dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Euclidean_distance_sphere_p...

173 lines
6.2 KiB
C
Raw Normal View History

// Copyright (c) 2002,2011 Utrecht University (The Netherlands).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
//
// Author(s) : Hans Tangelder (<hanst@cs.uu.nl>)
#ifndef CGAL_EUCLIDEAN_DISTANCE_SPHERE_POINT_H
#define CGAL_EUCLIDEAN_DISTANCE_SPHERE_POINT_H
#include <CGAL/license/Spatial_searching.h>
#include <CGAL/Kd_tree_rectangle.h>
#include <CGAL/number_utils.h>
#include <CGAL/internal/Get_dimension_tag.h>
#include <vector>
namespace CGAL {
template <class SearchTraits>
class Euclidean_distance_sphere_point {
SearchTraits traits;
public:
typedef typename SearchTraits::Point_d Point_d;
typedef typename SearchTraits::Sphere_d Sphere_d;
typedef typename SearchTraits::FT FT;
typedef typename SearchTraits::Construct_center_d Construct_center_d;
typedef typename SearchTraits::Compute_squared_radius_d Compute_squared_radius_d;
typedef typename SearchTraits::Construct_cartesian_const_iterator_d Construct_cartesian_const_iterator_d;
typedef typename SearchTraits::Cartesian_const_iterator_d Cartesian_const_iterator_d;
typedef Sphere_d Query_item;
typedef typename internal::Get_dimension_tag<SearchTraits>::Dimension Dimension;
public:
// default constructor
Euclidean_distance_sphere_point(const SearchTraits& traits_=SearchTraits()):traits(traits_) {}
inline FT transformed_distance(const Sphere_d& q, const Point_d& p) const {
Point_d c= Construct_center_d()(q);
FT distance = FT(0);
Construct_cartesian_const_iterator_d construct_it=traits.construct_cartesian_const_iterator_d_object();
Cartesian_const_iterator_d cit = construct_it(c),
ce = construct_it(c,1), pit = construct_it(p);
for(; cit != ce; cit++, pit++){
distance += ((*cit)-(*pit))*((*cit)-(*pit));
}
distance += - Compute_squared_radius_d()(q);
if (distance<0) distance=FT(0);
return distance;
}
inline FT min_distance_to_rectangle(const Sphere_d& q,
const Kd_tree_rectangle<FT,Dimension>& r) const {
Point_d c= Construct_center_d()(q);
FT distance = FT(0);
Construct_cartesian_const_iterator_d construct_it=traits.construct_cartesian_const_iterator_d_object();
Cartesian_const_iterator_d cit = construct_it(c),
ce = construct_it(c,1);
for (unsigned int i = 0; cit != ce; ++i, ++cit) {
if ((*cit) < r.min_coord(i))
distance +=
(r.min_coord(i)-(*cit))*(r.min_coord(i)-(*cit));
else if ((*cit) > r.max_coord(i))
distance +=
((*cit)-r.max_coord(i))*((*cit)-r.max_coord(i));
};
distance += - Compute_squared_radius_d()(q);
if (distance<0) distance=FT(0);
return distance;
}
inline FT min_distance_to_rectangle(const Sphere_d& q,
const Kd_tree_rectangle<FT,Dimension>& r,std::vector<FT>& dists) const {
Point_d c= Construct_center_d()(q);
FT distance = FT(0);
Construct_cartesian_const_iterator_d construct_it=traits.construct_cartesian_const_iterator_d_object();
Cartesian_const_iterator_d cit = construct_it(c),
ce = construct_it(c,1);
for (unsigned int i = 0; cit != ce; ++i, ++cit) {
if ((*cit) < r.min_coord(i)){
dists[i] =(r.min_coord(i)-(*cit));
distance += dists[i] * dists[i];
}
else if ((*cit) > r.max_coord(i)){
dists[i] = ((*cit)-r.max_coord(i));
distance += dists[i] * dists[i];
}
};
distance += - Compute_squared_radius_d()(q);
if (distance<0) distance=FT(0);
return distance;
}
inline FT max_distance_to_rectangle(const Sphere_d& q,
const Kd_tree_rectangle<FT,Dimension>& r) const {
Construct_center_d construct_center_d;
Point_d c = construct_center_d(q);
FT distance=FT(0);
Construct_cartesian_const_iterator_d construct_it=traits.construct_cartesian_const_iterator_d_object();
Cartesian_const_iterator_d cit = construct_it(c),
ce = construct_it(c,1);
for (unsigned int i = 0; cit != ce; ++i, ++cit) {
if ((*cit) <= (r.min_coord(i)+r.max_coord(i))/FT(2.0))
distance += (r.max_coord(i)-(*cit))*(r.max_coord(i)-(*cit));
else
distance += ((*cit)-r.min_coord(i))*((*cit)-r.min_coord(i));
};
distance += - Compute_squared_radius_d()(q);
if (distance<0) distance=FT(0);
return distance;
}
inline FT max_distance_to_rectangle(const Sphere_d& q,
const Kd_tree_rectangle<FT,Dimension>& r,std::vector<FT>& dists) const {
Construct_center_d construct_center_d;
Point_d c = construct_center_d(q);
FT distance=FT(0);
Construct_cartesian_const_iterator_d construct_it=traits.construct_cartesian_const_iterator_d_object();
Cartesian_const_iterator_d cit = construct_it(c),
ce = construct_it(c,1);
for (unsigned int i = 0; cit != ce; ++i, ++cit) {
if ((*cit) <= (r.min_coord(i)+r.max_coord(i))/FT(2.0)){
dists[i] = (r.max_coord(i)-(*cit));
distance += dists[i] * dists[i];
}
else{
dists[i] = ((*cit)-r.min_coord(i));
distance += dists[i] * dists[i];
}
};
distance += - Compute_squared_radius_d()(q);
if (distance<0) distance=FT(0);
return distance;
}
inline FT transformed_distance(FT d) const {
return d*d;
}
inline FT inverse_of_transformed_distance(FT d) const {
return CGAL::sqrt(d);
}
}; // class Euclidean_distance_sphere_point
} // namespace CGAL
#endif // EUCLIDEAN_DISTANCE_SPHERE_POINT_H