dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/CORE_BigInt.h

233 lines
6.3 KiB
C
Raw Normal View History

// Copyright (c) 2006-2008 Max-Planck-Institute Saarbruecken (Germany).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
//
// Author(s) : Michael Hemmer <hemmer@mpi-inf.mpg.de>
#ifndef CGAL_CORE_BIGINT_H
#define CGAL_CORE_BIGINT_H
#include <CGAL/disable_warnings.h>
#include <CGAL/config.h>
#include <CGAL/number_type_basic.h>
#include <CGAL/CORE/BigInt.h>
#include <CGAL/CORE/Expr.h>
#include <CGAL/CORE_coercion_traits.h>
#include <CGAL/Residue.h>
#include <CGAL/Modular_traits.h>
namespace CGAL {
//
// Algebraic structure traits
//
template <> class Algebraic_structure_traits< CORE::BigInt >
: public Algebraic_structure_traits_base< CORE::BigInt,
Euclidean_ring_tag > {
public:
typedef Tag_true Is_exact;
typedef Tag_false Is_numerical_sensitive;
typedef INTERN_AST::Is_square_per_sqrt< Type >
Is_square;
typedef INTERN_AST::Div_per_operator< Type > Div;
typedef INTERN_AST::Mod_per_operator< Type > Mod;
class Sqrt
: public CGAL::cpp98::unary_function< Type, Type > {
public:
//! computes the largest NT not larger than the square root of \a a.
Type operator()( const Type& x) const {
Type result;
mpz_sqrt(result.get_mp(), x.get_mp());
return result;
}
};
class Gcd
: public CGAL::cpp98::binary_function< Type, Type,
Type > {
public:
Type operator()( const Type& x,
const Type& y) const {
if ( x == Type(0) && y == Type(0) )
return Type(0);
Type result;
mpz_gcd(result.get_mp(), x.get_mp(), y.get_mp());
return result;
}
};
};
//
// Real embeddable traits
//
template <> class Real_embeddable_traits< CORE::BigInt >
: public INTERN_RET::Real_embeddable_traits_base< CORE::BigInt , CGAL::Tag_true > {
public:
class Abs
: public CGAL::cpp98::unary_function< Type, Type > {
public:
Type operator()( const Type& x ) const {
return CORE::abs( x );
}
};
class Sgn
: public CGAL::cpp98::unary_function< Type, ::CGAL::Sign > {
public:
::CGAL::Sign operator()( const Type& x ) const {
return (::CGAL::Sign) CORE::sign( x );
}
};
class Compare
: public CGAL::cpp98::binary_function< Type, Type,
Comparison_result > {
public:
Comparison_result operator()( const Type& x,
const Type& y ) const {
return CGAL::sign(::CORE::cmp(x,y));
}
};
class To_double
: public CGAL::cpp98::unary_function< Type, double > {
public:
double operator()( const Type& x ) const {
// this call is required to get reasonable values for the double
// approximation
return x.doubleValue();
}
};
class To_interval
: public CGAL::cpp98::unary_function< Type, std::pair< double, double > > {
public:
std::pair<double, double> operator()( const Type& x_ ) const {
CORE::Expr x(x_);
std::pair<double,double> result;
x.doubleInterval(result.first, result.second);
CGAL_expensive_assertion(result.first <= x);
CGAL_expensive_assertion(result.second >= x);
return result;
}
};
};
/*! \ingroup NiX_Modular_traits_spec
* \brief a model of concept ModularTraits,
* specialization of NiX::Modular_traits.
*/
template<>
class Modular_traits< ::CORE::BigInt > {
typedef Residue RES;
public:
typedef ::CORE::BigInt NT;
typedef CGAL::Tag_true Is_modularizable;
typedef Residue Residue_type;
struct Modular_image{
Residue_type operator()(const NT& a){
NT tmp = a % NT(RES::get_current_prime());
// TODO: reactivate this assertion
// it fails with core_v1.6x_20040329
// NiX_assert(tmp.isInt());
int mi(tmp.longValue());
if (mi < 0) mi += RES::get_current_prime();
return Residue_type(mi);
}
};
struct Modular_image_representative{
NT operator()(const Residue_type& x){
return NT(x.get_value());
}
};
};
template<>
struct Needs_parens_as_product<CORE::BigInt>{
bool operator()(const CORE::BigInt& x){
return CGAL_NTS is_negative(x);
}
};
// Benchmark_rep specialization
template<>
class Benchmark_rep< CORE::BigInt > {
const CORE::BigInt& t;
public:
//! initialize with a const reference to \a t.
Benchmark_rep( const CORE::BigInt& tt) : t(tt) {}
//! perform the output, calls \c operator\<\< by default.
std::ostream& operator()( std::ostream& out) const {
out << t;
return out;
}
static std::string get_benchmark_name() {
return "Integer";
}
};
} //namespace CGAL
//since types are included by CORE_coercion_traits.h:
#include <CGAL/CORE_Expr.h>
#include <CGAL/CORE_BigInt.h>
#include <CGAL/CORE_BigRat.h>
#include <CGAL/CORE_BigFloat.h>
#include <CGAL/CORE_arithmetic_kernel.h>
namespace Eigen {
template<class> struct NumTraits;
template<> struct NumTraits<CORE::BigInt>
{
typedef CORE::BigInt Real;
typedef CORE::BigRat NonInteger;
typedef CORE::BigInt Nested;
typedef CORE::BigInt Literal;
static inline Real epsilon() { return 0; }
static inline Real dummy_precision() { return 0; }
enum {
IsInteger = 1,
IsSigned = 1,
IsComplex = 0,
RequireInitialization = 1,
ReadCost = 6,
AddCost = 30,
MulCost = 50
};
};
}
#include <CGAL/enable_warnings.h>
#endif // CGAL_CORE_BIGINT_H