dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Classification/Cluster.h

235 lines
6.4 KiB
C
Raw Normal View History

// Copyright (c) 2018 GeometryFactory Sarl (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
// You can redistribute it and/or modify it under the terms of the GNU
// General Public License as published by the Free Software Foundation,
// either version 3 of the License, or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0+
//
// Author(s) : Simon Giraudot
#ifndef CGAL_CLASSIFICATION_CLUSTER_H
#define CGAL_CLASSIFICATION_CLUSTER_H
#include <CGAL/license/Classification.h>
#include <CGAL/Bbox_3.h>
#include <CGAL/property_map.h>
#include <boost/iterator/transform_iterator.hpp>
namespace CGAL {
namespace Classification {
/*!
\ingroup PkgClassificationCluster
\brief Class that represent a cluster of items to be classified as
a single atomic object.
A cluster is a set of indices of items inside an input range with
random access.
\tparam ItemRange model of `ConstRange`. Its iterator type is
`RandomAccessIterator`. Its value type depends on the data that is
classified (for example, `CGAL::Point_3` or `CGAL::Triangle_3`).
\tparam ItemMap model of `ReadablePropertyMap` whose key
type is the value type of the iterator of `ItemRange` and value type
is the type of item to classify (for example, `CGAL::Point_3`).
*/
template <typename ItemRange, typename ItemMap>
class Cluster
{
public:
typedef typename ItemMap::value_type Item;
/// \cond SKIP_IN_MANUAL
struct Neighbor_query
{
template <typename OutputIterator>
OutputIterator operator() (const Cluster& cluster, OutputIterator output) const
{
return std::copy (cluster.neighbors.begin(), cluster.neighbors.end(), output);
}
};
std::vector<std::size_t> neighbors;
/// \endcond
private:
const ItemRange* m_range;
ItemMap m_item_map;
std::vector<std::size_t> m_inliers;
mutable CGAL::Bbox_3 m_bounding_box;
int m_training;
int m_label;
public:
/// \name Constructor
/// @{
/*!
\brief Constructs an empty cluster of items.
Items in the clusters will be subsets of `range`.
\param range input range.
\param item_map property map to access the input items.
*/
Cluster (const ItemRange& range, ItemMap item_map)
: m_range (&range), m_item_map (item_map)
, m_training(-1), m_label(-1)
{ }
/// @}
/// \name Modifications
/// @{
/*!
\brief Clears the cluster.
*/
void clear () { m_inliers.clear(); }
/*!
\brief Inserts element of index `idx` in the cluster.
*/
void insert (std::size_t idx) { m_inliers.push_back (idx); }
/// @}
/// \name Access
/// @{
/*!
\brief Returns the number of items in the cluster.
*/
std::size_t size() const { return m_inliers.size(); }
/*!
\brief Returns the index (in the input range) of the i^{th} element of the cluster.
*/
std::size_t index (std::size_t i) const { return m_inliers[i]; }
/*!
\brief Returns the i^{th} item of the cluster.
*/
const Item& operator[] (std::size_t i) const
{ return get (m_item_map, *(m_range->begin() + m_inliers[i])); }
/*!
\brief Returns the bounding box of the cluster.
*/
CGAL::Bbox_3 bbox() const
{
if (m_bounding_box == CGAL::Bbox_3())
{
m_bounding_box
= CGAL::bbox_3 (boost::make_transform_iterator
(m_range->begin(),
CGAL::Property_map_to_unary_function<ItemMap>(m_item_map)),
boost::make_transform_iterator
(m_range->end(),
CGAL::Property_map_to_unary_function<ItemMap>(m_item_map)));
}
return m_bounding_box;
}
/// @}
/// \name Classification
/// @{
/*!
\brief Returns the input classification value used for training.
*/
int training() const { return m_training; }
/*!
\brief Returns a reference to the input classification value used for training.
*/
int& training() { return m_training; }
/*!
\brief Returns the output classification value.
*/
int label() const { return m_label; }
/*!
\brief Returns a reference to the output classification value.
*/
int& label() { return m_label; }
// @}
};
/*!
\ingroup PkgClassificationCluster
\brief Given a set of cluster indices, segments the input `range`
into `Cluster` objects.
All items whose index value `idx` (accessed through `index_map`)
is the same are stored in the same cluster at position `idx` in
the `clusters` vector.
\tparam ItemRange model of `ConstRange`. Its iterator type is
`RandomAccessIterator`. Its value type depends on the data that is
classified (for example, `CGAL::Point_3` or `CGAL::Triangle_3`).
\tparam ItemMap model of `ReadablePropertyMap` whose key
type is the value type of the iterator of `ItemRange` and value type
is the type of item to classify (for example, `CGAL::Point_3`).
\tparam IndexMap is a model of `ReadablePropertyMap` with value type `int`.
\param range input range.
\param item_map property map to access the input items.
\param index_map property map that associates the index of an item
in the input range to the index of a cluster (-1 if item is not
assigned to a cluster).
\param clusters container where generated `Cluster` objects are stored.
*/
template <typename ItemRange, typename ItemMap, typename IndexMap>
std::size_t create_clusters_from_indices (const ItemRange& range,
ItemMap item_map,
IndexMap index_map,
std::vector<Cluster<ItemRange, ItemMap> >& clusters)
{
std::size_t idx = 0;
for (typename ItemRange::const_iterator it = range.begin(); it != range.end(); ++ it, ++ idx)
{
int c = int(get (index_map, idx));
if (c == -1)
continue;
if (std::size_t(c) >= clusters.size())
clusters.resize (c + 1, Cluster<ItemRange, ItemMap>(range, item_map));
clusters[std::size_t(c)].insert (idx);
}
return clusters.size();
}
} // namespace Classification
} // namespace CGAL
#endif // CGAL_CLASSIFICATION_CLUSTER_H