dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Classification/classify.h

552 lines
19 KiB
C
Raw Normal View History

// Copyright (c) 2012 INRIA Sophia-Antipolis (France).
// Copyright (c) 2017 GeometryFactory Sarl (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Simon Giraudot, Florent Lafarge
#ifndef CGAL_CLASSIFICATION_CLASSIFY_H
#define CGAL_CLASSIFICATION_CLASSIFY_H
#include <CGAL/license/Classification.h>
#include <CGAL/internal/Surface_mesh_segmentation/Alpha_expansion_graph_cut.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/Classification/Label_set.h>
#ifdef CGAL_LINKED_WITH_TBB
#include <tbb/parallel_for.h>
#include <tbb/blocked_range.h>
#include <tbb/scalable_allocator.h>
#include <tbb/mutex.h>
#endif // CGAL_LINKED_WITH_TBB
namespace CGAL {
namespace Classification {
/// \cond SKIP_IN_MANUAL
namespace internal {
template <typename Classifier, typename LabelIndexRange>
class Classify_functor
{
const Label_set& m_labels;
const Classifier& m_classifier;
LabelIndexRange& m_out;
public:
Classify_functor (const Label_set& labels,
const Classifier& classifier,
LabelIndexRange& out)
: m_labels (labels), m_classifier (classifier), m_out (out)
{ }
#ifdef CGAL_LINKED_WITH_TBB
void operator()(const tbb::blocked_range<std::size_t>& r) const
{
for (std::size_t s = r.begin(); s != r.end(); ++ s)
apply(s);
}
#endif // CGAL_LINKED_WITH_TBB
inline void apply (std::size_t s) const
{
std::size_t nb_class_best=0;
std::vector<float> values;
m_classifier (s, values);
float val_class_best = 0.f;
for(std::size_t k = 0; k < m_labels.size(); ++ k)
{
if(val_class_best < values[k])
{
val_class_best = values[k];
nb_class_best = k;
}
}
m_out[s] = static_cast<typename LabelIndexRange::iterator::value_type>(nb_class_best);
}
};
template <typename Classifier>
class Classify_functor_local_smoothing_preprocessing
{
const Label_set& m_labels;
const Classifier& m_classifier;
std::vector<std::vector<float> >& m_values;
public:
Classify_functor_local_smoothing_preprocessing
(const Label_set& labels,
const Classifier& classifier,
std::vector<std::vector<float> >& values)
: m_labels (labels), m_classifier (classifier), m_values (values)
{ }
#ifdef CGAL_LINKED_WITH_TBB
void operator()(const tbb::blocked_range<std::size_t>& r) const
{
for (std::size_t s = r.begin(); s != r.end(); ++ s)
apply (s);
}
#endif
inline void apply (std::size_t s) const
{
std::vector<float> values;
m_classifier(s, values);
for(std::size_t k = 0; k < m_labels.size(); ++ k)
m_values[k][s] = values[k];
}
};
template <typename ItemRange, typename ItemMap, typename NeighborQuery, typename LabelIndexRange>
class Classify_functor_local_smoothing
{
const ItemRange& m_input;
const ItemMap m_item_map;
const Label_set& m_labels;
const std::vector<std::vector<float> >& m_values;
const NeighborQuery& m_neighbor_query;
LabelIndexRange& m_out;
public:
Classify_functor_local_smoothing (const ItemRange& input,
ItemMap item_map,
const Label_set& labels,
const std::vector<std::vector<float> >& values,
const NeighborQuery& neighbor_query,
LabelIndexRange& out)
: m_input (input), m_item_map (item_map), m_labels (labels),
m_values(values),
m_neighbor_query (neighbor_query),
m_out (out)
{ }
#ifdef CGAL_LINKED_WITH_TBB
void operator()(const tbb::blocked_range<std::size_t>& r) const
{
for (std::size_t s = r.begin(); s != r.end(); ++ s)
apply (s);
}
#endif
inline void apply (std::size_t s) const
{
std::vector<std::size_t> neighbors;
m_neighbor_query (get (m_item_map, *(m_input.begin()+s)), std::back_inserter (neighbors));
std::vector<float> mean (m_values.size(), 0.);
for (std::size_t n = 0; n < neighbors.size(); ++ n)
for (std::size_t j = 0; j < m_values.size(); ++ j)
mean[j] += m_values[j][neighbors[n]];
std::size_t nb_class_best=0;
float val_class_best = 0.f;
for(std::size_t k = 0; k < mean.size(); ++ k)
{
mean[k] /= neighbors.size();
if(val_class_best < mean[k])
{
val_class_best = mean[k];
nb_class_best = k;
}
}
m_out[s] = static_cast<typename LabelIndexRange::iterator::value_type>(nb_class_best);
}
};
template <typename ItemRange, typename ItemMap,
typename Classifier, typename NeighborQuery,
typename LabelIndexRange>
class Classify_functor_graphcut
{
const ItemRange& m_input;
ItemMap m_item_map;
const Label_set& m_labels;
const Classifier& m_classifier;
const NeighborQuery& m_neighbor_query;
float m_strength;
const std::vector<std::vector<std::size_t> >& m_indices;
const std::vector<std::pair<std::size_t, std::size_t> >& m_input_to_indices;
LabelIndexRange& m_out;
#ifdef CGAL_DO_NOT_USE_BOYKOV_KOLMOGOROV_MAXFLOW_SOFTWARE
typedef CGAL::internal::Alpha_expansion_graph_cut_boost Alpha_expansion;
#else
typedef CGAL::internal::Alpha_expansion_graph_cut_boykov_kolmogorov Alpha_expansion;
#endif
public:
Classify_functor_graphcut (const ItemRange& input,
ItemMap item_map,
const Label_set& labels,
const Classifier& classifier,
const NeighborQuery& neighbor_query,
float strength,
const std::vector<std::vector<std::size_t> >& indices,
const std::vector<std::pair<std::size_t, std::size_t> >& input_to_indices,
LabelIndexRange& out)
: m_input (input), m_item_map (item_map), m_labels (labels),
m_classifier (classifier), m_neighbor_query (neighbor_query),
m_strength (strength), m_indices (indices), m_input_to_indices (input_to_indices), m_out (out)
{ }
#ifdef CGAL_LINKED_WITH_TBB
void operator()(const tbb::blocked_range<std::size_t>& r) const
{
for (std::size_t s = r.begin(); s != r.end(); ++ s)
apply(s);
}
#endif // CGAL_LINKED_WITH_TBB
inline void apply (std::size_t sub) const
{
if (m_indices[sub].empty())
return;
std::vector<std::pair<std::size_t, std::size_t> > edges;
std::vector<double> edge_weights;
std::vector<std::vector<double> > probability_matrix
(m_labels.size(), std::vector<double>(m_indices[sub].size(), 0.));
std::vector<std::size_t> assigned_label (m_indices[sub].size());
for (std::size_t j = 0; j < m_indices[sub].size(); ++ j)
{
std::size_t s = m_indices[sub][j];
std::vector<std::size_t> neighbors;
m_neighbor_query (get(m_item_map, *(m_input.begin()+s)), std::back_inserter (neighbors));
for (std::size_t i = 0; i < neighbors.size(); ++ i)
if (sub == m_input_to_indices[neighbors[i]].first
&& j != m_input_to_indices[neighbors[i]].second)
{
edges.push_back (std::make_pair (j, m_input_to_indices[neighbors[i]].second));
edge_weights.push_back (m_strength);
}
std::vector<float> values;
m_classifier(s, values);
std::size_t nb_class_best = 0;
float val_class_best = 0.f;
for(std::size_t k = 0; k < m_labels.size(); ++ k)
{
float value = values[k];
probability_matrix[k][j] = -std::log(value);
if(val_class_best < value)
{
val_class_best = value;
nb_class_best = k;
}
}
assigned_label[j] = nb_class_best;
}
Alpha_expansion graphcut;
graphcut(edges, edge_weights, probability_matrix, assigned_label);
for (std::size_t i = 0; i < assigned_label.size(); ++ i)
m_out[m_indices[sub][i]] = static_cast<typename LabelIndexRange::iterator::value_type>(assigned_label[i]);
}
};
} // namespace internal
/// \endcond
/*!
\ingroup PkgClassificationMain
\brief Runs the classification algorithm without any regularization.
There is no relationship between items, the classification energy
is only minimized itemwise. This method is quick but produces
suboptimal results.
\tparam ConcurrencyTag enables sequential versus parallel
algorithm. Possible values are `Parallel_tag` or `Sequential_tag`.
\tparam ItemRange model of `ConstRange`. Its iterator type is
`RandomAccessIterator`. Its value type depends on the data that is
classified (for example, `CGAL::Point_3` or `CGAL::Triangle_3`).
\tparam Classifier model of `Classifier`.
\tparam Model of `Range` with random access iterators whose value
type is an integer type.
\param input input range.
\param labels set of input labels.
\param classifier input classifier.
\param output where to store the result. It is stored as a sequence,
ordered like the input range, containing for each point the index
(in the `Label_set`) of the assigned label.
*/
template <typename ConcurrencyTag,
typename ItemRange,
typename Classifier,
typename LabelIndexRange>
void classify (const ItemRange& input,
const Label_set& labels,
const Classifier& classifier,
LabelIndexRange& output)
{
output.resize(input.size());
internal::Classify_functor<Classifier, LabelIndexRange>
f (labels, classifier, output);
#ifndef CGAL_LINKED_WITH_TBB
CGAL_static_assertion_msg (!(boost::is_convertible<ConcurrencyTag, Parallel_tag>::value),
"Parallel_tag is enabled but TBB is unavailable.");
#else
if (boost::is_convertible<ConcurrencyTag,Parallel_tag>::value)
{
tbb::parallel_for(tbb::blocked_range<size_t>(0, input.size ()), f);
}
else
#endif
{
for (std::size_t i = 0; i < input.size(); ++ i)
f.apply(i);
}
}
/*!
\ingroup PkgClassificationMain
\brief Runs the classification algorithm with a local smoothing.
The computed classification energy is smoothed on a user defined
local neighborhood of items. This method is a compromise between
efficiency and better quality results.
\tparam ConcurrencyTag enables sequential versus parallel
algorithm. Possible values are `Parallel_tag` or `Sequential_tag`.
\tparam ItemRange model of `ConstRange`. Its iterator type is
`RandomAccessIterator`.
\tparam ItemMap model of `ReadablePropertyMap` whose key
type is the value type of the iterator of `ItemRange` and value type
is the type of item to classify (for example, `CGAL::Point_3`).
\tparam NeighborQuery model of `NeighborQuery`.
\tparam Classifier model of `Classifier`.
\tparam Model of `Range` with random access iterators whose value
type is an integer type.
\param input input range.
\param item_map property map to access the input items.
\param labels set of input labels.
\param classifier input classifier.
\param neighbor_query used to access neighborhoods of items.
\param output where to store the result. It is stored as a sequence,
ordered like the input range, containing for each point the index
(in the `Label_set`) of the assigned label.
*/
template <typename ConcurrencyTag,
typename ItemRange,
typename ItemMap,
typename NeighborQuery,
typename Classifier,
typename LabelIndexRange>
void classify_with_local_smoothing (const ItemRange& input,
const ItemMap item_map,
const Label_set& labels,
const Classifier& classifier,
const NeighborQuery& neighbor_query,
LabelIndexRange& output)
{
output.resize(input.size());
std::vector<std::vector<float> > values
(labels.size(), std::vector<float> (input.size(), -1.));
internal::Classify_functor_local_smoothing_preprocessing<Classifier>
f1 (labels, classifier, values);
internal::Classify_functor_local_smoothing<ItemRange, ItemMap, NeighborQuery, LabelIndexRange>
f2 (input, item_map, labels, values, neighbor_query, output);
#ifndef CGAL_LINKED_WITH_TBB
CGAL_static_assertion_msg (!(boost::is_convertible<ConcurrencyTag, Parallel_tag>::value),
"Parallel_tag is enabled but TBB is unavailable.");
#else
if (boost::is_convertible<ConcurrencyTag,Parallel_tag>::value)
{
tbb::parallel_for(tbb::blocked_range<size_t>(0, input.size ()), f1);
tbb::parallel_for(tbb::blocked_range<size_t>(0, input.size ()), f2);
}
else
#endif
{
for (std::size_t i = 0; i < input.size(); ++ i)
f1.apply(i);
for (std::size_t i = 0; i < input.size(); ++ i)
f2.apply(i);
}
}
/*!
\ingroup PkgClassificationMain
\brief Runs the classification algorithm with a global
regularization based on a graph cut.
The computed classification energy is globally regularized through
an alpha-expansion algorithm. This method is slow but provides
the user with good quality results.
To speed up computation, the input domain can be subdivided into
smaller subsets such that several smaller graph cuts are applied
instead of a big one. The computation of these smaller graph cuts can
be done in parallel. Increasing the number of subsets allows for
faster computation times but can also reduce the quality of the
results.
\tparam ConcurrencyTag enables sequential versus parallel
algorithm. Possible values are `Parallel_tag` or `Sequential_tag`.
\tparam ItemRange model of `ConstRange`. Its iterator type is
`RandomAccessIterator`.
\tparam ItemMap model of `ReadablePropertyMap` whose key
type is the value type of the iterator of `ItemRange` and value type
is the type of item to classify (for example, `CGAL::Point_3`).
\tparam NeighborQuery model of `NeighborQuery`.
\tparam Classifier model of `Classifier`.
\tparam Model of `Range` with random access iterators whose value
type is an integer type.
\param input input range.
\param item_map property map to access the input items.
\param labels set of input labels.
\param classifier input classifier.
\param neighbor_query used to access neighborhoods of items.
\param strength strength of the regularization with respect to the
classification energy. Higher values produce more regularized
output but may result in a loss of details.
\param min_number_of_subdivisions minimum number of subdivisions
(for parallel processing to be efficient, this should be at least
the number of cores of the processor).
\param output where to store the result. It is stored as a sequence,
ordered like the input range, containing for each point the index
(in the `Label_set`) of the assigned label.
*/
template <typename ConcurrencyTag,
typename ItemRange,
typename ItemMap,
typename NeighborQuery,
typename Classifier,
typename LabelIndexRange>
void classify_with_graphcut (const ItemRange& input,
const ItemMap item_map,
const Label_set& labels,
const Classifier& classifier,
const NeighborQuery& neighbor_query,
const float strength,
const std::size_t min_number_of_subdivisions,
LabelIndexRange& output)
{
CGAL::Bbox_3 bbox = CGAL::bbox_3
(boost::make_transform_iterator (input.begin(), CGAL::Property_map_to_unary_function<ItemMap>(item_map)),
boost::make_transform_iterator (input.end(), CGAL::Property_map_to_unary_function<ItemMap>(item_map)));
float Dx = float(bbox.xmax() - bbox.xmin());
float Dy = float(bbox.ymax() - bbox.ymin());
float A = Dx * Dy;
float a = A / min_number_of_subdivisions;
float l = std::sqrt(a);
std::size_t nb_x = std::size_t(Dx / l) + 1;
std::size_t nb_y = std::size_t((A / nb_x) / a) + 1;
std::size_t nb = nb_x * nb_y;
std::vector<CGAL::Bbox_3> bboxes;
bboxes.reserve(nb);
for (std::size_t x = 0; x < nb_x; ++ x)
for (std::size_t y = 0; y < nb_y; ++ y)
{
bboxes.push_back
(CGAL::Bbox_3 (bbox.xmin() + Dx * (x / float(nb_x)),
bbox.ymin() + Dy * (y / float(nb_y)),
bbox.zmin(),
bbox.xmin() + Dx * ((x+1) / float(nb_x)),
bbox.ymin() + Dy * ((y+1) / float(nb_y)),
bbox.zmax()));
}
#ifdef CGAL_CLASSIFICATION_VERBOSE
std::cerr << "Number of divisions = " << nb_x * nb_y << std::endl;
std::cerr << " -> Size of division: " << Dx / nb_x << " " << Dy / nb_y << std::endl;
#endif
std::vector<std::vector<std::size_t> > indices (nb);
std::vector<std::pair<std::size_t, std::size_t> > input_to_indices(input.size());
for (std::size_t s = 0; s < input.size(); ++ s)
{
CGAL::Bbox_3 b = get(item_map, *(input.begin() + s)).bbox();
for (std::size_t i = 0; i < bboxes.size(); ++ i)
if (CGAL::do_overlap (b, bboxes[i]))
{
input_to_indices[s] = std::make_pair (i, indices[i].size());
indices[i].push_back (s);
break;
}
}
internal::Classify_functor_graphcut<ItemRange, ItemMap, Classifier, NeighborQuery, LabelIndexRange>
f (input, item_map, labels, classifier, neighbor_query, strength, indices, input_to_indices, output);
#ifndef CGAL_LINKED_WITH_TBB
CGAL_static_assertion_msg (!(boost::is_convertible<ConcurrencyTag, Parallel_tag>::value),
"Parallel_tag is enabled but TBB is unavailable.");
#else
if (boost::is_convertible<ConcurrencyTag,Parallel_tag>::value)
{
tbb::parallel_for(tbb::blocked_range<size_t>(0, indices.size ()), f);
}
else
#endif
{
for (std::size_t sub = 0; sub < indices.size(); ++ sub)
f.apply (sub);
}
}
}
}
#endif // CGAL_CLASSIFICATION_CLASSIFY_H