dust3d/thirdparty/cgal/CGAL-4.13/include/CGAL/Kernel_d/VectorCd.h

244 lines
7.3 KiB
C
Raw Normal View History

// Copyright (c) 2000,2001
// Utrecht University (The Netherlands),
// ETH Zurich (Switzerland),
// INRIA Sophia-Antipolis (France),
// Max-Planck-Institute Saarbruecken (Germany),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 3 of the License,
// or (at your option) any later version.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $URL$
// $Id$
// SPDX-License-Identifier: LGPL-3.0+
//
// Author(s) : Michael Seel
#ifndef CGAL_VECTORCD_H
#define CGAL_VECTORCD_H
#include <CGAL/basic.h>
#include <CGAL/Kernel_d/Tuple_d.h>
namespace CGAL {
#define PointCd PointCd2
template <class FT, class LA> class VectorCd;
template <class FT, class LA>
std::istream& operator>>(std::istream&, VectorCd<FT,LA>&);
template <class FT, class LA>
std::ostream& operator<<(std::ostream&, const VectorCd<FT,LA>&);
template <class _FT, class _LA>
class VectorCd : public Handle_for< Tuple_d<_FT,_LA> > {
typedef Tuple_d<_FT,_LA> Tuple;
typedef Handle_for<Tuple> Base;
typedef VectorCd<_FT,_LA> Self;
using Base::ptr;
using Base::copy_on_write;
typename _LA::Vector& vector_rep() { return ptr()->v; }
const typename _LA::Vector& vector_rep() const { return ptr()->v; }
_FT& entry(int i) { return ptr()->v[i]; }
const _FT& entry(int i) const { return ptr()->v[i]; }
void invert_rep() { ptr()->invert(); }
VectorCd(const Base& b) : Base(b) {}
public:
typedef _FT RT;
typedef _FT FT;
typedef _LA LA;
typedef typename Tuple::const_iterator Cartesian_const_iterator;
typedef typename Tuple::Homogeneous_const_iterator Homogeneous_const_iterator;
class Base_vector {};
friend class PointCd<FT,LA>;
friend class DirectionCd<FT,LA>;
friend class HyperplaneCd<FT,LA>;
VectorCd(int d = 0) : Base( Tuple(d) ) {}
VectorCd(int d, Null_vector) : Base( Tuple(d) ) {}
template <class InputIterator>
VectorCd(int d, InputIterator first, InputIterator last)
: Base( Tuple(d,first,last) )
{ if ( first == last ) return;
// else first specifies common denominator:
CGAL_assertion_msg(*first!=FT(0),
"VectorCd::constructor: denominator must be nonzero.");
for (int i=0; i<d; ++i) entry(i)/=*first;
}
template <class InputIterator>
VectorCd(int d, InputIterator first, InputIterator last,
const FT& D) : Base( Tuple(d,first,last) )
{ CGAL_assertion_msg(D!=FT(0), "VectorCd::constructor: D must be nonzero.");
for (int i=0; i<d; ++i) entry(i)/=D;
}
VectorCd(int d, Base_vector, int i) : Base( Tuple(d) )
{ if ( d == 0 ) return;
CGAL_assertion_msg((0<=i&&i<d),"VectorCd::base: index out of range.");
entry(i) = 1;
}
VectorCd(const FT& x, const FT& y, const FT& w = 1)
: Base( Tuple(x,y) )
{ CGAL_assertion_msg((w!= FT(0)), "VectorCd::construction: w == 0.");
vector_rep()/=w; }
VectorCd(int x, int y, int w = 1)
: Base( Tuple((FT)x,(FT)y) )
{ CGAL_assertion_msg((w!=0), "VectorCd::construction: w == 0.");
vector_rep()/=w; }
VectorCd(const FT& x, const FT& y, const FT& z, const FT& w)
: Base( Tuple(x,y,z) )
{ CGAL_assertion_msg((w!=FT(0)), "VectorCd::construction: w == 0.");
vector_rep()/=w; }
VectorCd(int x, int y, int z, int w) :
Base( Tuple((FT)x,(FT)y,(FT)z, MatchHelper()) )
{ CGAL_assertion_msg((w!=0), "VectorCd::construction: w == 0.");
vector_rep()/=w; }
VectorCd(const VectorCd<FT,LA>& p) : Base(p) {}
~VectorCd() {}
int dimension() const { return ptr()->size(); }
FT cartesian(int i) const
{ CGAL_assertion_msg((0<=i && i<(dimension())),
"VectorCd::cartesian(): index out of range.");
return entry(i);
}
FT operator[](int i) const { return cartesian(i); }
FT homogeneous(int i) const
{ CGAL_assertion_msg((0<=i && i<=(dimension())),
"VectorCd::homogeneous(): index out of range.");
if (i!=dimension()) return entry(i); else return FT(1);
}
FT squared_length() const
{ return vector_rep()*vector_rep(); }
Cartesian_const_iterator cartesian_begin() const
{ return ptr()->begin(); }
Cartesian_const_iterator cartesian_end() const
{ return ptr()->end(); }
Homogeneous_const_iterator homogeneous_begin() const
{ return Homogeneous_const_iterator(ptr()->begin(),ptr()->end()); }
Homogeneous_const_iterator homogeneous_end() const
{ return Homogeneous_const_iterator(ptr()->beyondend()); }
inline PointCd<FT,LA> to_point() const;
inline DirectionCd<FT,LA> direction() const;
/*{\Mop returns the direction of |\Mvar|. }*/
VectorCd<FT,LA> transform(const Aff_transformationCd<FT,LA>& t) const;
VectorCd<FT,LA> scale(const FT& m) const
{ VectorCd<FT,LA> result(*this);
result.copy_on_write();
result.vector_rep() *= m;
return result;
}
void self_scale(const FT& m)
{ copy_on_write();
vector_rep() *= m;
}
VectorCd<FT,LA>& operator*=(const FT& n)
{ self_scale(n); return *this; }
VectorCd<FT,LA>& operator*=(int n)
{ self_scale(n); return *this; }
VectorCd<FT,LA> operator/(int n) const
{ return scale(FT(1)/FT(n)); }
VectorCd<FT,LA> operator/(const FT& n) const
{ return scale(FT(1)/n); }
VectorCd<FT,LA>& operator/=(const FT& n)
{ self_scale(FT(1)/n); return *this; }
VectorCd<FT,LA>& operator/=(int n)
{ self_scale(FT(1)/FT(n)); return *this; }
FT operator* (const VectorCd<FT,LA>& w) const
{ return vector_rep()*w.vector_rep(); }
VectorCd<FT,LA> operator+(const VectorCd<FT,LA>& w) const
{ VectorCd<FT,LA> result(w.dimension());
result.ptr()->cartesian_add(ptr(),w.ptr());
return result; }
VectorCd<FT,LA> operator-(const VectorCd<FT,LA>& w) const
{ VectorCd<FT,LA> result(w.dimension());
result.ptr()->cartesian_sub(ptr(),w.ptr());
return result; }
VectorCd<FT,LA> operator-() const
{ VectorCd<FT,LA> result(*this);
result.copy_on_write(); // creates a copied object!
result.ptr()->invert();
return result;
}
VectorCd<FT,LA>& operator+=(const VectorCd<FT,LA>& w)
{ copy_on_write(); vector_rep() += w.vector_rep();
return *this; }
VectorCd<FT,LA>& operator-=(const VectorCd<FT,LA>& w)
{ copy_on_write(); vector_rep() -= w.vector_rep();
return *this; }
static Comparison_result cmp(
const VectorCd<FT,LA>& x, const VectorCd<FT,LA>& y)
{ Compare_componentwise<FT,LA> cmpobj;
return cmpobj(x.vector_rep(),y.vector_rep());
}
bool operator==(const VectorCd<FT,LA>& w) const
{ if ( this->identical(w) ) return true;
if ( dimension() != w.dimension() ) return false;
return vector_rep()==w.vector_rep();
}
bool operator!=(const VectorCd<FT,LA>& w) const
{ return !operator==(w); }
bool is_zero() const
{ return vector_rep().is_zero(); }
FT hx() const { return cartesian(0); }
FT hy() const { return cartesian(1); }
FT hz() const { return cartesian(2); }
FT hw() const { return FT(1); }
FT x() const { return cartesian(0); }
FT y() const { return cartesian(1); }
FT z() const { return cartesian(2); }
friend std::istream& operator>> <>
(std::istream& I, VectorCd<FT,LA>& v);
friend std::ostream& operator<< <>
(std::ostream& O, const VectorCd<FT,LA>& v);
}; // end of class VectorCd
#undef PointCd
} //namespace CGAL
#endif // CGAL_VECTORCD_H
//----------------------- end of file ----------------------------------