226 lines
5.9 KiB
C
226 lines
5.9 KiB
C
|
// Copyright (c) 2000
|
||
|
// Utrecht University (The Netherlands),
|
||
|
// ETH Zurich (Switzerland),
|
||
|
// INRIA Sophia-Antipolis (France),
|
||
|
// Max-Planck-Institute Saarbruecken (Germany),
|
||
|
// and Tel-Aviv University (Israel). All rights reserved.
|
||
|
//
|
||
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU Lesser General Public License as
|
||
|
// published by the Free Software Foundation; either version 3 of the License,
|
||
|
// or (at your option) any later version.
|
||
|
//
|
||
|
// Licensees holding a valid commercial license may use this file in
|
||
|
// accordance with the commercial license agreement provided with the software.
|
||
|
//
|
||
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
||
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
//
|
||
|
// $URL$
|
||
|
// $Id$
|
||
|
// SPDX-License-Identifier: LGPL-3.0+
|
||
|
//
|
||
|
//
|
||
|
// Author(s) : Andreas Fabri
|
||
|
|
||
|
#ifndef CGAL_CARTESIAN_TETRAHEDRON_3_H
|
||
|
#define CGAL_CARTESIAN_TETRAHEDRON_3_H
|
||
|
|
||
|
#include <CGAL/array.h>
|
||
|
#include <CGAL/Handle_for.h>
|
||
|
#include <CGAL/enum.h>
|
||
|
#include <vector>
|
||
|
#include <functional>
|
||
|
|
||
|
namespace CGAL {
|
||
|
|
||
|
template <class R_>
|
||
|
class TetrahedronC3
|
||
|
{
|
||
|
typedef typename R_::FT FT;
|
||
|
typedef typename R_::Point_3 Point_3;
|
||
|
typedef typename R_::Plane_3 Plane_3;
|
||
|
typedef typename R_::Tetrahedron_3 Tetrahedron_3;
|
||
|
|
||
|
typedef cpp11::array<Point_3, 4> Rep;
|
||
|
typedef typename R_::template Handle<Rep>::type Base;
|
||
|
|
||
|
Base base;
|
||
|
|
||
|
public:
|
||
|
typedef R_ R;
|
||
|
|
||
|
TetrahedronC3() {}
|
||
|
|
||
|
TetrahedronC3(const Point_3 &p, const Point_3 &q, const Point_3 &r,
|
||
|
const Point_3 &s)
|
||
|
: base(CGAL::make_array(p, q, r, s)) {}
|
||
|
|
||
|
const Point_3 & vertex(int i) const;
|
||
|
const Point_3 & operator[](int i) const;
|
||
|
|
||
|
typename R::Boolean operator==(const TetrahedronC3 &t) const;
|
||
|
typename R::Boolean operator!=(const TetrahedronC3 &t) const;
|
||
|
|
||
|
typename R::Orientation orientation() const;
|
||
|
typename R::Oriented_side oriented_side(const Point_3 &p) const;
|
||
|
typename R::Bounded_side bounded_side(const Point_3 &p) const;
|
||
|
|
||
|
typename R::Boolean has_on_boundary(const Point_3 &p) const;
|
||
|
typename R::Boolean has_on_positive_side(const Point_3 &p) const;
|
||
|
typename R::Boolean has_on_negative_side(const Point_3 &p) const;
|
||
|
typename R::Boolean has_on_bounded_side(const Point_3 &p) const;
|
||
|
typename R::Boolean has_on_unbounded_side(const Point_3 &p) const;
|
||
|
|
||
|
typename R::Boolean is_degenerate() const;
|
||
|
};
|
||
|
|
||
|
template < class R >
|
||
|
typename R::Boolean
|
||
|
TetrahedronC3<R>::
|
||
|
operator==(const TetrahedronC3<R> &t) const
|
||
|
{
|
||
|
if (CGAL::identical(base, t.base))
|
||
|
return true;
|
||
|
if (orientation() != t.orientation())
|
||
|
return false;
|
||
|
|
||
|
std::vector< Point_3 > V1;
|
||
|
std::vector< Point_3 > V2;
|
||
|
typename std::vector< Point_3 >::iterator uniq_end1;
|
||
|
typename std::vector< Point_3 >::iterator uniq_end2;
|
||
|
int k;
|
||
|
for ( k=0; k < 4; k++) V1.push_back( vertex(k));
|
||
|
for ( k=0; k < 4; k++) V2.push_back( t.vertex(k));
|
||
|
typename R::Less_xyz_3 Less_object = R().less_xyz_3_object();
|
||
|
std::sort(V1.begin(), V1.end(), Less_object);
|
||
|
std::sort(V2.begin(), V2.end(), Less_object);
|
||
|
uniq_end1 = std::unique( V1.begin(), V1.end());
|
||
|
uniq_end2 = std::unique( V2.begin(), V2.end());
|
||
|
V1.erase( uniq_end1, V1.end());
|
||
|
V2.erase( uniq_end2, V2.end());
|
||
|
return V1 == V2;
|
||
|
}
|
||
|
|
||
|
template < class R >
|
||
|
inline
|
||
|
typename R::Boolean
|
||
|
TetrahedronC3<R>::
|
||
|
operator!=(const TetrahedronC3<R> &t) const
|
||
|
{
|
||
|
return !(*this == t);
|
||
|
}
|
||
|
|
||
|
template < class R >
|
||
|
const typename TetrahedronC3<R>::Point_3 &
|
||
|
TetrahedronC3<R>::
|
||
|
vertex(int i) const
|
||
|
{
|
||
|
if (i<0) i=(i%4)+4;
|
||
|
else if (i>3) i=i%4;
|
||
|
switch (i)
|
||
|
{
|
||
|
case 0: return get_pointee_or_identity(base)[0];
|
||
|
case 1: return get_pointee_or_identity(base)[1];
|
||
|
case 2: return get_pointee_or_identity(base)[2];
|
||
|
default: return get_pointee_or_identity(base)[3];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template < class R >
|
||
|
inline
|
||
|
const typename TetrahedronC3<R>::Point_3 &
|
||
|
TetrahedronC3<R>::
|
||
|
operator[](int i) const
|
||
|
{
|
||
|
return vertex(i);
|
||
|
}
|
||
|
|
||
|
template < class R >
|
||
|
typename R::Orientation
|
||
|
TetrahedronC3<R>::
|
||
|
orientation() const
|
||
|
{
|
||
|
return R().orientation_3_object()(vertex(0), vertex(1),
|
||
|
vertex(2), vertex(3));
|
||
|
}
|
||
|
|
||
|
template < class R >
|
||
|
typename R::Oriented_side
|
||
|
TetrahedronC3<R>::
|
||
|
oriented_side(const typename TetrahedronC3<R>::Point_3 &p) const
|
||
|
{
|
||
|
typename R::Orientation o = orientation();
|
||
|
if (o != ZERO)
|
||
|
return enum_cast<Oriented_side>(bounded_side(p)) * o;
|
||
|
|
||
|
CGAL_kernel_assertion (!is_degenerate());
|
||
|
return ON_ORIENTED_BOUNDARY;
|
||
|
}
|
||
|
|
||
|
template < class R >
|
||
|
typename R::Bounded_side
|
||
|
TetrahedronC3<R>::
|
||
|
bounded_side(const typename TetrahedronC3<R>::Point_3 &p) const
|
||
|
{
|
||
|
return R().bounded_side_3_object()
|
||
|
(static_cast<const typename R::Tetrahedron_3&>(*this), p);
|
||
|
}
|
||
|
|
||
|
template < class R >
|
||
|
inline
|
||
|
typename R::Boolean
|
||
|
TetrahedronC3<R>::has_on_boundary
|
||
|
(const typename TetrahedronC3<R>::Point_3 &p) const
|
||
|
{
|
||
|
return oriented_side(p) == ON_ORIENTED_BOUNDARY;
|
||
|
}
|
||
|
|
||
|
template < class R >
|
||
|
inline
|
||
|
typename R::Boolean
|
||
|
TetrahedronC3<R>::has_on_positive_side
|
||
|
(const typename TetrahedronC3<R>::Point_3 &p) const
|
||
|
{
|
||
|
return oriented_side(p) == ON_POSITIVE_SIDE;
|
||
|
}
|
||
|
|
||
|
template < class R >
|
||
|
inline
|
||
|
typename R::Boolean
|
||
|
TetrahedronC3<R>::has_on_negative_side
|
||
|
(const typename TetrahedronC3<R>::Point_3 &p) const
|
||
|
{
|
||
|
return oriented_side(p) == ON_NEGATIVE_SIDE;
|
||
|
}
|
||
|
|
||
|
template < class R >
|
||
|
inline
|
||
|
typename R::Boolean
|
||
|
TetrahedronC3<R>::has_on_bounded_side
|
||
|
(const typename TetrahedronC3<R>::Point_3 &p) const
|
||
|
{
|
||
|
return bounded_side(p) == ON_BOUNDED_SIDE;
|
||
|
}
|
||
|
|
||
|
template < class R >
|
||
|
inline
|
||
|
typename R::Boolean
|
||
|
TetrahedronC3<R>::has_on_unbounded_side
|
||
|
(const typename TetrahedronC3<R>::Point_3 &p) const
|
||
|
{
|
||
|
return bounded_side(p) == ON_UNBOUNDED_SIDE;
|
||
|
}
|
||
|
|
||
|
template < class R >
|
||
|
inline
|
||
|
typename R::Boolean
|
||
|
TetrahedronC3<R>::is_degenerate() const
|
||
|
{
|
||
|
return orientation() == COPLANAR;
|
||
|
}
|
||
|
|
||
|
} //namespace CGAL
|
||
|
|
||
|
#endif // CGAL_CARTESIAN_TETRAHEDRON_3_H
|