dust3d/third_party/libigl/include/igl/normal_derivative.cpp

119 lines
3.4 KiB
C++
Raw Normal View History

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2015 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "LinSpaced.h"
#include "normal_derivative.h"
#include "cotmatrix_entries.h"
#include "slice.h"
#include <cassert>
template <
typename DerivedV,
typename DerivedEle,
typename Scalar>
IGL_INLINE void igl::normal_derivative(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::PlainObjectBase<DerivedEle> & Ele,
Eigen::SparseMatrix<Scalar>& DD)
{
using namespace Eigen;
using namespace std;
// Element simplex-size
const size_t ss = Ele.cols();
assert( ((ss==3) || (ss==4)) && "Only triangles or tets");
// cotangents
Matrix<Scalar,Dynamic,Dynamic> C;
cotmatrix_entries(V,Ele,C);
vector<Triplet<Scalar> > IJV;
// Number of elements
const size_t m = Ele.rows();
// Number of vertices
const size_t n = V.rows();
switch(ss)
{
default:
assert(false);
return;
case 4:
{
const MatrixXi DDJ =
slice(
Ele,
(VectorXi(24)<<
1,0,2,0,3,0,2,1,3,1,0,1,3,2,0,2,1,2,0,3,1,3,2,3).finished(),
2);
MatrixXi DDI(m,24);
for(size_t f = 0;f<4;f++)
{
const auto & I = (igl::LinSpaced<VectorXi >(m,0,m-1).array()+f*m).eval();
for(size_t r = 0;r<6;r++)
{
DDI.col(f*6+r) = I;
}
}
const DiagonalMatrix<Scalar,24,24> S =
(Matrix<Scalar,2,1>(1,-1).template replicate<12,1>()).asDiagonal();
Matrix<Scalar,Dynamic,Dynamic> DDV =
slice(
C,
(VectorXi(24)<<
2,2,1,1,3,3,0,0,4,4,2,2,5,5,1,1,0,0,3,3,4,4,5,5).finished(),
2);
DDV *= S;
IJV.reserve(DDV.size());
for(size_t f = 0;f<6*4;f++)
{
for(size_t e = 0;e<m;e++)
{
IJV.push_back(Triplet<Scalar>(DDI(e,f),DDJ(e,f),DDV(e,f)));
}
}
DD.resize(m*4,n);
DD.setFromTriplets(IJV.begin(),IJV.end());
break;
}
case 3:
{
const MatrixXi DDJ =
slice(Ele,(VectorXi(12)<<2,0,1,0,0,1,2,1,1,2,0,2).finished(),2);
MatrixXi DDI(m,12);
for(size_t f = 0;f<3;f++)
{
const auto & I = (igl::LinSpaced<VectorXi >(m,0,m-1).array()+f*m).eval();
for(size_t r = 0;r<4;r++)
{
DDI.col(f*4+r) = I;
}
}
const DiagonalMatrix<Scalar,12,12> S =
(Matrix<Scalar,2,1>(1,-1).template replicate<6,1>()).asDiagonal();
Matrix<Scalar,Dynamic,Dynamic> DDV =
slice(C,(VectorXi(12)<<1,1,2,2,2,2,0,0,0,0,1,1).finished(),2);
DDV *= S;
IJV.reserve(DDV.size());
for(size_t f = 0;f<12;f++)
{
for(size_t e = 0;e<m;e++)
{
IJV.push_back(Triplet<Scalar>(DDI(e,f),DDJ(e,f),DDV(e,f)));
}
}
DD.resize(m*3,n);
DD.setFromTriplets(IJV.begin(),IJV.end());
break;
}
}
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
template void igl::normal_derivative<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, double>(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<double, 0, int>&);
#endif