dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Nef_polynomial.h

291 lines
8.3 KiB
C
Raw Normal View History

// Copyright (c) 1997-2000 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
//
// Author(s) : Michael Seel <seel@mpi-sb.mpg.de>
#ifndef CGAL_NEF_POLYNOMIAL_H
#define CGAL_NEF_POLYNOMIAL_H
#include <CGAL/license/Nef_2.h>
#include <CGAL/Nef_2/Polynomial.h>
#include <cstddef>
#undef CGAL_NEF_DEBUG
#define CGAL_NEF_DEBUG 3
#include <CGAL/Nef_2/debug.h>
#include <vector>
#include <CGAL/Kernel/mpl.h>
#include <CGAL/tss.h>
#include <boost/operators.hpp>
namespace CGAL {
#define CGAL_int(T) typename First_if_different<int, T>::Type
#define CGAL_double(T) typename First_if_different<double, T>::Type
template <class NT>
class Nef_polynomial
: boost::ordered_field_operators1< Nef_polynomial<NT>
, boost::ordered_field_operators2< Nef_polynomial<NT>, int
> >
, public Nef::Polynomial<NT>
{
typedef typename CGAL::Nef::Polynomial<NT> Base;
typedef typename Base::size_type size_type;
protected:
Nef_polynomial(size_type s) : Base(s) {}
public:
Nef_polynomial() : Base() {}
Nef_polynomial(const NT& a0) : Base(a0) {}
Nef_polynomial(const NT& a0, const NT& a1) : Base(a0,a1) {}
Nef_polynomial(const NT& a0, const NT& a1, const NT& a2) : Base(a0,a1,a2) {}
template <class Fwd_iterator>
Nef_polynomial(std::pair<Fwd_iterator, Fwd_iterator> poly) : Base(poly) {}
Nef_polynomial(CGAL_double(NT) n) : Base(n) {}
Nef_polynomial(CGAL_double(NT) n1, CGAL_double(NT) n2) : Base(n1, n2) {}
Nef_polynomial(CGAL_int(NT) n) : Base(NT(n)) {}
Nef_polynomial(CGAL_int(NT) n1, CGAL_int(NT) n2) : Base(n1,n2) {}
Nef_polynomial(const Base& p) : Base(p) {}
Base & polynomial() { return static_cast<Base&>(*this); }
const Base & polynomial() const { return static_cast<const Base&>(*this); }
static NT& infi_maximal_value() {
CGAL_STATIC_THREAD_LOCAL_VARIABLE(NT, R_, 1);
return R_;
}
};
template <class NT>
inline
Nef_polynomial<NT> operator+(const Nef_polynomial<NT> &a)
{
return a;
}
template <class NT>
inline
Nef_polynomial<NT> operator-(const Nef_polynomial<NT> &a)
{
return - a.polynomial();
}
template <class NT>
inline
bool operator<(const Nef_polynomial<NT> &a, const Nef_polynomial<NT> &b)
{
return a.polynomial() < b.polynomial();
}
template <class NT>
inline
bool operator==(const Nef_polynomial<NT> &a, const Nef_polynomial<NT> &b)
{
return a.polynomial() == b.polynomial();
}
template <class NT>
inline
bool operator==(const Nef_polynomial<NT> &a, int b)
{
return a.polynomial() == b;
}
template <class NT>
inline
bool operator<(const Nef_polynomial<NT> &a, int b)
{
return a.polynomial() < b;
}
template <class NT>
inline
bool operator>(const Nef_polynomial<NT> &a, int b)
{
return a.polynomial() > b;
}
#undef CGAL_double
#undef CGAL_int
// TODO: integral_division to get it an UniqueFactorizationDomain
// TODO: div / mod for EuclideanRing
template <class NT> class Algebraic_structure_traits< Nef_polynomial<NT> >
: public Algebraic_structure_traits_base
< Nef_polynomial<NT>, CGAL::Integral_domain_without_division_tag>
{
typedef Algebraic_structure_traits<NT> AST_NT;
public:
typedef Nef_polynomial<NT> Type;
typedef typename AST_NT::Is_exact Is_exact;
typedef Tag_false Is_numerical_sensitive;
class Integral_division
: public CGAL::cpp98::binary_function< Type, Type,
Type > {
public:
Type operator()( const Type& x,
const Type& y ) const {
Type result = x / y;
CGAL_postcondition_msg(result * y == x, "exact_division failed\n");
return result;
}
};
class Gcd
: public CGAL::cpp98::binary_function< Type, Type, Type > {
public:
Type operator()( const Type& x, const Type& y ) const {
// By definition gcd(0,0) == 0
if( x == Type(0) && y == Type(0) )
return Type(0);
return CGAL::Nef::gcd( x, y );
}
CGAL_IMPLICIT_INTEROPERABLE_BINARY_OPERATOR( Type )
};
};
template <class NT> class Real_embeddable_traits< Nef_polynomial<NT> >
: public INTERN_RET::Real_embeddable_traits_base< Nef_polynomial<NT> , CGAL::Tag_true > {
public:
typedef Nef_polynomial<NT> Type;
class Abs
: public CGAL::cpp98::unary_function< Type, Type> {
public:
Type inline operator()( const Type& x ) const {
return (CGAL::Nef::sign( x ) == CGAL::NEGATIVE)? -x : x;
}
};
class Sgn
: public CGAL::cpp98::unary_function< Type, CGAL::Sign > {
public:
CGAL::Sign inline operator()( const Type& x ) const {
return CGAL::Nef::sign( x );
}
};
class Compare
: public CGAL::cpp98::binary_function< Type, Type,
CGAL::Comparison_result > {
public:
CGAL::Comparison_result inline operator()(
const Type& x,
const Type& y ) const {
return (CGAL::Comparison_result) CGAL::Nef::sign( x - y );
}
};
class To_double
: public CGAL::cpp98::unary_function< Type, double > {
public:
double inline operator()( const Type& p ) const {
return CGAL::to_double(
p.eval_at(Nef_polynomial<NT>::infi_maximal_value()));
}
};
class To_interval
: public CGAL::cpp98::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& p ) const {
return CGAL::to_interval(p.eval_at(Nef_polynomial<NT>::infi_maximal_value()));
}
};
};
template <typename NT>
inline Nef_polynomial<NT> min BOOST_PREVENT_MACRO_SUBSTITUTION
(const Nef_polynomial<NT>& x,const Nef_polynomial<NT>& y){
return (x<=y)?x:y;
}
template <typename NT>
inline Nef_polynomial<NT> max BOOST_PREVENT_MACRO_SUBSTITUTION
(const Nef_polynomial<NT>& x,const Nef_polynomial<NT>& y){
return (x>=y)?x:y;
}
template <typename NT>
class Fraction_traits<Nef_polynomial<NT> > {
public:
typedef Nef_polynomial<NT> Type;
typedef Fraction_traits<NT> Base_traits;
typedef typename Base_traits::Is_fraction Is_fraction;
typedef CGAL::Nef_polynomial<typename Base_traits::Numerator_type>
Numerator_type;
typedef typename Base_traits::Denominator_type Denominator_type;
//TODO: typedef Base_traits::Common_factor Common_factor;
class Decompose {
public:
typedef Type first_argument_type;
typedef Numerator_type second_argument_type;
typedef Denominator_type third_argument_type;
void operator () (const first_argument_type& rat,
second_argument_type& num,
third_argument_type& den) {
typename Base_traits::Decompose decompose;
third_argument_type num0;
third_argument_type num1;
third_argument_type den1;
third_argument_type den0;
decompose(rat[0], num0, den0);
if(rat.degree() > 0) {
decompose(rat[1], num1, den1);
// TODO den = den1/gcd(den0, den1)*den0;
den = den1*den0;
num = Numerator_type(num0*den1, num1*den0);
} else {
den = den0;
num = Numerator_type(num0);
}
}
};
class Compose {
public:
typedef Numerator_type first_argument_type;
typedef Denominator_type second_argument_type;
typedef Type result_type;
result_type operator () (const first_argument_type& num,
const second_argument_type& den) {
typename Base_traits::Compose compose;
if(num.degree() == 0)
return result_type(compose(num[0],den));
else
return result_type(compose(num[0],den),
compose(num[1],den));
}
};
};
} //namespace CGAL
#endif // CGAL_NEF_POLYNOMIAL_H