185 lines
4.6 KiB
C
185 lines
4.6 KiB
C
|
// Copyright (c) 2008 Max-Planck-Institute Saarbruecken (Germany).
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU Lesser General Public License as
|
||
|
// published by the Free Software Foundation; either version 3 of the License,
|
||
|
// or (at your option) any later version.
|
||
|
//
|
||
|
// Licensees holding a valid commercial license may use this file in
|
||
|
// accordance with the commercial license agreement provided with the software.
|
||
|
//
|
||
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
//
|
||
|
// $URL$
|
||
|
// $Id$
|
||
|
// SPDX-License-Identifier: LGPL-3.0+
|
||
|
//
|
||
|
//
|
||
|
// Author(s) : Michael Kerber <mkerber@mpi-inf.mpg.de>
|
||
|
// Dominik Huelse <dominik.huelse@gmx.de>
|
||
|
// Michael Hemmer <hemmer@informatik.uni-mainz.de>
|
||
|
// Eric Berberich <eric.berberich@cgal.org>
|
||
|
// ============================================================================
|
||
|
|
||
|
/*! \file CGAL/Polynomial/polynomial_gcd_ntl.h
|
||
|
* \brief special polynomial gcd function via NTL
|
||
|
*/
|
||
|
|
||
|
#ifndef CGAL_POLYNOMIAL_GCD_NTL_H
|
||
|
#define CGAL_POLYNOMIAL_GCD_NTL_H
|
||
|
|
||
|
#include <CGAL/config.h>
|
||
|
|
||
|
#ifndef CGAL_USE_NTL
|
||
|
#warning This header file needs NTL installed in order to work properly.
|
||
|
#endif
|
||
|
|
||
|
#ifdef CGAL_USE_LEDA
|
||
|
#include <CGAL/leda_integer.h>
|
||
|
#endif
|
||
|
|
||
|
#ifdef CGAL_USE_CORE
|
||
|
#include <CGAL/CORE_BigInt.h>
|
||
|
#endif
|
||
|
|
||
|
#include <CGAL/Polynomial.h>
|
||
|
#include <CGAL/polynomial_utils.h>
|
||
|
#include <CGAL/Polynomial_traits_d.h>
|
||
|
|
||
|
#include <sstream>
|
||
|
|
||
|
#include <NTL/ZZX.h>
|
||
|
|
||
|
namespace CGAL{
|
||
|
template <class A> class Polynomial; // fwd
|
||
|
|
||
|
template <typename Polynomial_d> class Polynomial_traits_d;
|
||
|
|
||
|
} // namespace CGAL
|
||
|
|
||
|
|
||
|
// This part forms the bridge to NTL to use the modular gcd algorithm. If
|
||
|
// NTL is not available, the usual strategy is applied.
|
||
|
|
||
|
namespace CGAL {
|
||
|
namespace internal {
|
||
|
|
||
|
// Forward
|
||
|
template <class NT>
|
||
|
Polynomial<NT> gcd_utcf(
|
||
|
const Polynomial<NT>& FF1 ,
|
||
|
const Polynomial<NT>& FF2 );
|
||
|
|
||
|
template<typename PolyInt>
|
||
|
inline
|
||
|
void polynomial_to_ntl(const PolyInt& p, NTL::ZZX& q) {
|
||
|
std::stringstream ss;
|
||
|
ss << "[ ";
|
||
|
for(int i=0;i<=p.degree();i++) {
|
||
|
ss << p[i] << " ";
|
||
|
}
|
||
|
ss << "]";
|
||
|
ss >> q;
|
||
|
}
|
||
|
|
||
|
template<typename PolyInt>
|
||
|
inline
|
||
|
void ntl_to_polynomial(const NTL::ZZX& q,PolyInt& p) {
|
||
|
int d = NTL::deg(q);
|
||
|
if(d==-1) {
|
||
|
p=PolyInt(1);
|
||
|
return;
|
||
|
}
|
||
|
std::stringstream ss;
|
||
|
ss << "P[";
|
||
|
ss << d;
|
||
|
for(int i=0;i<=d;i++) {
|
||
|
ss << "(" << i << "," << NTL::coeff(q,i) << ")";
|
||
|
}
|
||
|
ss << "]";
|
||
|
p=PolyInt::input_ascii(ss);
|
||
|
}
|
||
|
|
||
|
template<typename NT> Polynomial<NT>
|
||
|
inline
|
||
|
modular_NTL_gcd_for_univariate_integer_polynomials
|
||
|
(Polynomial<NT> p1, Polynomial<NT> p2) {
|
||
|
// std::cout<<" NTL GCD"<<std::endl;
|
||
|
|
||
|
NTL::ZZX q1,q2,h;
|
||
|
Polynomial<NT> g;
|
||
|
internal::polynomial_to_ntl(p1,q1);
|
||
|
internal::polynomial_to_ntl(p2,q2);
|
||
|
#ifdef CGAL_MODULAR_GCD_TIMER
|
||
|
timer_ntl2.start();
|
||
|
#endif
|
||
|
NTL::GCD(h,q1,q2);
|
||
|
#ifdef CGAL_MODULAR_GCD_TIMER
|
||
|
timer_ntl2.stop();
|
||
|
#endif
|
||
|
internal::ntl_to_polynomial(h,g);
|
||
|
return g;
|
||
|
}
|
||
|
|
||
|
template<typename NT> Polynomial<NT>
|
||
|
inline
|
||
|
canonical_modular_NTL_gcd_for_univariate_integer_polynomials
|
||
|
(Polynomial<NT> p1, Polynomial<NT> p2) {
|
||
|
// std::cout<<" NTL canonical GCD"<<std::endl;
|
||
|
return CGAL::canonicalize(modular_NTL_gcd_for_univariate_integer_polynomials(p1,p2));
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef CGAL_USE_LEDA
|
||
|
|
||
|
template <>
|
||
|
inline
|
||
|
CGAL::Polynomial<leda::integer>
|
||
|
gcd_utcf_(const CGAL::Polynomial<leda::integer>& p1,
|
||
|
const CGAL::Polynomial<leda::integer>& p2) {
|
||
|
CGAL::Polynomial<leda::integer> gcd =
|
||
|
internal::canonical_modular_NTL_gcd_for_univariate_integer_polynomials(p1,p2);
|
||
|
return gcd;
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline
|
||
|
CGAL::Polynomial<leda::integer>
|
||
|
gcd_(const CGAL::Polynomial<leda::integer>& p1,
|
||
|
const CGAL::Polynomial<leda::integer>& p2) {
|
||
|
return internal::modular_NTL_gcd_for_univariate_integer_polynomials(p1,p2);
|
||
|
}
|
||
|
|
||
|
#endif // CGAL_USE_LEDA
|
||
|
|
||
|
#ifdef CGAL_USE_CORE
|
||
|
|
||
|
template <>
|
||
|
inline
|
||
|
Polynomial<CORE::BigInt>
|
||
|
gcd_utcf_(const Polynomial<CORE::BigInt>& p1,
|
||
|
const Polynomial<CORE::BigInt>& p2) {
|
||
|
Polynomial<CORE::BigInt> gcd = canonical_modular_NTL_gcd_for_univariate_integer_polynomials(p1,p2);
|
||
|
return gcd;
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
inline
|
||
|
Polynomial<CORE::BigInt>
|
||
|
gcd_(const Polynomial<CORE::BigInt>& p1,
|
||
|
const Polynomial<CORE::BigInt>& p2) {
|
||
|
return modular_NTL_gcd_for_univariate_integer_polynomials(p1,p2);
|
||
|
}
|
||
|
|
||
|
#endif //CGAL_USE_CORE
|
||
|
|
||
|
} // namespace internal
|
||
|
|
||
|
} // namespace CGAL
|
||
|
|
||
|
#endif // CGAL_POLYNOMIAL_GCD_NTL_H
|
||
|
|
||
|
// EOF
|