dust3d/third_party/libigl/include/igl/frame_field_deformer.cpp

412 lines
13 KiB
C++
Raw Normal View History

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2014 Daniele Panozzo <daniele.panozzo@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "frame_field_deformer.h"
#include <Eigen/Dense>
#include <Eigen/Sparse>
#include <vector>
#include <igl/cotmatrix_entries.h>
#include <igl/cotmatrix.h>
#include <igl/vertex_triangle_adjacency.h>
namespace igl
{
class Frame_field_deformer
{
public:
IGL_INLINE Frame_field_deformer();
IGL_INLINE ~Frame_field_deformer();
// Initialize the optimizer
IGL_INLINE void init(const Eigen::MatrixXd& _V, const Eigen::MatrixXi& _F, const Eigen::MatrixXd& _D1, const Eigen::MatrixXd& _D2, double _Lambda, double _perturb_rotations, int _fixed = 1);
// Run N optimization steps
IGL_INLINE void optimize(int N, bool reset = false);
// Reset optimization
IGL_INLINE void reset_opt();
// Precomputation of all components
IGL_INLINE void precompute_opt();
// Precomputation for deformation energy
IGL_INLINE void precompute_ARAP(Eigen::SparseMatrix<double> & Lff, Eigen::MatrixXd & LfcVc);
// Precomputation for regularization
IGL_INLINE void precompute_SMOOTH(Eigen::SparseMatrix<double> & MS, Eigen::MatrixXd & bS);
// extracts a r x c block from sparse matrix mat into sparse matrix m1
// (r0,c0) is upper left entry of block
IGL_INLINE void extractBlock(Eigen::SparseMatrix<double> & mat, int r0, int c0, int r, int c, Eigen::SparseMatrix<double> & m1);
// computes optimal rotations for faces of m wrt current coords in mw.V
// returns a 3x3 matrix
IGL_INLINE void compute_optimal_rotations();
// global optimization step - linear system
IGL_INLINE void compute_optimal_positions();
// compute the output XField from deformation gradient
IGL_INLINE void computeXField(std::vector< Eigen::Matrix<double,3,2> > & XF);
// computes in WW the ideal warp at each tri to make the frame field a cross
IGL_INLINE void compute_idealWarp(std::vector< Eigen::Matrix<double,3,3> > & WW);
// -------------------------------- Variables ----------------------------------------------------
// Mesh I/O:
Eigen::MatrixXd V; // Original mesh - vertices
Eigen::MatrixXi F; // Original mesh - faces
std::vector<std::vector<int> > VT; // Vertex to triangle topology
std::vector<std::vector<int> > VTi; // Vertex to triangle topology
Eigen::MatrixXd V_w; // Warped mesh - vertices
std::vector< Eigen::Matrix<double,3,2> > FF; // frame field FF in 3D (parallel to m.F)
std::vector< Eigen::Matrix<double,3,3> > WW; // warping matrices to make a cross field (parallel to m.F)
std::vector< Eigen::Matrix<double,3,2> > XF; // pseudo-cross field from solution (parallel to m.F)
int fixed;
double perturb_rotations; // perturbation to rotation matrices
// Numerics
int nfree,nconst; // number of free/constrained vertices in the mesh - default all-but-1/1
Eigen::MatrixXd C; // cotangent matrix of m
Eigen::SparseMatrix<double> L; // Laplacian matrix of m
Eigen::SparseMatrix<double> M; // matrix for global optimization - pre-conditioned
Eigen::MatrixXd RHS; // pre-computed part of known term in global optimization
std::vector< Eigen::Matrix<double,3,3> > RW; // optimal rotation-warping matrices (parallel to m.F) -- INCORPORATES WW
Eigen::SimplicialCholesky<Eigen::SparseMatrix<double> > solver; // solver for linear system in global opt.
// Parameters
private:
double Lambda = 0.1; // weight of energy regularization
};
IGL_INLINE Frame_field_deformer::Frame_field_deformer() {}
IGL_INLINE Frame_field_deformer::~Frame_field_deformer() {}
IGL_INLINE void Frame_field_deformer::init(const Eigen::MatrixXd& _V,
const Eigen::MatrixXi& _F,
const Eigen::MatrixXd& _D1,
const Eigen::MatrixXd& _D2,
double _Lambda,
double _perturb_rotations,
int _fixed)
{
V = _V;
F = _F;
assert(_D1.rows() == _D2.rows());
FF.clear();
for (unsigned i=0; i < _D1.rows(); ++i)
{
Eigen::Matrix<double,3,2> ff;
ff.col(0) = _D1.row(i);
ff.col(1) = _D2.row(i);
FF.push_back(ff);
}
fixed = _fixed;
Lambda = _Lambda;
perturb_rotations = _perturb_rotations;
reset_opt();
precompute_opt();
}
IGL_INLINE void Frame_field_deformer::optimize(int N, bool reset)
{
//Reset optimization
if (reset)
reset_opt();
// Iterative Local/Global optimization
for (int i=0; i<N;i++)
{
compute_optimal_rotations();
compute_optimal_positions();
computeXField(XF);
}
}
IGL_INLINE void Frame_field_deformer::reset_opt()
{
V_w = V;
for (unsigned i=0; i<V_w.rows(); ++i)
for (unsigned j=0; j<V_w.cols(); ++j)
V_w(i,j) += (double(rand())/double(RAND_MAX))*10e-4*perturb_rotations;
}
// precomputation of all components
IGL_INLINE void Frame_field_deformer::precompute_opt()
{
using namespace Eigen;
nfree = V.rows() - fixed; // free vertices (at the beginning ov m.V) - global
nconst = V.rows()-nfree; // #constrained vertices
igl::vertex_triangle_adjacency(V,F,VT,VTi); // compute vertex to face relationship
igl::cotmatrix_entries(V,F,C); // cotangent matrix for opt. rotations - global
igl::cotmatrix(V,F,L);
SparseMatrix<double> MA; // internal matrix for ARAP-warping energy
MatrixXd LfcVc; // RHS (partial) for ARAP-warping energy
SparseMatrix<double> MS; // internal matrix for smoothing energy
MatrixXd bS; // RHS (full) for smoothing energy
precompute_ARAP(MA,LfcVc); // precompute terms for the ARAP-warp part
precompute_SMOOTH(MS,bS); // precompute terms for the smoothing part
compute_idealWarp(WW); // computes the ideal warps
RW.resize(F.rows()); // init rotation matrices - global
M = (1-Lambda)*MA + Lambda*MS; // matrix for linear system - global
RHS = (1-Lambda)*LfcVc + Lambda*bS; // RHS (partial) for linear system - global
solver.compute(M); // system pre-conditioning
if (solver.info()!=Eigen::Success) {fprintf(stderr,"Decomposition failed in pre-conditioning!\n"); exit(-1);}
fprintf(stdout,"Preconditioning done.\n");
}
IGL_INLINE void Frame_field_deformer::precompute_ARAP(Eigen::SparseMatrix<double> & Lff, Eigen::MatrixXd & LfcVc)
{
using namespace Eigen;
fprintf(stdout,"Precomputing ARAP terms\n");
SparseMatrix<double> LL = -4*L;
Lff = SparseMatrix<double>(nfree,nfree);
extractBlock(LL,0,0,nfree,nfree,Lff);
SparseMatrix<double> Lfc = SparseMatrix<double>(nfree,nconst);
extractBlock(LL,0,nfree,nfree,nconst,Lfc);
LfcVc = - Lfc * V_w.block(nfree,0,nconst,3);
}
IGL_INLINE void Frame_field_deformer::precompute_SMOOTH(Eigen::SparseMatrix<double> & MS, Eigen::MatrixXd & bS)
{
using namespace Eigen;
fprintf(stdout,"Precomputing SMOOTH terms\n");
SparseMatrix<double> LL = 4*L*L;
// top-left
MS = SparseMatrix<double>(nfree,nfree);
extractBlock(LL,0,0,nfree,nfree,MS);
// top-right
SparseMatrix<double> Mfc = SparseMatrix<double>(nfree,nconst);
extractBlock(LL,0,nfree,nfree,nconst,Mfc);
MatrixXd MfcVc = Mfc * V_w.block(nfree,0,nconst,3);
bS = (LL*V).block(0,0,nfree,3)-MfcVc;
}
IGL_INLINE void Frame_field_deformer::extractBlock(Eigen::SparseMatrix<double> & mat, int r0, int c0, int r, int c, Eigen::SparseMatrix<double> & m1)
{
std::vector<Eigen::Triplet<double> > tripletList;
for (int k=c0; k<c0+c; ++k)
for (Eigen::SparseMatrix<double>::InnerIterator it(mat,k); it; ++it)
{
if (it.row()>=r0 && it.row()<r0+r)
tripletList.push_back(Eigen::Triplet<double>(it.row()-r0,it.col()-c0,it.value()));
}
m1.setFromTriplets(tripletList.begin(), tripletList.end());
}
IGL_INLINE void Frame_field_deformer::compute_optimal_rotations()
{
using namespace Eigen;
Matrix<double,3,3> r,S,P,PP,D;
for (int i=0;i<F.rows();i++)
{
// input tri --- could be done once and saved in a matrix
P.col(0) = (V.row(F(i,1))-V.row(F(i,0))).transpose();
P.col(1) = (V.row(F(i,2))-V.row(F(i,1))).transpose();
P.col(2) = (V.row(F(i,0))-V.row(F(i,2))).transpose();
P = WW[i] * P; // apply ideal warp
// current tri
PP.col(0) = (V_w.row(F(i,1))-V_w.row(F(i,0))).transpose();
PP.col(1) = (V_w.row(F(i,2))-V_w.row(F(i,1))).transpose();
PP.col(2) = (V_w.row(F(i,0))-V_w.row(F(i,2))).transpose();
// cotangents
D << C(i,2), 0, 0,
0, C(i,0), 0,
0, 0, C(i,1);
S = PP*D*P.transpose();
Eigen::JacobiSVD<Matrix<double,3,3> > svd(S, Eigen::ComputeFullU | Eigen::ComputeFullV );
Matrix<double,3,3> su = svd.matrixU();
Matrix<double,3,3> sv = svd.matrixV();
r = su*sv.transpose();
if (r.determinant()<0) // correct reflections
{
su(0,2)=-su(0,2); su(1,2)=-su(1,2); su(2,2)=-su(2,2);
r = su*sv.transpose();
}
RW[i] = r*WW[i]; // RW INCORPORATES IDEAL WARP WW!!!
}
}
IGL_INLINE void Frame_field_deformer::compute_optimal_positions()
{
using namespace Eigen;
// compute variable RHS of ARAP-warp part of the system
MatrixXd b(nfree,3); // fx3 known term of the system
MatrixXd X; // result
int t; // triangles incident to edge (i,j)
int vi,i1,i2; // index of vertex i wrt tri t0
for (int i=0;i<nfree;i++)
{
b.row(i) << 0.0, 0.0, 0.0;
for (int k=0;k<(int)VT[i].size();k++) // for all incident triangles
{
t = VT[i][k]; // incident tri
vi = (i==F(t,0))?0:(i==F(t,1))?1:(i==F(t,2))?2:3; // index of i in t
assert(vi!=3);
i1 = F(t,(vi+1)%3);
i2 = F(t,(vi+2)%3);
b.row(i)+=(C(t,(vi+2)%3)*RW[t]*(V.row(i1)-V.row(i)).transpose()).transpose();
b.row(i)+=(C(t,(vi+1)%3)*RW[t]*(V.row(i2)-V.row(i)).transpose()).transpose();
}
}
b/=2.0;
b=-4*b;
b*=(1-Lambda); // blend
b+=RHS; // complete known term
X = solver.solve(b);
if (solver.info()!=Eigen::Success) {printf("Solving linear system failed!\n"); return;}
// copy result to mw.V
for (int i=0;i<nfree;i++)
V_w.row(i)=X.row(i);
}
IGL_INLINE void Frame_field_deformer::computeXField(std::vector< Eigen::Matrix<double,3,2> > & XF)
{
using namespace Eigen;
Matrix<double,3,3> P,PP,DG;
XF.resize(F.rows());
for (int i=0;i<F.rows();i++)
{
int i0,i1,i2;
// indexes of vertices of face i
i0 = F(i,0); i1 = F(i,1); i2 = F(i,2);
// input frame
P.col(0) = (V.row(i1)-V.row(i0)).transpose();
P.col(1) = (V.row(i2)-V.row(i0)).transpose();
P.col(2) = P.col(0).cross(P.col(1));
// output triangle brought to origin
PP.col(0) = (V_w.row(i1)-V_w.row(i0)).transpose();
PP.col(1) = (V_w.row(i2)-V_w.row(i0)).transpose();
PP.col(2) = PP.col(0).cross(PP.col(1));
// deformation gradient
DG = PP * P.inverse();
XF[i] = DG * FF[i];
}
}
// computes in WW the ideal warp at each tri to make the frame field a cross
IGL_INLINE void Frame_field_deformer::compute_idealWarp(std::vector< Eigen::Matrix<double,3,3> > & WW)
{
using namespace Eigen;
WW.resize(F.rows());
for (int i=0;i<(int)FF.size();i++)
{
Vector3d v0,v1,v2;
v0 = FF[i].col(0);
v1 = FF[i].col(1);
v2=v0.cross(v1); v2.normalize(); // normal
Matrix3d A,AI; // compute affine map A that brings:
A << v0[0], v1[0], v2[0], // first vector of FF to x unary vector
v0[1], v1[1], v2[1], // second vector of FF to xy plane
v0[2], v1[2], v2[2]; // triangle normal to z unary vector
AI = A.inverse();
// polar decomposition to discard rotational component (unnecessary but makes it easier)
Eigen::JacobiSVD<Matrix<double,3,3> > svd(AI, Eigen::ComputeFullU | Eigen::ComputeFullV );
//Matrix<double,3,3> au = svd.matrixU();
Matrix<double,3,3> av = svd.matrixV();
DiagonalMatrix<double,3> as(svd.singularValues());
WW[i] = av*as*av.transpose();
}
}
}
IGL_INLINE void igl::frame_field_deformer(
const Eigen::MatrixXd& V,
const Eigen::MatrixXi& F,
const Eigen::MatrixXd& FF1,
const Eigen::MatrixXd& FF2,
Eigen::MatrixXd& V_d,
Eigen::MatrixXd& FF1_d,
Eigen::MatrixXd& FF2_d,
const int iterations,
const double lambda,
const bool perturb_initial_guess)
{
using namespace Eigen;
// Solvers
Frame_field_deformer deformer;
// Init optimizer
deformer.init(V, F, FF1, FF2, lambda, perturb_initial_guess ? 0.1 : 0);
// Optimize
deformer.optimize(iterations,true);
// Copy positions
V_d = deformer.V_w;
// Allocate
FF1_d.resize(F.rows(),3);
FF2_d.resize(F.rows(),3);
// Copy frame field
for(unsigned i=0; i<deformer.XF.size(); ++i)
{
FF1_d.row(i) = deformer.XF[i].col(0);
FF2_d.row(i) = deformer.XF[i].col(1);
}
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
#endif