2
{
typedef typename Arr_linear_traits_2<Kernel_>::_Linear_object_cached_2
Base;
public:
typedef Kernel_ Kernel;
typedef typename Kernel::Point_2 Point_2;
typedef typename Kernel::Segment_2 Segment_2;
typedef typename Kernel::Ray_2 Ray_2;
typedef typename Kernel::Line_2 Line_2;
public:
/*!
* Default constructor.
*/
Arr_linear_object_2 () :
Base()
{}
/*!
* Constructor from two points.
* \param s The source point.
* \param t The target point.
* \pre The two points must not be the same.
*/
Arr_linear_object_2(const Point_2& s, const Point_2& t):
Base(s, t)
{}
/*!
* Constructor from a segment.
* \param seg The segment.
* \pre The segment is not degenerate.
*/
Arr_linear_object_2 (const Segment_2& seg) :
Base (seg)
{}
/*!
* Constructor from a ray.
* \param ray The segment.
* \pre The ray is not degenerate.
*/
Arr_linear_object_2 (const Ray_2& ray) :
Base (ray)
{}
/*!
* Constructor from a line.
* \param line The line.
* \pre The line is not degenerate.
*/
Arr_linear_object_2 (const Line_2& line) :
Base (line)
{}
/*!
* Check whether the object is actually a segment.
*/
bool is_segment () const
{
return (! this->is_degen && this->has_source && this->has_target);
}
/*!
* Cast to a segment.
* \pre The linear object is really a segment.
*/
Segment_2 segment () const
{
CGAL_precondition (is_segment());
Kernel kernel;
Segment_2 seg = kernel.construct_segment_2_object() (this->ps, this->pt);
return seg;
}
/*!
* Check whether the object is actually a ray.
*/
bool is_ray () const
{
return (! this->is_degen && (this->has_source != this->has_target));
}
/*!
* Cast to a ray.
* \pre The linear object is really a ray.
*/
Ray_2 ray () const
{
CGAL_precondition (is_ray());
Kernel kernel;
Ray_2 ray = (this->has_source) ?
kernel.construct_ray_2_object() (this->ps, this->l) :
kernel.construct_ray_2_object()
(this->pt, kernel.construct_opposite_line_2_object()(this->l));
return ray;
}
/*!
* Check whether the object is actually a line.
*/
bool is_line () const
{
return (! this->is_degen && ! this->has_source && ! this->has_target);
}
/*!
* Cast to a line.
* \pre The linear object is really a line.
*/
Line_2 line () const
{
CGAL_precondition (is_line());
return (this->l);
}
/*!
* Get the supporting line.
* \pre The object is not a point.
*/
const Line_2& supporting_line () const
{
CGAL_precondition (! this->is_degen);
return (this->l);
}
/*!
* Get the source point.
* \pre The object is a point, a segment or a ray.
*/
const Point_2& source() const
{
CGAL_precondition (! is_line());
if (this->is_degen)
return (this->ps); // For a point.
if (this->has_source)
return (this->ps); // For a segment or a ray.
else
return (this->pt); // For a "flipped" ray.
}
/*!
* Get the target point.
* \pre The object is a point or a segment.
*/
const Point_2& target() const
{
CGAL_precondition (! is_line() && ! is_ray());
return (this->pt);
}
/*!
* Create a bounding box for the linear object.
*/
Bbox_2 bbox() const
{
CGAL_precondition(this->is_segment());
Kernel kernel;
Segment_2 seg = kernel.construct_segment_2_object() (this->ps, this->pt);
return (kernel.construct_bbox_2_object() (seg));
}
// Introducing casting operators instead from a curve to
// Kernel::Segment_2, Kernel::Ray_2, and Kernel::Line_2 creates an
// umbiguity. The compiler will barf on the last one, because there are
// 2 constructors of Kernel::Line_2: one from Kernel::Segment_2 and one
// from Kernel::Ray_2. Together with the cast to Kernel::Line_2, the
// compiler will have 3 equivalent options to choose from.
};
/*!
* Exporter for the segment class used by the traits-class.
*/
template <class Kernel, class OutputStream>
OutputStream& operator<< (OutputStream& os,
const Arr_linear_object_2<Kernel>& lobj)
{
// Print a letter identifying the object type, then the object itself.
if (lobj.is_segment())
os << " S " << lobj.segment();
else if (lobj.is_ray())
os << " R " << lobj.ray();
else
os << " L " << lobj.line();
return (os);
}
/*!
* Importer for the segment class used by the traits-class.
*/
template <class Kernel, class InputStream>
InputStream& operator>> (InputStream& is, Arr_linear_object_2<Kernel>& lobj)
{
// Read the object type.
char c;
do
{
is >> c;
} while ((c != 'S' && c != 's') &&
(c != 'R' && c != 'r') &&
(c != 'L' && c != 'l'));
// Read the object accordingly.
if (c == 'S' || c == 's')
{
typename Kernel::Segment_2 seg;
is >> seg;
lobj = seg;
}
else if (c == 'R' || c == 'r')
{
typename Kernel::Ray_2 ray;
is >> ray;
lobj = ray;
}
else
{
typename Kernel::Line_2 line;
is >> line;
lobj = line;
}
return (is);
}
} //namespace CGAL
#include <CGAL/enable_warnings.h>
#endif