789 lines
29 KiB
C
789 lines
29 KiB
C
|
// Copyright (c) 2007 INRIA Sophia-Antipolis (France), INRIA Lorraine LORIA.
|
||
|
// All rights reserved.
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org).
|
||
|
// You can redistribute it and/or modify it under the terms of the GNU
|
||
|
// General Public License as published by the Free Software Foundation,
|
||
|
// either version 3 of the License, or (at your option) any later version.
|
||
|
//
|
||
|
// Licensees holding a valid commercial license may use this file in
|
||
|
// accordance with the commercial license agreement provided with the software.
|
||
|
//
|
||
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
//
|
||
|
// $URL$
|
||
|
// $Id$
|
||
|
// SPDX-License-Identifier: GPL-3.0+
|
||
|
//
|
||
|
// Author(s) : Marc Pouget and Frédéric Cazals
|
||
|
#ifndef CGAL_MONGE_VIA_JET_FITTING_H_
|
||
|
#define CGAL_MONGE_VIA_JET_FITTING_H_
|
||
|
|
||
|
#include <CGAL/license/Jet_fitting_3.h>
|
||
|
|
||
|
|
||
|
#include <CGAL/Simple_cartesian.h>
|
||
|
#include <CGAL/circulator.h>
|
||
|
#include <CGAL/Linear_algebraCd.h>
|
||
|
#include <CGAL/Cartesian_converter.h>
|
||
|
#include <CGAL/Default_diagonalize_traits.h>
|
||
|
#include <math.h>
|
||
|
#include <utility>
|
||
|
#ifdef CGAL_EIGEN3_ENABLED
|
||
|
#include <CGAL/Eigen_svd.h>
|
||
|
#else
|
||
|
#ifdef CGAL_LAPACK_ENABLED
|
||
|
#include <CGAL/Lapack_svd.h>
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
namespace CGAL {
|
||
|
|
||
|
inline
|
||
|
unsigned int fact(unsigned int n){
|
||
|
unsigned int i, p=1;
|
||
|
for(i=2; i<=n; i++) p *= i;
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
////////////////////// CLASS Monge_via_jet_fitting ////////////////////////
|
||
|
#ifdef CGAL_EIGEN3_ENABLED
|
||
|
template < class DataKernel, class LocalKernel = Simple_cartesian<double>, class SvdTraits = Eigen_svd >
|
||
|
#else
|
||
|
#ifdef CGAL_LAPACK_ENABLED
|
||
|
template < class DataKernel, class LocalKernel = Simple_cartesian<double>, class SvdTraits = Lapack_svd>
|
||
|
#else
|
||
|
template < class DataKernel, class LocalKernel, class SvdTraits >
|
||
|
#endif
|
||
|
#endif
|
||
|
class Monge_via_jet_fitting {
|
||
|
public:
|
||
|
//////////////////////begin nested CLASS Monge_form ///////////////////
|
||
|
class Monge_form {
|
||
|
public:
|
||
|
typedef typename DataKernel::FT FT;
|
||
|
typedef typename DataKernel::Point_3 Point_3;
|
||
|
typedef typename DataKernel::Vector_3 Vector_3;
|
||
|
protected:
|
||
|
//point on the fitted surface where diff quantities are computed
|
||
|
Point_3 m_origin_pt;
|
||
|
//the monge trihedron (d1,d2,n) is orthonormal direct
|
||
|
Vector_3 m_d1; //maximal ppal dir
|
||
|
Vector_3 m_d2; //minimal ppal dir
|
||
|
Vector_3 m_n; //normal direction
|
||
|
//coeff = (k1, k2, //ppal curv
|
||
|
// b0, b1, b2, b3, //third order
|
||
|
// c0, c1, c2, c3, c4) //fourth order
|
||
|
// if (degree==1) no coeff needed
|
||
|
std::vector<FT> m_coefficients;
|
||
|
|
||
|
public:
|
||
|
//constructor
|
||
|
Monge_form() {
|
||
|
m_origin_pt = Point_3(0.,0.,0.);
|
||
|
m_d1 = Vector_3(0.,0.,0.);
|
||
|
m_d2 = Vector_3(0.,0.,0.);
|
||
|
m_n = Vector_3(0.,0.,0.);
|
||
|
m_coefficients = std::vector<FT>();
|
||
|
}
|
||
|
~Monge_form() {}
|
||
|
//access
|
||
|
const Point_3 origin() const { return m_origin_pt; }
|
||
|
Point_3& origin() { return m_origin_pt; }
|
||
|
const Vector_3 maximal_principal_direction() const { return m_d1; }
|
||
|
Vector_3& maximal_principal_direction() { return m_d1; }
|
||
|
const Vector_3 minimal_principal_direction() const { return m_d2; }
|
||
|
Vector_3& minimal_principal_direction() { return m_d2; }
|
||
|
const Vector_3 normal_direction() const { return m_n; }
|
||
|
Vector_3& normal_direction() { return m_n; }
|
||
|
const std::vector<FT> coefficients() const { return m_coefficients; }
|
||
|
std::vector<FT>& coefficients() { return m_coefficients; }
|
||
|
|
||
|
const FT principal_curvatures(size_t i) const {
|
||
|
CGAL_precondition( (i == 0 || i == 1) && coefficients().size() >=2 );
|
||
|
return coefficients()[i]; }
|
||
|
const FT third_order_coefficients(size_t i) const {
|
||
|
CGAL_precondition( i <= 3 && coefficients().size() >=6 );
|
||
|
return coefficients()[i+2]; }
|
||
|
const FT fourth_order_coefficients(size_t i) const {
|
||
|
CGAL_precondition( i <= 4 && coefficients().size() >=11 );
|
||
|
return coefficients()[i+6]; }
|
||
|
|
||
|
//if d>=2, number of coeffs = (d+1)(d+2)/2 -4.
|
||
|
//we remove cst, linear and the xy coeff which vanish
|
||
|
void set_up(std::size_t degree);
|
||
|
//switch min-max ppal curv/dir wrt a given normal orientation.
|
||
|
// if given_normal.monge_normal < 0 then change the orientation
|
||
|
// if z=g(x,y) in the basis (d1,d2,n) then in the basis (d2,d1,-n)
|
||
|
// z=h(x,y)=-g(y,x)
|
||
|
void comply_wrt_given_normal(const Vector_3& given_normal);
|
||
|
void dump_verbose(std::ostream& out_stream) const;
|
||
|
void dump_4ogl(std::ostream& out_stream, const FT scale);
|
||
|
};
|
||
|
//////////////////////end nested CLASS Monge_form /////////////////////
|
||
|
|
||
|
//continue main class Monge_via_jet_fitting ////////
|
||
|
public:
|
||
|
typedef DataKernel Data_kernel;
|
||
|
typedef LocalKernel Local_kernel;
|
||
|
|
||
|
//used to convert number types, points and vectors back and forth
|
||
|
typedef NT_converter<typename Local_kernel::FT, typename Data_kernel::FT> L2D_NTconverter;
|
||
|
Cartesian_converter<Data_kernel, Local_kernel> D2L_converter;
|
||
|
Cartesian_converter<Local_kernel, Data_kernel> L2D_converter;
|
||
|
|
||
|
typedef typename Local_kernel::FT FT;
|
||
|
typedef typename Local_kernel::Point_3 Point_3;
|
||
|
typedef typename Local_kernel::Vector_3 Vector_3;
|
||
|
typedef CGAL::Aff_transformation_3<Local_kernel> Aff_transformation;
|
||
|
|
||
|
typedef typename Data_kernel::FT DFT;
|
||
|
|
||
|
typedef typename SvdTraits::Vector LAVector;
|
||
|
typedef typename SvdTraits::Matrix LAMatrix;
|
||
|
|
||
|
|
||
|
public:
|
||
|
Monge_via_jet_fitting();
|
||
|
template <class InputIterator>
|
||
|
Monge_form operator()(InputIterator begin, InputIterator end,
|
||
|
size_t d, size_t dprime);
|
||
|
const FT condition_number() const {return condition_nb;}
|
||
|
const std::pair<FT, Vector_3> pca_basis(size_t i) const {
|
||
|
CGAL_precondition( i<3 );
|
||
|
return m_pca_basis[i];}
|
||
|
|
||
|
protected:
|
||
|
int deg;
|
||
|
int deg_monge;
|
||
|
int nb_d_jet_coeff;
|
||
|
int nb_input_pts;
|
||
|
FT preconditionning;
|
||
|
CGAL::Sqrt<FT> Lsqrt;
|
||
|
FT condition_nb;
|
||
|
|
||
|
std::vector< std::pair<FT, Vector_3> > m_pca_basis;
|
||
|
|
||
|
//translate_p0 changes the origin of the world to p0 the first point
|
||
|
// of the input data points
|
||
|
//change_world2fitting (coord of a vector in world) = coord of this
|
||
|
// vector in fitting. The matrix tranform has as lines the coord of
|
||
|
// the basis vectors of fitting in the world coord.
|
||
|
//idem for change_fitting2monge
|
||
|
Aff_transformation translate_p0, change_world2fitting,
|
||
|
change_fitting2monge;
|
||
|
|
||
|
//eigen val and vect stored in m_pca_basis
|
||
|
// change_world2fitting is computed
|
||
|
template <class InputIterator>
|
||
|
void compute_PCA(InputIterator begin, InputIterator end);
|
||
|
|
||
|
//Coordinates of input points are computed in the fitting basis with
|
||
|
// p0 as origin.
|
||
|
//Preconditionning is computed, M and Z are filled
|
||
|
template <class InputIterator>
|
||
|
void fill_matrix(InputIterator begin, InputIterator end,
|
||
|
std::size_t d, LAMatrix& M, LAVector& Z);
|
||
|
//A is computed, solving MA=Z in the ls sense, the solution A is stored in Z
|
||
|
//Preconditionning is needed
|
||
|
void solve_linear_system(LAMatrix &M, LAVector& Z);
|
||
|
|
||
|
//Classical differential geometric calculus
|
||
|
//change_fitting2monge is computed
|
||
|
//if deg_monge =1 only 1st order info
|
||
|
//if deg_monge >= 2 2nd order info are computed
|
||
|
void compute_Monge_basis(const FT* A, Monge_form& monge_form);
|
||
|
|
||
|
//if deg_monge >=3 then 3rd (and 4th) order info are computed
|
||
|
void compute_Monge_coefficients(FT* A, std::size_t dprime,
|
||
|
Monge_form& monge_form);
|
||
|
|
||
|
//for a trihedron (v1,v2,v3) switches v1 to -v1 if det(v1,v2,v3) < 0
|
||
|
void switch_to_direct_orientation(Vector_3& v1, const Vector_3& v2,
|
||
|
const Vector_3& v3);
|
||
|
|
||
|
friend
|
||
|
std::ostream&
|
||
|
operator<<(std::ostream& out_stream,
|
||
|
const typename Monge_via_jet_fitting<DataKernel, LocalKernel, SvdTraits>::Monge_form& monge){
|
||
|
monge.dump_verbose(out_stream);
|
||
|
return out_stream;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
//-------------------------------------------------------------------
|
||
|
// Implementation
|
||
|
//------------------------------------------------------------------
|
||
|
|
||
|
// Implementation nested Monge_form //////////////////////////////
|
||
|
//template <class DataKernel>
|
||
|
template < class DataKernel, class LocalKernel, class SvdTraits>
|
||
|
void Monge_via_jet_fitting<DataKernel, LocalKernel, SvdTraits>::
|
||
|
Monge_form::
|
||
|
set_up(std::size_t degree) {
|
||
|
if ( degree >= 2 ) std::fill_n(back_inserter(m_coefficients),
|
||
|
(degree+1)*(degree+2)/2-4, 0.);
|
||
|
}
|
||
|
|
||
|
|
||
|
template < class DataKernel, class LocalKernel, class SvdTraits>
|
||
|
void Monge_via_jet_fitting<DataKernel, LocalKernel, SvdTraits>::Monge_form::
|
||
|
comply_wrt_given_normal(const Vector_3& given_normal)
|
||
|
{
|
||
|
if ( given_normal*this->normal_direction() < 0 )
|
||
|
{
|
||
|
normal_direction() = -normal_direction();
|
||
|
std::swap(maximal_principal_direction(), minimal_principal_direction());
|
||
|
if ( coefficients().size() >= 2)
|
||
|
std::swap(coefficients()[0],coefficients()[1]);
|
||
|
if ( coefficients().size() >= 6) {
|
||
|
std::swap(coefficients()[2],coefficients()[5]);
|
||
|
std::swap(coefficients()[3],coefficients()[4]);}
|
||
|
if ( coefficients().size() >= 11) {
|
||
|
std::swap(coefficients()[6],coefficients()[10]);
|
||
|
std::swap(coefficients()[7],coefficients()[9]);}
|
||
|
typename std::vector<FT>::iterator itb = coefficients().begin(),
|
||
|
ite = coefficients().end();
|
||
|
for (;itb!=ite;itb++) { *itb = -(*itb); }
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template < class DataKernel, class LocalKernel, class SvdTraits>
|
||
|
void Monge_via_jet_fitting<DataKernel, LocalKernel, SvdTraits>::Monge_form::
|
||
|
dump_verbose(std::ostream& out_stream) const
|
||
|
{
|
||
|
out_stream << "origin : " << origin() << std::endl
|
||
|
<< "n : " << normal_direction() << std::endl;
|
||
|
if ( coefficients().size() >= 2)
|
||
|
out_stream << "d1 : " << maximal_principal_direction() << std::endl
|
||
|
<< "d2 : " << minimal_principal_direction() << std::endl
|
||
|
<< "k1 : " << coefficients()[0] << std::endl
|
||
|
<< "k2 : " << coefficients()[1] << std::endl;
|
||
|
if ( coefficients().size() >= 6)
|
||
|
out_stream << "b0 : " << coefficients()[2] << std::endl
|
||
|
<< "b1 : " << coefficients()[3] << std::endl
|
||
|
<< "b2 : " << coefficients()[4] << std::endl
|
||
|
<< "b3 : " << coefficients()[5] << std::endl;
|
||
|
if ( coefficients().size() >= 11)
|
||
|
out_stream << "c0 : " << coefficients()[6] << std::endl
|
||
|
<< "c1 : " << coefficients()[7] << std::endl
|
||
|
<< "c2 : " << coefficients()[8] << std::endl
|
||
|
<< "c3 : " << coefficients()[9] << std::endl
|
||
|
<< "c4 : " << coefficients()[10] << std::endl
|
||
|
<< std::endl;
|
||
|
}
|
||
|
|
||
|
template < class DataKernel, class LocalKernel, class SvdTraits>
|
||
|
void Monge_via_jet_fitting<DataKernel, LocalKernel, SvdTraits>::Monge_form::
|
||
|
dump_4ogl(std::ostream& out_stream, const FT scale)
|
||
|
{
|
||
|
CGAL_precondition( coefficients().size() >= 2 );
|
||
|
out_stream << origin() << " "
|
||
|
<< maximal_principal_direction() * scale << " "
|
||
|
<< minimal_principal_direction() * scale << " "
|
||
|
<< coefficients()[0] << " "
|
||
|
<< coefficients()[1] << " "
|
||
|
<< std::endl;
|
||
|
}
|
||
|
//////////////////////////////////////////////////////////////
|
||
|
// Implementation main Monge_via_jet_fiting
|
||
|
|
||
|
template < class DataKernel, class LocalKernel, class SvdTraits>
|
||
|
Monge_via_jet_fitting<DataKernel, LocalKernel, SvdTraits>::
|
||
|
Monge_via_jet_fitting()
|
||
|
{
|
||
|
m_pca_basis = std::vector< std::pair<FT, Vector_3> >(3);
|
||
|
}
|
||
|
|
||
|
template < class DataKernel, class LocalKernel, class SvdTraits>
|
||
|
template <class InputIterator>
|
||
|
typename Monge_via_jet_fitting<DataKernel, LocalKernel, SvdTraits>::Monge_form
|
||
|
Monge_via_jet_fitting<DataKernel, LocalKernel, SvdTraits>::
|
||
|
operator()(InputIterator begin, InputIterator end,
|
||
|
size_t d, size_t dprime)
|
||
|
{
|
||
|
// precondition: on the degrees, jet and monge
|
||
|
CGAL_precondition( (d >=1) && (dprime >= 1)
|
||
|
&& (dprime <= 4) && (dprime <= d) );
|
||
|
this->deg = static_cast<int>(d);
|
||
|
this->deg_monge = static_cast<int>(dprime);
|
||
|
this->nb_d_jet_coeff = static_cast<int>((d+1)*(d+2)/2);
|
||
|
this->nb_input_pts = static_cast<int>(end - begin);
|
||
|
// precondition: solvable ls system
|
||
|
CGAL_precondition( nb_input_pts >= nb_d_jet_coeff );
|
||
|
|
||
|
//Initialize
|
||
|
Monge_form monge_form;
|
||
|
monge_form.set_up(dprime);
|
||
|
//for the system MA=Z
|
||
|
LAMatrix M(nb_input_pts, nb_d_jet_coeff);
|
||
|
LAVector Z(nb_input_pts);
|
||
|
|
||
|
compute_PCA(begin, end);
|
||
|
fill_matrix(begin, end, d, M, Z);//with precond
|
||
|
solve_linear_system(M, Z); //correct with precond
|
||
|
compute_Monge_basis(Z.vector(), monge_form);
|
||
|
if ( dprime >= 3) compute_Monge_coefficients(Z.vector(), dprime, monge_form);
|
||
|
return monge_form;
|
||
|
}
|
||
|
|
||
|
template < class DataKernel, class LocalKernel, class SvdTraits>
|
||
|
template <class InputIterator>
|
||
|
void Monge_via_jet_fitting<DataKernel, LocalKernel, SvdTraits>::
|
||
|
compute_PCA(InputIterator begin, InputIterator end)
|
||
|
{
|
||
|
int n = this->nb_input_pts;
|
||
|
FT x, y, z,
|
||
|
sumX = 0., sumY = 0., sumZ = 0.,
|
||
|
sumX2 = 0., sumY2 = 0., sumZ2 = 0.,
|
||
|
sumXY = 0., sumXZ = 0., sumYZ = 0.,
|
||
|
xx, yy, zz, xy, xz, yz;
|
||
|
|
||
|
for (; begin != end; begin++)
|
||
|
{
|
||
|
Point_3 lp = D2L_converter(*begin);
|
||
|
x = lp.x();
|
||
|
y = lp.y();
|
||
|
z = lp.z();
|
||
|
sumX += x / n;
|
||
|
sumY += y / n;
|
||
|
sumZ += z / n;
|
||
|
sumX2 += x * x / n;
|
||
|
sumY2 += y * y / n;
|
||
|
sumZ2 += z * z / n;
|
||
|
sumXY += x * y / n;
|
||
|
sumXZ += x * z / n;
|
||
|
sumYZ += y * z / n;
|
||
|
}
|
||
|
xx = sumX2 - sumX * sumX;
|
||
|
yy = sumY2 - sumY * sumY;
|
||
|
zz = sumZ2 - sumZ * sumZ;
|
||
|
xy = sumXY - sumX * sumY;
|
||
|
xz = sumXZ - sumX * sumZ;
|
||
|
yz = sumYZ - sumY * sumZ;
|
||
|
|
||
|
// assemble covariance matrix as a
|
||
|
// semi-definite matrix.
|
||
|
// Matrix numbering:
|
||
|
// 0 1 2
|
||
|
// 3 4
|
||
|
// 5
|
||
|
CGAL::cpp11::array<FT, 6> covariance = {{ xx,xy,xz,yy,yz,zz }};
|
||
|
CGAL::cpp11::array<FT, 3> eigen_values = {{ 0., 0., 0. }};
|
||
|
CGAL::cpp11::array<FT, 9> eigen_vectors = {{ 0., 0., 0. }};
|
||
|
|
||
|
// solve for eigenvalues and eigenvectors.
|
||
|
// eigen values are sorted in ascending order,
|
||
|
// eigen vectors are sorted in accordance.
|
||
|
CGAL::Default_diagonalize_traits<FT,3>::diagonalize_selfadjoint_covariance_matrix
|
||
|
(covariance, eigen_values, eigen_vectors);
|
||
|
|
||
|
//store in m_pca_basis
|
||
|
for (int i=0; i<3; i++)
|
||
|
{
|
||
|
m_pca_basis[i].first = eigen_values[2-i];
|
||
|
}
|
||
|
|
||
|
Vector_3 v1(eigen_vectors[6],eigen_vectors[7],eigen_vectors[8]);
|
||
|
m_pca_basis[0].second = v1;
|
||
|
Vector_3 v2(eigen_vectors[3],eigen_vectors[4],eigen_vectors[5]);
|
||
|
m_pca_basis[1].second = v2;
|
||
|
Vector_3 v3(eigen_vectors[0],eigen_vectors[1],eigen_vectors[2]);
|
||
|
m_pca_basis[2].second = v3;
|
||
|
switch_to_direct_orientation(m_pca_basis[0].second,
|
||
|
m_pca_basis[1].second,
|
||
|
m_pca_basis[2].second);
|
||
|
|
||
|
//Store the change of basis W->F
|
||
|
Aff_transformation
|
||
|
change_basis (m_pca_basis[0].second[0], m_pca_basis[0].second[1], m_pca_basis[0].second[2],
|
||
|
m_pca_basis[1].second[0], m_pca_basis[1].second[1], m_pca_basis[1].second[2],
|
||
|
m_pca_basis[2].second[0], m_pca_basis[2].second[1], m_pca_basis[2].second[2]);
|
||
|
|
||
|
this->change_world2fitting = change_basis;
|
||
|
}
|
||
|
|
||
|
template < class DataKernel, class LocalKernel, class SvdTraits>
|
||
|
template <class InputIterator>
|
||
|
void Monge_via_jet_fitting<DataKernel, LocalKernel, SvdTraits>::
|
||
|
fill_matrix(InputIterator begin, InputIterator end,
|
||
|
std::size_t d, LAMatrix &M, LAVector& Z)
|
||
|
{
|
||
|
//origin of fitting coord system = first input data point
|
||
|
Point_3 point0 = D2L_converter(*begin);
|
||
|
//transform coordinates of sample points with a
|
||
|
//translation ($-p$) and multiplication by $ P_{W\rightarrow F}$.
|
||
|
Point_3 orig(0.,0.,0.);
|
||
|
Vector_3 v_point0_orig(orig - point0);
|
||
|
Aff_transformation transl(CGAL::TRANSLATION, v_point0_orig);
|
||
|
this->translate_p0 = transl;
|
||
|
Aff_transformation transf_points = this->change_world2fitting *
|
||
|
this->translate_p0;
|
||
|
|
||
|
//compute and store transformed points
|
||
|
std::vector<Point_3> pts_in_fitting_basis;
|
||
|
pts_in_fitting_basis.reserve(this->nb_input_pts);
|
||
|
CGAL_For_all(begin,end){
|
||
|
Point_3 cur_pt = transf_points(D2L_converter(*begin));
|
||
|
pts_in_fitting_basis.push_back(cur_pt);
|
||
|
}
|
||
|
|
||
|
//Compute preconditionning
|
||
|
FT precond = 0.;
|
||
|
typename std::vector<Point_3>::iterator itb = pts_in_fitting_basis.begin(),
|
||
|
ite = pts_in_fitting_basis.end();
|
||
|
CGAL_For_all(itb,ite) precond += CGAL::abs(itb->x()) + CGAL::abs(itb->y());
|
||
|
precond /= 2*this->nb_input_pts;
|
||
|
this->preconditionning = precond;
|
||
|
//fill matrices M and Z
|
||
|
itb = pts_in_fitting_basis.begin();
|
||
|
int line_count = 0;
|
||
|
FT x, y;
|
||
|
CGAL_For_all(itb,ite) {
|
||
|
x = itb->x();
|
||
|
y = itb->y();
|
||
|
// Z[line_count] = itb->z();
|
||
|
Z.set(line_count,itb->z());
|
||
|
for (std::size_t k=0; k <= d; k++) {
|
||
|
for (std::size_t i=0; i<=k; i++) {
|
||
|
M.set(line_count, k*(k+1)/2+i,
|
||
|
std::pow(x,static_cast<int>(k-i))
|
||
|
* std::pow(y,static_cast<int>(i))
|
||
|
/( fact(static_cast<unsigned int>(i)) *
|
||
|
fact(static_cast<unsigned int>(k-i))
|
||
|
*std::pow(this->preconditionning,static_cast<int>(k))));
|
||
|
}
|
||
|
}
|
||
|
line_count++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template < class DataKernel, class LocalKernel, class SvdTraits>
|
||
|
void Monge_via_jet_fitting<DataKernel, LocalKernel, SvdTraits>::
|
||
|
solve_linear_system(LAMatrix &M, LAVector& Z)
|
||
|
{
|
||
|
condition_nb = SvdTraits::solve(M, Z);
|
||
|
for (int k=0; k <= this->deg; k++) for (int i=0; i<=k; i++)
|
||
|
// Z[k*(k+1)/2+i] /= std::pow(this->preconditionning,k);
|
||
|
Z.set( k*(k+1)/2+i, Z(k*(k+1)/2+i) / std::pow(this->preconditionning,k) );
|
||
|
}
|
||
|
|
||
|
template < class DataKernel, class LocalKernel, class SvdTraits>
|
||
|
void Monge_via_jet_fitting<DataKernel, LocalKernel, SvdTraits>::
|
||
|
compute_Monge_basis(const FT* A, Monge_form& monge_form)
|
||
|
{
|
||
|
// only 1st order info.
|
||
|
if ( this->deg_monge == 1 ) {
|
||
|
Point_3 orig_monge(0., 0., A[0]);
|
||
|
Vector_3 normal(-A[1], -A[2], 1.);
|
||
|
FT norm2 = normal * normal;
|
||
|
normal = normal / Lsqrt(norm2);
|
||
|
monge_form.origin() = L2D_converter(
|
||
|
(this->translate_p0.inverse() *
|
||
|
this->change_world2fitting.inverse()) (orig_monge) );
|
||
|
monge_form.normal_direction() = L2D_converter(this->change_world2fitting.inverse()(normal));
|
||
|
}
|
||
|
// else (deg_monge >= 2) then 2nd order info are computed
|
||
|
else {
|
||
|
//bi-index to uni-index conversion : A(i,j)=A[(i+j)(i+j+1)/2+j]
|
||
|
Point_3 orig_monge(0., 0., A[0]);
|
||
|
//normal = Xu crossprod Xv
|
||
|
Vector_3 Xu(1.,0.,A[1]), Xv(0.,1.,A[2]), normal(-A[1], -A[2], 1.);
|
||
|
FT norm2 = normal * normal;
|
||
|
normal = normal / Lsqrt(norm2);
|
||
|
|
||
|
//Surface in fitting_basis : X(u,v)=(u,v,J_A(u,v))
|
||
|
//in the basis Xu=(1,0,A[1]), Xv=(0,1,A[2]), Weingarten=-I^{-1}II
|
||
|
//first fond form I=(e,f,f,g)
|
||
|
// =(Xu.Xu, Xu.Xv, Xu.Xv, Xv.Xv)
|
||
|
//second fond form II=(l,m,m,n)/norm2^(1/2)
|
||
|
// =(n.Xuu, n.Xuv, n.Xuv, n.Xvv)
|
||
|
//ppal curv are the opposite of the eigenvalues of Weingarten or the
|
||
|
// eigenvalues of weingarten = -Weingarten = I^{-1}II
|
||
|
typedef typename CGAL::Linear_algebraCd<FT>::Matrix Matrix;
|
||
|
|
||
|
FT e = 1+A[1]*A[1], f = A[1]*A[2], g = 1+A[2]*A[2],
|
||
|
l = A[3], m = A[4], n = A[5];
|
||
|
Matrix weingarten(2,2,0.);
|
||
|
weingarten(0,0) = (g*l-f*m)/ (Lsqrt(norm2)*norm2);
|
||
|
weingarten(0,1) = (g*m-f*n)/ (Lsqrt(norm2)*norm2);
|
||
|
weingarten(1,0) = (e*m-f*l)/ (Lsqrt(norm2)*norm2);
|
||
|
weingarten(1,1) = (e*n-f*m)/ (Lsqrt(norm2)*norm2);
|
||
|
// Y, Z are normalized GramSchmidt of Xu, Xv
|
||
|
// Xu->Y=Xu/||Xu||;
|
||
|
// Xv->Z=Xv-(Xu.Xv)Xu/||Xu||^2;
|
||
|
// Z-> Z/||Z||
|
||
|
Vector_3 Y, Z;
|
||
|
FT normXu = Lsqrt( Xu*Xu );
|
||
|
Y = Xu / normXu;
|
||
|
FT XudotXv = Xu * Xv;
|
||
|
Z = Xv - XudotXv * Xu / (normXu*normXu);
|
||
|
FT normZ = Lsqrt( Z*Z );
|
||
|
Z = Z / normZ;
|
||
|
Matrix change_XuXv2YZ(2,2,0.);
|
||
|
change_XuXv2YZ(0,0) = 1 / normXu;
|
||
|
change_XuXv2YZ(0,1) = -XudotXv / (normXu * normXu * normZ);
|
||
|
change_XuXv2YZ(1,0) = 0;
|
||
|
change_XuXv2YZ(1,1) = 1 / normZ;
|
||
|
FT det = 0.;
|
||
|
Matrix inv = CGAL::Linear_algebraCd<FT>::inverse ( change_XuXv2YZ, det );
|
||
|
//in the new orthonormal basis (Y,Z) of the tangent plane :
|
||
|
weingarten = inv *(1/det) * weingarten * change_XuXv2YZ;
|
||
|
|
||
|
// diagonalization of weingarten
|
||
|
CGAL::cpp11::array<FT,3> W = {{ weingarten(0,0), weingarten(1,0), weingarten(1,1) }};
|
||
|
CGAL::cpp11::array<FT,2> eval = {{ 0., 0. }};
|
||
|
CGAL::cpp11::array<FT,4> evec = {{ 0., 0., 0., 0. }};
|
||
|
|
||
|
//eval in increasing order
|
||
|
CGAL::Default_diagonalize_traits<FT,2>::diagonalize_selfadjoint_covariance_matrix
|
||
|
(W, eval, evec);
|
||
|
|
||
|
Vector_3 d_max = evec[2]*Y + evec[3]*Z,
|
||
|
d_min = evec[0]*Y + evec[1]*Z;
|
||
|
|
||
|
switch_to_direct_orientation(d_max, d_min, normal);
|
||
|
Aff_transformation change_basis (d_max[0], d_max[1], d_max[2],
|
||
|
d_min[0], d_min[1], d_min[2],
|
||
|
normal[0], normal[1], normal[2]);
|
||
|
this->change_fitting2monge = change_basis;
|
||
|
|
||
|
//store the monge basis origin and vectors with their world coord
|
||
|
//store ppal curv
|
||
|
monge_form.origin() = L2D_converter(
|
||
|
(this->translate_p0.inverse() *
|
||
|
this->change_world2fitting.inverse()) (orig_monge ));
|
||
|
monge_form.maximal_principal_direction() = L2D_converter(this->change_world2fitting.inverse()(d_max));
|
||
|
monge_form.minimal_principal_direction() = L2D_converter(this->change_world2fitting.inverse()(d_min));
|
||
|
monge_form.normal_direction() = L2D_converter(this->change_world2fitting.inverse()(normal));
|
||
|
monge_form.coefficients()[0] = L2D_NTconverter()(eval[1]);
|
||
|
monge_form.coefficients()[1] = L2D_NTconverter()(eval[0]);
|
||
|
}
|
||
|
//end else
|
||
|
}
|
||
|
|
||
|
template < class DataKernel, class LocalKernel, class SvdTraits>
|
||
|
void Monge_via_jet_fitting<DataKernel, LocalKernel, SvdTraits>::
|
||
|
compute_Monge_coefficients(FT* A, std::size_t dprime,
|
||
|
Monge_form& monge_form)
|
||
|
{
|
||
|
//One has the equation w=J_A(u,v) of the fitted surface S
|
||
|
// in the fitting_basis
|
||
|
//Substituing (u,v,w)=change_fitting2monge^{-1}(x,y,z)
|
||
|
//One has the equation f(x,y,z)=0 on this surface S in the monge
|
||
|
// basis
|
||
|
//The monge form of the surface at the origin is the bivariate fct
|
||
|
// g(x,y) s.t. f(x,y,g(x,y))=0
|
||
|
//voir les calculs Maple dans monge.mws
|
||
|
//Notations are f123= d^3f/dxdydz
|
||
|
// g(x,y)=sum (gij x^i y^j/ i!j!) with
|
||
|
// g00=g10=g01=g11=0, g20=kmax, g02=kmin
|
||
|
//
|
||
|
//g(x,y)= 1/2*(k1x^2 +k2y^2)
|
||
|
// +1/6*(b0x^3 +3b1x^2y +3b2xy^2 +b3y^3)
|
||
|
// +1/24*(c0x^4 +4c1x^3y +6c2x^2y^2 +4c3xy^3 +c4y^4)
|
||
|
// +...
|
||
|
// p stores change_fitting2monge^{-1}=change_fitting2monge^{T}
|
||
|
FT p[3][3];
|
||
|
p[0][0] = this->change_fitting2monge.m(0,0);
|
||
|
p[1][0] = this->change_fitting2monge.m(0,1);
|
||
|
p[2][0] = this->change_fitting2monge.m(0,2);
|
||
|
p[0][1] = this->change_fitting2monge.m(1,0);
|
||
|
p[1][1] = this->change_fitting2monge.m(1,1);
|
||
|
p[2][1] = this->change_fitting2monge.m(1,2);
|
||
|
p[0][2] = this->change_fitting2monge.m(2,0);
|
||
|
p[1][2] = this->change_fitting2monge.m(2,1);
|
||
|
p[2][2] = this->change_fitting2monge.m(2,2);
|
||
|
|
||
|
// formula are designed for w=sum( Aij ui vj), but we have J_A = sum( Aij/i!j! ui vj)
|
||
|
for (int k=0; k <= this->deg; k++) for (int i=0; i<=k; i++)
|
||
|
A[k*(k+1)/2+i] /= fact(k-i)*fact(i);//this is A(k-i;i)
|
||
|
|
||
|
/* //debug */
|
||
|
/* std::cout << "coeff of A" << std::endl */
|
||
|
/* << A[0] << " "<< A[1] << " "<< A[2] << std::endl */
|
||
|
/* << A[3] << " "<< A[4] << " "<< A[5] << std::endl */
|
||
|
/* << A[6] << " "<< A[7] << " "<< A[8] << " "<< A[9]<< std::endl */
|
||
|
/* << A[10] << " "<< A[11] << " "<< A[12] << " "<< A[13]<< " " << A[14] << std::endl; */
|
||
|
|
||
|
|
||
|
|
||
|
// note f1 = f2 = f12 = 0
|
||
|
// FT f1 = A[1] * p[0][0] + A[2] * p[1][0] - p[2][0];
|
||
|
// FT f2 = A[2] * p[1][1] + A[1] * p[0][1] - p[2][1];
|
||
|
// FT f12 =
|
||
|
// 2 * A[3] * p[0][0] * p[0][1]
|
||
|
// + 2 * A[5] * p[1][0] * p[1][1]
|
||
|
// + A[4] * p[0][1] * p[1][0]
|
||
|
// + A[4] * p[0][0] * p[1][1];
|
||
|
// -f11 / f3 = kmax
|
||
|
// -f22 / f3 = kmin
|
||
|
|
||
|
FT f3 = A[1] * p[0][2] + A[2] * p[1][2] - p[2][2];
|
||
|
FT f11 =
|
||
|
2 * A[4] * p[0][0] * p[1][0]
|
||
|
+ 2 * A[5] * p[1][0] * p[1][0]
|
||
|
+ 2 * A[3] * p[0][0] * p[0][0];
|
||
|
FT f13 =
|
||
|
A[4] * p[0][0] * p[1][2]
|
||
|
+ A[4] * p[0][2] * p[1][0]
|
||
|
+ 2 * A[5] * p[1][0] * p[1][2]
|
||
|
+ 2 * A[3] * p[0][0] * p[0][2];
|
||
|
FT f22 =
|
||
|
2 * A[4] * p[0][1] * p[1][1]
|
||
|
+ 2 * A[5] * p[1][1] * p[1][1]
|
||
|
+ 2 * A[3] * p[0][1] * p[0][1];
|
||
|
FT f23 =
|
||
|
A[4] * p[0][1] * p[1][2]
|
||
|
+ 2 * A[5] * p[1][1] * p[1][2]
|
||
|
+ A[4] * p[0][2] * p[1][1]
|
||
|
+ 2 * A[3] * p[0][1] * p[0][2];
|
||
|
FT f33 =
|
||
|
2 * A[5] * p[1][2] * p[1][2]
|
||
|
+ 2 * A[3] * p[0][2] * p[0][2]
|
||
|
+ 2 * A[4] * p[0][2] * p[1][2];
|
||
|
FT f111 =
|
||
|
6 * A[8] * p[0][0] * p[1][0] * p[1][0]
|
||
|
+ 6 * A[7] * p[0][0] * p[0][0] * p[1][0]
|
||
|
+ 6 * A[6] * p[0][0] * p[0][0] * p[0][0]
|
||
|
+ 6 * A[9] * p[1][0] * p[1][0] * p[1][0];
|
||
|
FT f222 =
|
||
|
6 * A[7] * p[0][1] * p[0][1] * p[1][1]
|
||
|
+ 6 * A[8] * p[0][1] * p[1][1] * p[1][1]
|
||
|
+ 6 * A[9] * p[1][1] * p[1][1] * p[1][1]
|
||
|
+ 6 * A[6] * p[0][1] * p[0][1] * p[0][1];
|
||
|
FT f112 =
|
||
|
2 * A[7] * p[0][0] * p[0][0] * p[1][1]
|
||
|
+ 6 * A[6] * p[0][0] * p[0][0] * p[0][1]
|
||
|
+ 2 * A[8] * p[0][1] * p[1][0] * p[1][0]
|
||
|
+ 4 * A[8] * p[0][0] * p[1][0] * p[1][1]
|
||
|
+ 6 * A[9] * p[1][0] * p[1][0] * p[1][1]
|
||
|
+ 4 * A[7] * p[0][0] * p[0][1] * p[1][0];
|
||
|
FT f122 =
|
||
|
4 * A[8] * p[0][1] * p[1][0] * p[1][1]
|
||
|
+ 2 * A[8] * p[0][0] * p[1][1] * p[1][1]
|
||
|
+ 6 * A[6] * p[0][0] * p[0][1] * p[0][1]
|
||
|
+ 2 * A[7] * p[0][1] * p[0][1] * p[1][0]
|
||
|
+ 4 * A[7] * p[0][0] * p[0][1] * p[1][1]
|
||
|
+ 6 * A[9] * p[1][0] * p[1][1] * p[1][1];
|
||
|
FT f113 =
|
||
|
6*A[6]*p[0][0]*p[0][0]*p[0][2]
|
||
|
+6*A[9]*p[1][0]*p[1][0]*p[1][2]
|
||
|
+2*A[7]*p[0][0]*p[0][0]*p[1][2]
|
||
|
+2*A[8]*p[0][2]*p[1][0]*p[1][0]
|
||
|
+4*A[7]*p[0][0]*p[0][2]*p[1][0]
|
||
|
+4*A[8]*p[0][0]*p[1][0]*p[1][2];
|
||
|
FT f223 =
|
||
|
2*A[8]*p[0][2]*p[1][1]*p[1][1]
|
||
|
+6*A[6]*p[0][1]*p[0][1]*p[0][2]
|
||
|
+6*A[9]*p[1][1]*p[1][1]*p[1][2]
|
||
|
+2*A[7]*p[0][1]*p[0][1]*p[1][2]
|
||
|
+4*A[7]*p[0][1]*p[0][2]*p[1][1]
|
||
|
+4*A[8]*p[0][1]*p[1][1]*p[1][2];
|
||
|
FT f123 =
|
||
|
2*A[8]*p[0][2]*p[1][0]*p[1][1]
|
||
|
+2*A[7]*p[0][0]*p[0][1]*p[1][2]
|
||
|
+2*A[7]*p[0][0]*p[0][2]*p[1][1]
|
||
|
+6*A[9]*p[1][0]*p[1][1]*p[1][2]
|
||
|
+2*A[7]*p[0][1]*p[0][2]*p[1][0]
|
||
|
+6*A[6]*p[0][0]*p[0][1]*p[0][2]
|
||
|
+2*A[8]*p[0][0]*p[1][1]*p[1][2]
|
||
|
+2*A[8]*p[0][1]*p[1][0]*p[1][2];
|
||
|
|
||
|
FT b0 = 1/(f3*f3)*(-f111*f3+3*f13*f11);
|
||
|
FT b1 = 1/(f3*f3)*(-f112*f3+f23*f11);
|
||
|
FT b2 = 1/(f3*f3)*(-f122*f3+f13*f22);
|
||
|
FT b3 = -1/(f3*f3)*(f222*f3-3*f23*f22);
|
||
|
|
||
|
monge_form.coefficients()[2] = L2D_NTconverter()(b0);
|
||
|
monge_form.coefficients()[3] = L2D_NTconverter()(b1);
|
||
|
monge_form.coefficients()[4] = L2D_NTconverter()(b2);
|
||
|
monge_form.coefficients()[5] = L2D_NTconverter()(b3);
|
||
|
|
||
|
if ( dprime == 4 )
|
||
|
{
|
||
|
FT f1111 =
|
||
|
24*A[13]*p[0][0]*p[1][0]*p[1][0]*p[1][0]
|
||
|
+24*A[12]*p[0][0]*p[0][0]*p[1][0]*p[1][0]
|
||
|
+24*A[11]*p[0][0]*p[0][0]*p[0][0]*p[1][0]
|
||
|
+24*A[14]*p[1][0]*p[1][0]*p[1][0]*p[1][0]
|
||
|
+24*A[10]*p[0][0]*p[0][0]*p[0][0]*p[0][0];
|
||
|
FT f1112 =
|
||
|
6*A[13]*p[0][1]*p[1][0]*p[1][0]*p[1][0]
|
||
|
+18*A[13]*p[0][0]*p[1][0]*p[1][0]*p[1][1]
|
||
|
+24*A[10]*p[0][0]*p[0][0]*p[0][0]*p[0][1]
|
||
|
+12*A[12]*p[0][0]*p[0][1]*p[1][0]*p[1][0]
|
||
|
+18*A[11]*p[0][0]*p[0][0]*p[0][1]*p[1][0]
|
||
|
+24*A[14]*p[1][0]*p[1][0]*p[1][0]*p[1][1]
|
||
|
+6*A[11]*p[0][0]*p[0][0]*p[0][0]*p[1][1]
|
||
|
+12*A[12]*p[0][0]*p[0][0]*p[1][0]*p[1][1];
|
||
|
FT f1122 =
|
||
|
12*A[11]*p[0][0]*p[0][0]*p[0][1]*p[1][1]
|
||
|
+12*A[13]*p[0][0]*p[1][0]*p[1][1]*p[1][1]
|
||
|
+12*A[13]*p[0][1]*p[1][0]*p[1][0]*p[1][1]
|
||
|
+16*A[12]*p[0][0]*p[0][1]*p[1][0]*p[1][1]
|
||
|
+12*A[11]*p[0][0]*p[0][1]*p[0][1]*p[1][0]
|
||
|
+24*A[10]*p[0][0]*p[0][0]*p[0][1]*p[0][1]
|
||
|
+4*A[12]*p[0][1]*p[0][1]*p[1][0]*p[1][0]
|
||
|
+4*A[12]*p[0][0]*p[0][0]*p[1][1]*p[1][1]
|
||
|
+24*A[14]*p[1][0]*p[1][0]*p[1][1]*p[1][1];
|
||
|
FT f1222 =
|
||
|
6*A[13]*p[0][0]*p[1][1]*p[1][1]*p[1][1]
|
||
|
+24*A[10]*p[0][0]*p[0][1]*p[0][1]*p[0][1]
|
||
|
+24*A[14]*p[1][0]*p[1][1]*p[1][1]*p[1][1]
|
||
|
+6*A[11]*p[0][1]*p[0][1]*p[0][1]*p[1][0]
|
||
|
+18*A[11]*p[0][0]*p[0][1]*p[0][1]*p[1][1]
|
||
|
+12*A[12]*p[0][0]*p[0][1]*p[1][1]*p[1][1]
|
||
|
+12*A[12]*p[0][1]*p[0][1]*p[1][0]*p[1][1]
|
||
|
+18*A[13]*p[0][1]*p[1][0]*p[1][1]*p[1][1];
|
||
|
FT f2222 =
|
||
|
24*A[13]*p[0][1]*p[1][1]*p[1][1]*p[1][1]
|
||
|
+24*A[11]*p[0][1]*p[0][1]*p[0][1]*p[1][1]
|
||
|
+24*A[12]*p[0][1]*p[0][1]*p[1][1]*p[1][1]
|
||
|
+24*A[10]*p[0][1]*p[0][1]*p[0][1]*p[0][1]
|
||
|
+24*A[14]*p[1][1]*p[1][1]*p[1][1]*p[1][1];
|
||
|
|
||
|
FT c0 =
|
||
|
-1/(f3*f3*f3)*(f1111*(f3*f3)-4*f13*f3*f111+12*f13*f13*f11-6*f113*f3*f11+3*f33*f11*f11);
|
||
|
FT c1 =
|
||
|
1/(f3*f3*f3)*(f23*f3*f111+3*f3*f123*f11+3*f13*f3*f112-f1112*(f3*f3)-6*f13*f23*f11);
|
||
|
FT c2 =
|
||
|
1/(f3*f3*f3)*(-f33*f22*f11+f113*f3*f22+2*f13*f3*f122-2*f13*f13*f22+f223*f3*f11+2*f23*f3*f112-2*f23*f23*f11-f1122*(f3*f3));
|
||
|
FT c3 =
|
||
|
1/(f3*f3*f3)*(-f1222*(f3*f3)-6*f13*f23*f22+3*f123*f3*f22+f13*f3*f222+3*f23*f3*f122);
|
||
|
FT c4 =
|
||
|
-1/(f3*f3*f3)*(f2222*(f3*f3)+3*f33*f22*f22-6*f223*f3*f22-4*f23*f3*f222+12*f23*f23*f22) ;
|
||
|
|
||
|
monge_form.coefficients()[6] = L2D_NTconverter()(c0);
|
||
|
monge_form.coefficients()[7] = L2D_NTconverter()(c1);
|
||
|
monge_form.coefficients()[8] = L2D_NTconverter()(c2);
|
||
|
monge_form.coefficients()[9] = L2D_NTconverter()(c3);
|
||
|
monge_form.coefficients()[10] = L2D_NTconverter()(c4);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template < class DataKernel, class LocalKernel, class SvdTraits>
|
||
|
void Monge_via_jet_fitting<DataKernel, LocalKernel, SvdTraits>::
|
||
|
switch_to_direct_orientation(Vector_3& v1, const Vector_3& v2,
|
||
|
const Vector_3& v3)
|
||
|
{
|
||
|
if (CGAL::orientation (v1, v2, v3) == CGAL::NEGATIVE)
|
||
|
v1 = -v1;
|
||
|
}
|
||
|
|
||
|
|
||
|
// template < class DataKernel, class LocalKernel, class SvdTraits>
|
||
|
// inline
|
||
|
// std::ostream&
|
||
|
// operator<<(std::ostream& out_stream,
|
||
|
// const typename Monge_via_jet_fitting<DataKernel, LocalKernel, SvdTraits>::Monge_form& monge)
|
||
|
// {
|
||
|
// monge.dump_verbose(out_stream);
|
||
|
// return out_stream;
|
||
|
// }
|
||
|
|
||
|
} //namespace CGAL
|
||
|
|
||
|
#endif //CGAL_MONGE_VIA_JET_FITTING_H_
|