dust3d/thirdparty/carve-1.4.0/lib/polyhedron.cpp

1460 lines
46 KiB
C++
Raw Normal View History

// Begin License:
// Copyright (C) 2006-2008 Tobias Sargeant (tobias.sargeant@gmail.com).
// All rights reserved.
//
// This file is part of the Carve CSG Library (http://carve-csg.com/)
//
// This file may be used under the terms of the GNU General Public
// License version 2.0 as published by the Free Software Foundation
// and appearing in the file LICENSE.GPL2 included in the packaging of
// this file.
//
// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE.
// End:
#if defined(HAVE_CONFIG_H)
# include <carve_config.h>
#endif
#if defined(CARVE_DEBUG)
#define DEBUG_CONTAINS_VERTEX
#endif
#include <carve/djset.hpp>
#include <carve/geom.hpp>
#include <carve/poly.hpp>
#include <carve/octree_impl.hpp>
#include <carve/timing.hpp>
#include <algorithm>
#include BOOST_INCLUDE(random.hpp)
namespace {
struct FV {
carve::poly::Polyhedron::face_t *face;
size_t vertex;
FV(carve::poly::Polyhedron::face_t *f, size_t v) : face(f), vertex(v) { }
};
struct EdgeFaces {
std::list<FV> fwd, rev;
carve::poly::Polyhedron::edge_t *edge;
};
struct EdgeFaceMap {
std::unordered_map<std::pair<const carve::poly::Polyhedron::vertex_t *,
const carve::poly::Polyhedron::vertex_t *>,
size_t,
carve::poly::hash_vertex_ptr> index_map;
std::vector<EdgeFaces> edge_faces;
void sizeHint(size_t n_faces, size_t n_vertices) {
#if defined(UNORDERED_COLLECTIONS_SUPPORT_RESIZE)
index_map.resize(n_faces + n_vertices); // approximately, for a single closed manifold.
#endif
edge_faces.reserve(n_faces + n_vertices);
}
void record(const carve::poly::Polyhedron::vertex_t *v1,
const carve::poly::Polyhedron::vertex_t *v2,
carve::poly::Polyhedron::face_t *f,
size_t i) {
if (v1 < v2) {
size_t &x = index_map[std::make_pair(v1, v2)];
if (x == 0) {
edge_faces.push_back(EdgeFaces());
x = edge_faces.size();
}
edge_faces[x-1].fwd.push_back(FV(f, i));
} else {
size_t &x = index_map[std::make_pair(v2, v1)];
if (x == 0) {
edge_faces.push_back(EdgeFaces());
x = edge_faces.size();
}
edge_faces[x-1].rev.push_back(FV(f, i));
}
}
};
// Interestingly, for one set of inserts and a number of complete
// traversals, a map seems to be faster than an unordered_map. This
// may apply in other places.
struct FaceOrder {
double ang;
const FV *fv;
bool fwd;
FaceOrder(double _ang, const FV *_fv, bool _fwd) : ang(_ang), fv(_fv), fwd(_fwd) { }
};
inline bool operator<(const FaceOrder &a, const FaceOrder &b) {
return a.ang < b.ang || (a.ang == b.ang && a.fwd && !b.fwd);
}
inline std::ostream &operator<<(std::ostream &o, const FaceOrder &a) {
o << (a.fwd ? "+" : "-") << " " << a.ang << " " << a.fv;
return o;
}
bool makeFacePairs(const EdgeFaces &ef,
carve::poly::Polyhedron::edge_t *e,
std::vector<const carve::poly::Polyhedron::face_t *> &edge_face_pairs) {
static carve::TimingName FUNC_NAME("static Polyhedron makeFacePairs()");
carve::TimingBlock block(FUNC_NAME);
edge_face_pairs.clear();
carve::geom3d::Vector evec = (e->v2->v - e->v1->v).normalized();
std::vector<FaceOrder> sorted_faces;
carve::geom3d::Vector base;
base = ef.fwd.front().face->plane_eqn.N;
for (std::list<FV>::const_iterator
f_i = ef.fwd.begin(), f_e = ef.fwd.end(); f_i != f_e; ++f_i) {
double ang = carve::geom3d::antiClockwiseAngle((*f_i).face->plane_eqn.N, base, evec);
if (ang == 0.0 && f_i != ef.fwd.begin()) ang = M_TWOPI + carve::EPSILON;
sorted_faces.push_back(FaceOrder(ang, &(*f_i), true));
}
for (std::list<FV>::const_iterator
f_i = ef.rev.begin(), f_e = ef.rev.end(); f_i != f_e; ++f_i) {
double ang = carve::geom3d::antiClockwiseAngle(-(*f_i).face->plane_eqn.N, base, evec);
if (ang == 0.0) ang = M_TWOPI + carve::EPSILON;
sorted_faces.push_back(FaceOrder(ang, &(*f_i), false));
}
std::sort(sorted_faces.begin(), sorted_faces.end());
for (unsigned i = 0; i < sorted_faces.size();) {
if (!sorted_faces[i].fwd) {
const FV &fv2 = (*(sorted_faces[i++].fv));
edge_face_pairs.push_back(NULL);
edge_face_pairs.push_back(fv2.face);
// std::cerr << "face pair: " << NULL << " " << fv2.face << std::endl;
} else if (i == sorted_faces.size() - 1 || sorted_faces[i + 1].fwd) {
const FV &fv1 = (*(sorted_faces[i++].fv));
edge_face_pairs.push_back(fv1.face);
edge_face_pairs.push_back(NULL);
// std::cerr << "face pair: " << fv1.face << " " << NULL << std::endl;
} else {
const FV &fv1 = (*(sorted_faces[i++].fv));
const FV &fv2 = (*(sorted_faces[i++].fv));
edge_face_pairs.push_back(fv1.face);
edge_face_pairs.push_back(fv2.face);
// std::cerr << "face pair: " << fv1.face << " " << fv2.face << std::endl;
}
}
return true;
}
bool emb_test(carve::poly::Polyhedron *poly,
std::map<int, std::set<int> > &embedding,
carve::geom3d::Vector v,
int m_id) {
std::map<int, carve::PointClass> result;
#if defined(CARVE_DEBUG)
std::cerr << "test " << v << " (m_id:" << m_id << ")" << std::endl;
#endif
poly->testVertexAgainstClosedManifolds(v, result, true);
std::set<int> inside;
for (std::map<int, carve::PointClass>::iterator j = result.begin();
j != result.end();
++j) {
if ((*j).first == m_id) continue;
if ((*j).second == carve::POINT_IN) inside.insert((*j).first);
else if ((*j).second == carve::POINT_ON) {
#if defined(CARVE_DEBUG)
std::cerr << " FAIL" << std::endl;
#endif
return false;
}
}
#if defined(CARVE_DEBUG)
std::cerr << " OK (inside.size()==" << inside.size() << ")" << std::endl;
#endif
embedding[m_id] = inside;
return true;
}
struct order_ef_first_vertex {
bool operator()(const EdgeFaces *a, const EdgeFaces *b) const {
return a->edge->v1 < b->edge->v1;
}
};
struct order_faces {
bool operator()(const carve::poly::Polyhedron::face_t * const &a,
const carve::poly::Polyhedron::face_t * const &b) const {
return std::lexicographical_compare(a->vbegin(), a->vend(), b->vbegin(), b->vend());
}
};
}
namespace carve {
namespace poly {
struct EdgeConnectivityInfo {
EdgeFaceMap ef_map;
};
bool Polyhedron::initSpatialIndex() {
static carve::TimingName FUNC_NAME("Polyhedron::initSpatialIndex()");
carve::TimingBlock block(FUNC_NAME);
octree.setBounds(aabb);
octree.addFaces(faces);
octree.addEdges(edges);
octree.splitTree();
return true;
}
void Polyhedron::invertAll() {
for (size_t i = 0; i < faces.size(); ++i) {
faces[i].invert();
}
for (size_t i = 0; i < edges.size(); ++i) {
std::vector<const face_t *> &f = connectivity.edge_to_face[i];
for (size_t j = 0; j < (f.size() & ~1U); j += 2) {
std::swap(f[j], f[j+1]);
}
}
for (size_t i = 0; i < manifold_is_negative.size(); ++i) {
manifold_is_negative[i] = !manifold_is_negative[i];
}
}
void Polyhedron::invert(const std::vector<bool> &selected_manifolds) {
bool altered = false;
for (size_t i = 0; i < faces.size(); ++i) {
if (faces[i].manifold_id >= 0 &&
(unsigned)faces[i].manifold_id < selected_manifolds.size() &&
selected_manifolds[faces[i].manifold_id]) {
altered = true;
faces[i].invert();
}
}
if (altered) {
for (size_t i = 0; i < edges.size(); ++i) {
std::vector<const face_t *> &f = connectivity.edge_to_face[i];
for (size_t j = 0; j < (f.size() & ~1U); j += 2) {
int m_id = -1;
if (f[j]) m_id = f[j]->manifold_id;
if (f[j+1]) m_id = f[j+1]->manifold_id;
if (m_id >= 0 && (unsigned)m_id < selected_manifolds.size() && selected_manifolds[m_id]) {
std::swap(f[j], f[j+1]);
}
}
}
for (size_t i = 0; i < std::min(selected_manifolds.size(), manifold_is_negative.size()); ++i) {
manifold_is_negative[i] = !manifold_is_negative[i];
}
}
}
void Polyhedron::initVertexConnectivity() {
static carve::TimingName FUNC_NAME("static Polyhedron initVertexConnectivity()");
carve::TimingBlock block(FUNC_NAME);
// allocate space for connectivity info.
connectivity.vertex_to_edge.resize(vertices.size());
connectivity.vertex_to_face.resize(vertices.size());
std::vector<size_t> vertex_face_count;
vertex_face_count.resize(vertices.size());
// work out how many faces/edges each vertex is connected to, in
// order to save on array reallocs.
for (unsigned i = 0; i < faces.size(); ++i) {
face_t &f = faces[i];
for (unsigned j = 0; j < f.nVertices(); j++) {
vertex_face_count[vertexToIndex_fast(f.vertex(j))]++;
}
}
for (size_t i = 0; i < vertices.size(); ++i) {
connectivity.vertex_to_edge[i].reserve(vertex_face_count[i]);
connectivity.vertex_to_face[i].reserve(vertex_face_count[i]);
}
// record connectivity from vertex to edges.
for (size_t i = 0; i < edges.size(); ++i) {
size_t v1i = vertexToIndex_fast(edges[i].v1);
size_t v2i = vertexToIndex_fast(edges[i].v2);
connectivity.vertex_to_edge[v1i].push_back(&edges[i]);
connectivity.vertex_to_edge[v2i].push_back(&edges[i]);
}
// record connectivity from vertex to faces.
for (size_t i = 0; i < faces.size(); ++i) {
face_t &f = faces[i];
for (unsigned j = 0; j < f.nVertices(); j++) {
size_t vi = vertexToIndex_fast(f.vertex(j));
connectivity.vertex_to_face[vi].push_back(&f);
}
}
}
bool Polyhedron::initEdgeConnectivity(const EdgeConnectivityInfo &eci) {
static carve::TimingName FUNC_NAME("static Polyhedron initEdgeConnectivity()");
carve::TimingBlock block(FUNC_NAME);
const std::vector<EdgeFaces> &ef = eci.ef_map.edge_faces;
// pair up incident faces for each edge.
bool is_ok = true;
bool complex = false;
carve::djset::djset face_groups(faces.size());
std::vector<bool> face_open(faces.size(), false);
connectivity.edge_to_face.resize(edges.size());
// simple edges
for (size_t i = 0; i < ef.size(); ++i) {
const std::list<FV> &fwd_faces = ef[i].fwd;
const std::list<FV> &rev_faces = ef[i].rev;
edge_t *edge = ef[i].edge;
size_t edge_index = edgeToIndex_fast(edge);
std::vector<const face_t *> &edge_face_pairs = connectivity.edge_to_face[edge_index];
edge_face_pairs.clear();
if (rev_faces.size() == 0) {
for (std::list<FV>::const_iterator j = fwd_faces.begin(); j != fwd_faces.end(); ++j) {
face_open[faceToIndex_fast(j->face)] = true;
edge_face_pairs.push_back(j->face);
edge_face_pairs.push_back(NULL);
}
} else if (fwd_faces.size() == 0) {
for (std::list<FV>::const_iterator j = rev_faces.begin(); j != rev_faces.end(); ++j) {
face_open[faceToIndex_fast(j->face)] = true;
edge_face_pairs.push_back(NULL);
edge_face_pairs.push_back(j->face);
}
} else if (fwd_faces.size() == 1 && rev_faces.size() == 1) {
edge_face_pairs.push_back(fwd_faces.front().face);
edge_face_pairs.push_back(rev_faces.front().face);
face_groups.merge_sets(faceToIndex_fast(fwd_faces.front().face),
faceToIndex_fast(rev_faces.front().face));
} else {
complex = true;
}
}
if (!complex) return is_ok;
// propagate openness of each face set to all members of the set.
for (size_t i = 0; i < faces.size(); ++i) {
if (face_open[i]) face_open[face_groups.find_set_head(i)] = true;
}
for (size_t i = 0; i < faces.size(); ++i) {
face_open[i] = face_open[face_groups.find_set_head(i)];
}
// complex edges.
std::map<std::vector<int>, std::list<EdgeFaces> > grouped_ef;
for (size_t i = 0; is_ok && i < ef.size(); ++i) {
const std::list<FV> &fwd_faces = ef[i].fwd;
const std::list<FV> &rev_faces = ef[i].rev;
edge_t *edge = ef[i].edge;
size_t edge_index = edgeToIndex_fast(edge);
std::vector<const face_t *> &edge_face_pairs = connectivity.edge_to_face[edge_index];
if (!edge_face_pairs.size()) {
const EdgeFaces &ef_old = ef[i];
EdgeFaces ef_closed;
EdgeFaces ef_open;
ef_open.edge = ef_old.edge;
ef_closed.edge = ef_old.edge;
// group faces into those that form part of an open surface and those that form a closed surface.
for (std::list<FV>::const_iterator j = ef_old.fwd.begin(); j != ef_old.fwd.end(); ++j) {
if (face_open[faceToIndex_fast(j->face)]) {
ef_open.fwd.push_back(*j);
} else {
ef_closed.fwd.push_back(*j);
}
}
for (std::list<FV>::const_iterator j = ef_old.rev.begin(); j != ef_old.rev.end(); ++j) {
if (face_open[faceToIndex_fast(j->face)]) {
ef_open.rev.push_back(*j);
} else {
ef_closed.rev.push_back(*j);
}
}
// make open edge connectivity entries for any open surface faces.
for (std::list<FV>::const_iterator j = ef_open.fwd.begin(); j != ef_open.fwd.end(); ++j) {
edge_face_pairs.push_back(j->face);
edge_face_pairs.push_back(NULL);
}
for (std::list<FV>::const_iterator j = ef_open.rev.begin(); j != ef_open.rev.end(); ++j) {
edge_face_pairs.push_back(NULL);
edge_face_pairs.push_back(j->face);
}
if (ef_closed.fwd.size() == 0 && ef_closed.rev.size() == 0) continue;
// group edges based upon the closed-face sets that are incident to them.
std::vector<int> tag;
tag.reserve(ef_closed.fwd.size() + ef_closed.rev.size());
for (std::list<FV>::const_iterator j = ef_closed.fwd.begin(); j != ef_closed.fwd.end(); ++j) {
tag.push_back(+face_groups.find_set_head(faceToIndex_fast(j->face)) + 1);
}
for (std::list<FV>::const_iterator j = ef_closed.rev.begin(); j != ef_closed.rev.end(); ++j) {
tag.push_back(-face_groups.find_set_head(faceToIndex_fast(j->face)) - 1);
}
std::sort(tag.begin(), tag.end());
// normalise tag to remove edge direction effects.
std::vector<int> revtag = tag;
std::reverse(revtag.begin(), revtag.end());
std::transform(revtag.begin(), revtag.end(), revtag.begin(), std::negate<int>());
if (!std::lexicographical_compare(tag.begin(), tag.end(), revtag.begin(), revtag.end())) {
std::swap(tag, revtag);
}
grouped_ef[tag].push_back(ef_closed);
}
}
// std::cerr << "grouped ef tags:" << std::endl;
for (std::map<std::vector<int>, std::list<EdgeFaces> > ::iterator i = grouped_ef.begin(); i != grouped_ef.end(); ++i) {
const std::vector<int> &tag = (*i).first;
// std::cerr << "tag.size() == " << tag.size() << std::endl;
// for (size_t j = 0; j < tag.size(); ++j) {
// std::cerr << " " << tag[j];
// }
// std::cerr << std::endl;
std::vector<EdgeFaces *> efp;
efp.reserve((*i).second.size());
carve::djset::djset efp_group((*i).second.size());
std::map<const vertex_t *, std::vector<int> > vec_ef;
for (std::list<EdgeFaces>::iterator j = (*i).second.begin(); j != (*i).second.end(); ++j) {
EdgeFaces &ef = *j;
vec_ef[ef.edge->v1].push_back(efp.size());
vec_ef[ef.edge->v2].push_back(efp.size());
efp.push_back(&ef);
}
for (std::map<const vertex_t *, std::vector<int> >::iterator j = vec_ef.begin(); j != vec_ef.end(); ++j) {
if ((*j).second.size() == 2) {
efp_group.merge_sets((*j).second[0], (*j).second[1]);
}
}
std::vector<std::vector<EdgeFaces *> > grouped;
efp_group.collate(efp.begin(), grouped);
for (size_t j = 0; j < grouped.size(); ++j) {
std::vector<EdgeFaces *> grp = grouped[j];
for (size_t k = 0; k < grp.size(); ++k) {
EdgeFaces &ef = *grp[k];
edge_t *edge = ef.edge;
size_t edge_index = edgeToIndex_fast(edge);
std::vector<const face_t *> &edge_face_pairs = connectivity.edge_to_face[edge_index];
if (!makeFacePairs(ef, edge, edge_face_pairs)) {
is_ok = false;
}
}
}
}
return is_ok;
}
void Polyhedron::buildEdgeFaceMap(EdgeConnectivityInfo &eci) {
// make a mapping from pairs of vertices denoting edges to pairs
// of <face,vertex index> that incorporate this edge in the
// forward and reverse directions.
for (unsigned i = 0; i < faces.size(); ++i) {
face_t &f = faces[i];
for (unsigned j = 0; j < f.nVertices() - 1; j++) {
eci.ef_map.record(f.vertex(j), f.vertex(j+1), &f, j);
}
eci.ef_map.record(f.vertex(f.nVertices()-1), f.vertex(0), &f, f.nVertices()-1);
f.manifold_id = -1;
}
}
bool Polyhedron::initConnectivity() {
static carve::TimingName FUNC_NAME("Polyhedron::initConnectivity()");
carve::TimingBlock block(FUNC_NAME);
EdgeConnectivityInfo eci;
eci.ef_map.sizeHint(faces.size(), vertices.size());
bool is_ok = true;
buildEdgeFaceMap(eci);
// now we know how many edges this polyhedron has.
edges.clear();
edges.reserve(eci.ef_map.edge_faces.size());
// make an edge object for each entry in ef_map.
for (size_t i = 0; i < eci.ef_map.edge_faces.size(); ++i) {
EdgeFaces &ef = eci.ef_map.edge_faces[i];
const std::list<FV> &fwd = ef.fwd;
const std::list<FV> &rev = ef.rev;
const vertex_t *v1, *v2;
if (fwd.size()) {
face_t *f = fwd.front().face;
size_t v = fwd.front().vertex;
v1 = f->vertex(v);
v2 = f->vertex((v+1) % f->nVertices());
} else {
face_t *f = rev.front().face;
size_t v = rev.front().vertex;
v2 = f->vertex(v);
v1 = f->vertex((v+1) % f->nVertices());
}
edges.push_back(edge_t(v1, v2, this));
ef.edge = &edges.back();
for (std::list<FV>::const_iterator j = fwd.begin(); j != fwd.end(); ++j) {
(*j).face->edge((*j).vertex) = &edges.back();
}
for (std::list<FV>::const_iterator j = rev.begin(); j != rev.end(); ++j) {
(*j).face->edge((*j).vertex) = &edges.back();
}
}
initVertexConnectivity();
return initEdgeConnectivity(eci);
}
bool Polyhedron::calcManifoldEmbedding() {
// this could be significantly sped up using bounding box tests
// to work out what pairs of manifolds are embedding candidates.
// A per-manifold AABB could also be used to speed up
// testVertexAgainstClosedManifolds().
static carve::TimingName FUNC_NAME("Polyhedron::calcManifoldEmbedding()");
static carve::TimingName CME_V("Polyhedron::calcManifoldEmbedding() (vertices)");
static carve::TimingName CME_E("Polyhedron::calcManifoldEmbedding() (edges)");
static carve::TimingName CME_F("Polyhedron::calcManifoldEmbedding() (faces)");
carve::TimingBlock block(FUNC_NAME);
const unsigned MCOUNT = manifoldCount();
if (MCOUNT < 2) return true;
std::set<int> vertex_manifolds;
std::map<int, std::set<int> > embedding;
carve::Timing::start(CME_V);
for (size_t i = 0; i < vertices.size(); ++i) {
vertex_manifolds.clear();
if (vertexManifolds(&vertices[i], set_inserter(vertex_manifolds)) != 1) continue;
int m_id = *vertex_manifolds.begin();
if (embedding.find(m_id) == embedding.end()) {
if (emb_test(this, embedding, vertices[i].v, m_id) && embedding.size() == MCOUNT) {
carve::Timing::stop();
goto done;
}
}
}
carve::Timing::stop();
carve::Timing::start(CME_E);
for (size_t i = 0; i < edges.size(); ++i) {
if (connectivity.edge_to_face[i].size() == 2) {
int m_id;
const face_t *f1 = connectivity.edge_to_face[i][0];
const face_t *f2 = connectivity.edge_to_face[i][1];
if (f1) m_id = f1->manifold_id;
if (f2) m_id = f2->manifold_id;
if (embedding.find(m_id) == embedding.end()) {
if (emb_test(this, embedding, (edges[i].v1->v + edges[i].v2->v) / 2, m_id) && embedding.size() == MCOUNT) {
carve::Timing::stop();
goto done;
}
}
}
}
carve::Timing::stop();
carve::Timing::start(CME_F);
for (size_t i = 0; i < faces.size(); ++i) {
int m_id = faces[i].manifold_id;
if (embedding.find(m_id) == embedding.end()) {
carve::geom2d::P2 pv;
if (!carve::geom2d::pickContainedPoint(faces[i].projectedVertices(), pv)) continue;
carve::geom3d::Vector v = carve::poly::face::unproject(faces[i], pv);
if (emb_test(this, embedding, v, m_id) && embedding.size() == MCOUNT) {
carve::Timing::stop();
goto done;
}
}
}
carve::Timing::stop();
std::cerr << "could not find test points!!!" << std::endl;
return true;
CARVE_FAIL("could not find test points");
done:;
for (std::map<int, std::set<int> >::iterator i = embedding.begin(); i != embedding.end(); ++i) {
#if defined(CARVE_DEBUG)
std::cerr << (*i).first << " : ";
std::copy((*i).second.begin(), (*i).second.end(), std::ostream_iterator<int>(std::cerr, ","));
std::cerr << std::endl;
#endif
(*i).second.insert(-1);
}
std::set<int> parents, new_parents;
parents.insert(-1);
while (embedding.size()) {
new_parents.clear();
for (std::map<int, std::set<int> >::iterator i = embedding.begin(); i != embedding.end(); ++i) {
if ((*i).second.size() == 1) {
if (parents.find(*(*i).second.begin()) != parents.end()) {
new_parents.insert((*i).first);
#if defined(CARVE_DEBUG)
std::cerr << "parent(" << (*i).first << "): " << *(*i).second.begin() << std::endl;
#endif
} else {
#if defined(CARVE_DEBUG)
std::cerr << "no parent: " << (*i).first << " (looking for: " << *(*i).second.begin() << ")" << std::endl;
#endif
}
}
}
for (std::set<int>::const_iterator i = new_parents.begin(); i != new_parents.end(); ++i) {
embedding.erase(*i);
}
for (std::map<int, std::set<int> >::iterator i = embedding.begin(); i != embedding.end(); ++i) {
size_t n = 0;
for (std::set<int>::const_iterator j = parents.begin(); j != parents.end(); ++j) {
n += (*i).second.erase((*j));
}
CARVE_ASSERT(n != 0);
}
parents.swap(new_parents);
}
return true;
}
bool Polyhedron::markManifolds() {
static carve::TimingName FUNC_NAME("Polyhedron::markManifolds()");
carve::TimingBlock block(FUNC_NAME);
std::vector<face_t *> to_mark;
size_t i = 0;
int m_id = 0;
int closed_manifold_count = 0;
const vertex_t *min_vertex = NULL;
std::set<const face_t *> min_faces;
manifold_is_closed.clear();
manifold_is_negative.clear();
while (1) {
while (i < faces.size() && faces[i].manifold_id != -1) ++i;
if (i == faces.size()) break;
to_mark.push_back(&faces[i]);
min_vertex = faces[i].vertex(0);
bool is_closed = true;
while (to_mark.size()) {
face_t *f = to_mark.back();
to_mark.pop_back();
if (f->manifold_id == -1) {
f->manifold_id = m_id;
const vertex_t *v = f->vertex(0);
for (size_t j = 1; j < f->nVertices(); ++j) {
if (f->vertex(j)->v < v->v) {
v = f->vertex(j);
}
}
if (v->v < min_vertex->v) {
min_vertex = v;
}
for (size_t j = 0; j < f->nEdges(); ++j) {
face_t *g = const_cast<face_t *>(connectedFace(f, f->edge(j)));
if (g) {
if (g->manifold_id == -1) to_mark.push_back(g);
} else {
is_closed = false;
}
}
}
}
vertexToFaces(min_vertex, set_inserter(min_faces));
double max_abs_x = 0.0;
for (std::set<const face_t *>::iterator i = min_faces.begin(); i != min_faces.end(); ++i) {
if (fabs((*i)->plane_eqn.N.x) > fabs(max_abs_x)) max_abs_x = (*i)->plane_eqn.N.x;
}
manifold_is_closed.push_back(is_closed);
manifold_is_negative.push_back(is_closed && max_abs_x > 0.0);
#if defined(CARVE_DEBUG)
std::cerr << "{manifold: " << m_id << (manifold_is_negative.back() ? " is" : " is not") << " negative}" << std::endl;
#endif
if (is_closed) closed_manifold_count++;
++m_id;
}
#if defined(CARVE_DEBUG)
std::cerr << "polyhedron " << this << " has " << m_id << " manifolds (" << closed_manifold_count << " closed)" << std::endl;
#endif
return true;
}
bool Polyhedron::init() {
static carve::TimingName FUNC_NAME("Polyhedron::init()");
carve::TimingBlock block(FUNC_NAME);
aabb.fit(vertices.begin(), vertices.end(), vec_adapt_vertex_ref());
connectivity.vertex_to_edge.clear();
connectivity.vertex_to_face.clear();
connectivity.edge_to_face.clear();
// if (!orderVertices()) return false;
if (!initConnectivity()) return false;
if (!initSpatialIndex()) return false;
if (!markManifolds()) return false;
// if (!calcManifoldEmbedding()) return false;
return true;
}
void Polyhedron::faceRecalc() {
for (size_t i = 0; i < faces.size(); ++i) {
if (!faces[i].recalc()) {
std::ostringstream out;
out << "face " << i << " recalc failed";
throw carve::exception(out.str());
}
}
}
Polyhedron::Polyhedron(const Polyhedron &poly) {
faces.reserve(poly.faces.size());
for (size_t i = 0; i < poly.faces.size(); ++i) {
const face_t &src = poly.faces[i];
faces.push_back(src);
}
commonFaceInit(false); // calls setFaceAndVertexOwner() and init()
}
Polyhedron::Polyhedron(const Polyhedron &poly, const std::vector<bool> &selected_manifolds) {
size_t n_faces = 0;
for (size_t i = 0; i < poly.faces.size(); ++i) {
const face_t &src = poly.faces[i];
if (src.manifold_id >= 0 &&
(unsigned)src.manifold_id < selected_manifolds.size() &&
selected_manifolds[src.manifold_id]) {
n_faces++;
}
}
faces.reserve(n_faces);
for (size_t i = 0; i < poly.faces.size(); ++i) {
const face_t &src = poly.faces[i];
if (src.manifold_id >= 0 &&
(unsigned)src.manifold_id < selected_manifolds.size() &&
selected_manifolds[src.manifold_id]) {
faces.push_back(src);
}
}
commonFaceInit(false); // calls setFaceAndVertexOwner() and init()
}
Polyhedron::Polyhedron(const Polyhedron &poly, int m_id) {
size_t n_faces = 0;
for (size_t i = 0; i < poly.faces.size(); ++i) {
const face_t &src = poly.faces[i];
if (src.manifold_id == m_id) n_faces++;
}
faces.reserve(n_faces);
for (size_t i = 0; i < poly.faces.size(); ++i) {
const face_t &src = poly.faces[i];
if (src.manifold_id == m_id) faces.push_back(src);
}
commonFaceInit(false); // calls setFaceAndVertexOwner() and init()
}
Polyhedron::Polyhedron(const std::vector<carve::geom3d::Vector> &_vertices,
int n_faces,
const std::vector<int> &face_indices) {
// The polyhedron is defined by a vector of vertices, which we
// want to copy, and a face index list, from which we need to
// generate a set of Faces.
vertices.clear();
vertices.resize(_vertices.size());
for (size_t i = 0; i < _vertices.size(); ++i) {
vertices[i].v = _vertices[i];
}
faces.reserve(n_faces);
std::vector<int>::const_iterator iter = face_indices.begin();
std::vector<const vertex_t *> v;
for (int i = 0; i < n_faces; ++i) {
int vertexCount = *iter++;
v.clear();
while (vertexCount--) {
CARVE_ASSERT(*iter >= 0);
CARVE_ASSERT((unsigned)*iter < vertices.size());
v.push_back(&vertices[*iter++]);
}
faces.push_back(face_t(v));
}
setFaceAndVertexOwner();
if (!init()) {
throw carve::exception("polyhedron creation failed");
}
}
Polyhedron::Polyhedron(std::vector<face_t> &_faces,
std::vector<vertex_t> &_vertices,
bool _recalc) {
faces.swap(_faces);
vertices.swap(_vertices);
setFaceAndVertexOwner();
if (_recalc) faceRecalc();
if (!init()) {
throw carve::exception("polyhedron creation failed");
}
}
Polyhedron::Polyhedron(std::vector<face_t> &_faces,
bool _recalc) {
faces.swap(_faces);
commonFaceInit(_recalc); // calls setFaceAndVertexOwner() and init()
}
Polyhedron::Polyhedron(std::list<face_t> &_faces,
bool _recalc) {
faces.reserve(_faces.size());
std::copy(_faces.begin(), _faces.end(), std::back_inserter(faces));
commonFaceInit(_recalc); // calls setFaceAndVertexOwner() and init()
}
void Polyhedron::collectFaceVertices(std::vector<face_t> &faces,
std::vector<vertex_t> &vertices,
carve::csg::VVMap &vmap) {
// Given a set of faces, copy all referenced vertices into a
// single vertex array and update the faces to point into that
// array. On exit, vmap contains a mapping from old pointer to
// new pointer.
vertices.clear();
vmap.clear();
for (size_t i = 0, il = faces.size(); i != il; ++i) {
face_t &f = faces[i];
for (size_t j = 0, jl = f.nVertices(); j != jl; ++j) {
vmap[f.vertex(j)] = NULL;
}
}
vertices.reserve(vmap.size());
for (carve::csg::VVMap::iterator i = vmap.begin(),
e = vmap.end();
i != e;
++i) {
vertices.push_back(*(*i).first);
(*i).second = &vertices.back();
}
for (size_t i = 0, il = faces.size(); i != il; ++i) {
face_t &f = faces[i];
for (size_t j = 0, jl = f.nVertices(); j != jl; ++j) {
f.vertex(j) = vmap[f.vertex(j)];
}
}
}
void Polyhedron::collectFaceVertices(std::vector<face_t> &faces,
std::vector<vertex_t> &vertices) {
VVMap vmap;
collectFaceVertices(faces, vertices, vmap);
}
void Polyhedron::setFaceAndVertexOwner() {
for (size_t i = 0; i < vertices.size(); ++i) vertices[i].owner = this;
for (size_t i = 0; i < faces.size(); ++i) faces[i].owner = this;
}
void Polyhedron::commonFaceInit(bool _recalc) {
collectFaceVertices(faces, vertices);
setFaceAndVertexOwner();
if (_recalc) faceRecalc();
if (!init()) {
throw carve::exception("polyhedron creation failed");
}
}
Polyhedron::~Polyhedron() {
}
void Polyhedron::testVertexAgainstClosedManifolds(const carve::geom3d::Vector &v,
std::map<int, PointClass> &result,
bool ignore_orientation) const {
for (size_t i = 0; i < faces.size(); i++) {
if (!manifold_is_closed[faces[i].manifold_id]) continue; // skip open manifolds
if (faces[i].containsPoint(v)) {
result[faces[i].manifold_id] = POINT_ON;
}
}
double ray_len = aabb.extent.length() * 2;
std::vector<const face_t *> possible_faces;
std::vector<std::pair<const face_t *, carve::geom3d::Vector> > manifold_intersections;
boost::mt19937 rng;
boost::uniform_on_sphere<double> distrib(3);
boost::variate_generator<boost::mt19937 &, boost::uniform_on_sphere<double> > gen(rng, distrib);
while (1) {
carve::geom3d::Vector ray_dir;
ray_dir = gen();
carve::geom3d::Vector v2 = v + ray_dir * ray_len;
bool failed = false;
carve::geom3d::LineSegment line(v, v2);
carve::geom3d::Vector intersection;
possible_faces.clear();
manifold_intersections.clear();
octree.findFacesNear(line, possible_faces);
for (unsigned i = 0; !failed && i < possible_faces.size(); i++) {
if (!manifold_is_closed[possible_faces[i]->manifold_id]) continue; // skip open manifolds
if (result.find(possible_faces[i]->manifold_id) != result.end()) continue; // already ON
switch (possible_faces[i]->lineSegmentIntersection(line, intersection)) {
case INTERSECT_FACE: {
manifold_intersections.push_back(std::make_pair(possible_faces[i], intersection));
break;
}
case INTERSECT_NONE: {
break;
}
default: {
failed = true;
break;
}
}
}
if (!failed) break;
}
std::vector<int> crossings(manifold_is_closed.size(), 0);
for (size_t i = 0; i < manifold_intersections.size(); ++i) {
const face_t *f = manifold_intersections[i].first;
crossings[f->manifold_id]++;
}
for (size_t i = 0; i < crossings.size(); ++i) {
#if defined(CARVE_DEBUG)
std::cerr << "crossing: " << i << " = " << crossings[i] << " is_negative = " << manifold_is_negative[i] << std::endl;
#endif
if (!manifold_is_closed[i]) continue;
if (result.find(i) != result.end()) continue;
PointClass pc = (crossings[i] & 1) ? POINT_IN : POINT_OUT;
if (!ignore_orientation && manifold_is_negative[i]) pc = (PointClass)-pc;
result[i] = pc;
}
}
PointClass Polyhedron::containsVertex(const carve::geom3d::Vector &v,
const face_t **hit_face,
bool even_odd,
int manifold_id) const {
if (hit_face) *hit_face = NULL;
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{containsVertex " << v << "}" << std::endl;
#endif
if (!aabb.containsPoint(v)) {
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{final:OUT(aabb short circuit)}" << std::endl;
#endif
// XXX: if the top level manifolds are negative, this should be POINT_IN.
// for the moment, this only works for a single manifold.
if (manifold_is_negative.size() == 1 && manifold_is_negative[0]) return POINT_IN;
return POINT_OUT;
}
for (size_t i = 0; i < faces.size(); i++) {
if (manifold_id != -1 && manifold_id != faces[i].manifold_id) continue;
// XXX: Do allow the tested vertex to be ON an open
// manifold. This was here originally because of the
// possibility of an open manifold contained within a closed
// manifold.
// if (!manifold_is_closed[faces[i].manifold_id]) continue;
if (faces[i].containsPoint(v)) {
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{final:ON(hits face " << &faces[i] << ")}" << std::endl;
#endif
if (hit_face) *hit_face = &faces[i];
return POINT_ON;
}
}
double ray_len = aabb.extent.length() * 2;
std::vector<const face_t *> possible_faces;
std::vector<std::pair<const face_t *, carve::geom3d::Vector> > manifold_intersections;
while (1) {
double a1 = random() / double(RAND_MAX) * M_TWOPI;
double a2 = random() / double(RAND_MAX) * M_TWOPI;
carve::geom3d::Vector ray_dir = carve::geom::VECTOR(sin(a1) * sin(a2), cos(a1) * sin(a2), cos(a2));
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{testing ray: " << ray_dir << "}" << std::endl;
#endif
carve::geom3d::Vector v2 = v + ray_dir * ray_len;
bool failed = false;
carve::geom3d::LineSegment line(v, v2);
carve::geom3d::Vector intersection;
possible_faces.clear();
manifold_intersections.clear();
octree.findFacesNear(line, possible_faces);
for (unsigned i = 0; !failed && i < possible_faces.size(); i++) {
if (manifold_id != -1 && manifold_id != faces[i].manifold_id) continue;
if (!manifold_is_closed[possible_faces[i]->manifold_id]) continue;
switch (possible_faces[i]->lineSegmentIntersection(line, intersection)) {
case INTERSECT_FACE: {
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{intersects face: " << possible_faces[i]
<< " dp: " << dot(ray_dir, possible_faces[i]->plane_eqn.N) << "}" << std::endl;
#endif
if (!even_odd && fabs(dot(ray_dir, possible_faces[i]->plane_eqn.N)) < EPSILON) {
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{failing(small dot product)}" << std::endl;
#endif
failed = true;
break;
}
manifold_intersections.push_back(std::make_pair(possible_faces[i], intersection));
break;
}
case INTERSECT_NONE: {
break;
}
default: {
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{failing(degenerate intersection)}" << std::endl;
#endif
failed = true;
break;
}
}
}
if (!failed) {
if (even_odd) {
return (manifold_intersections.size() & 1) ? POINT_IN : POINT_OUT;
}
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{intersections ok [count:"
<< manifold_intersections.size()
<< "], sorting}"
<< std::endl;
#endif
carve::geom3d::sortInDirectionOfRay(ray_dir,
manifold_intersections.begin(),
manifold_intersections.end(),
carve::geom3d::vec_adapt_pair_second());
std::vector<int> crossings(manifold_is_closed.size(), 0);
for (size_t i = 0; i < manifold_intersections.size(); ++i) {
const face_t *f = manifold_intersections[i].first;
if (dot(ray_dir, f->plane_eqn.N) < 0.0) {
crossings[f->manifold_id]++;
} else {
crossings[f->manifold_id]--;
}
}
#if defined(DEBUG_CONTAINS_VERTEX)
for (size_t i = 0; i < crossings.size(); ++i) {
std::cerr << "{manifold " << i << " crossing count: " << crossings[i] << "}" << std::endl;
}
#endif
for (size_t i = 0; i < manifold_intersections.size(); ++i) {
const face_t *f = manifold_intersections[i].first;
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{intersection at "
<< manifold_intersections[i].second
<< " id: "
<< f->manifold_id
<< " count: "
<< crossings[f->manifold_id]
<< "}"
<< std::endl;
#endif
if (crossings[f->manifold_id] < 0) {
// inside this manifold.
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{final:IN}" << std::endl;
#endif
return POINT_IN;
} else if (crossings[f->manifold_id] > 0) {
// outside this manifold, but it's an infinite manifold. (for instance, an inverted cube)
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{final:OUT}" << std::endl;
#endif
return POINT_OUT;
}
}
#if defined(DEBUG_CONTAINS_VERTEX)
std::cerr << "{final:OUT(default)}" << std::endl;
#endif
return POINT_OUT;
}
}
}
void Polyhedron::findEdgesNear(const carve::geom::aabb<3> &aabb,
std::vector<const edge_t *> &outEdges) const {
outEdges.clear();
octree.findEdgesNear(aabb, outEdges);
}
void Polyhedron::findEdgesNear(const carve::geom3d::LineSegment &line,
std::vector<const edge_t *> &outEdges) const {
outEdges.clear();
octree.findEdgesNear(line, outEdges);
}
void Polyhedron::findEdgesNear(const carve::geom3d::Vector &v,
std::vector<const edge_t *> &outEdges) const {
outEdges.clear();
octree.findEdgesNear(v, outEdges);
}
void Polyhedron::findEdgesNear(const face_t &face,
std::vector<const edge_t *> &edges) const {
edges.clear();
octree.findEdgesNear(face, edges);
}
void Polyhedron::findEdgesNear(const edge_t &edge,
std::vector<const edge_t *> &outEdges) const {
outEdges.clear();
octree.findEdgesNear(edge, outEdges);
}
void Polyhedron::findFacesNear(const carve::geom3d::LineSegment &line,
std::vector<const face_t *> &outFaces) const {
outFaces.clear();
octree.findFacesNear(line, outFaces);
}
void Polyhedron::findFacesNear(const carve::geom::aabb<3> &aabb,
std::vector<const face_t *> &outFaces) const {
outFaces.clear();
octree.findFacesNear(aabb, outFaces);
}
void Polyhedron::findFacesNear(const edge_t &edge,
std::vector<const face_t *> &outFaces) const {
outFaces.clear();
octree.findFacesNear(edge, outFaces);
}
void Polyhedron::transform(const carve::math::Matrix &xform) {
for (size_t i = 0; i < vertices.size(); i++) {
vertices[i].v = xform * vertices[i].v;
}
for (size_t i = 0; i < faces.size(); i++) {
faces[i].recalc();
}
init();
}
void Polyhedron::print(std::ostream &o) const {
o << "Polyhedron@" << this << " {" << std::endl;
for (std::vector<vertex_t >::const_iterator
i = vertices.begin(), e = vertices.end(); i != e; ++i) {
o << " V@" << &(*i) << " " << (*i).v << std::endl;
}
for (std::vector<edge_t >::const_iterator
i = edges.begin(), e = edges.end(); i != e; ++i) {
o << " E@" << &(*i) << " {" << std::endl;
o << " V@" << (*i).v1 << " - " << "V@" << (*i).v2 << std::endl;
const std::vector<const face_t *> &faces = connectivity.edge_to_face[edgeToIndex_fast(&(*i))];
for (size_t j = 0; j < (faces.size() & ~1U); j += 2) {
o << " fp: F@" << faces[j] << ", F@" << faces[j+1] << std::endl;
}
o << " }" << std::endl;
}
for (std::vector<face_t >::const_iterator
i = faces.begin(), e = faces.end(); i != e; ++i) {
o << " F@" << &(*i) << " {" << std::endl;
o << " vertices {" << std::endl;
for (face_t::const_vertex_iter_t j = (*i).vbegin(), je = (*i).vend(); j != je; ++j) {
o << " V@" << (*j) << std::endl;
}
o << " }" << std::endl;
o << " edges {" << std::endl;
for (face_t::const_edge_iter_t j = (*i).ebegin(), je = (*i).eend(); j != je; ++j) {
o << " E@" << (*j) << std::endl;
}
carve::geom::plane<3> p = (*i).plane_eqn;
o << " }" << std::endl;
o << " normal " << (*i).plane_eqn.N << std::endl;
o << " aabb " << (*i).aabb << std::endl;
o << " plane_eqn ";
carve::geom::operator<< <3>(o, p);
o << std::endl;
o << " }" << std::endl;
}
o << "}" << std::endl;
}
void Polyhedron::canonicalize() {
orderVertices();
for (size_t i = 0; i < faces.size(); i++) {
face_t &f = faces[i];
size_t j = std::distance(f.vbegin(),
std::min_element(f.vbegin(),
f.vend()));
if (j) {
{
std::vector<const vertex_t *> temp;
temp.reserve(f.nVertices());
std::copy(f.vbegin() + j, f.vend(), std::back_inserter(temp));
std::copy(f.vbegin(), f.vbegin() + j, std::back_inserter(temp));
std::copy(temp.begin(), temp.end(), f.vbegin());
}
{
std::vector<const edge_t *> temp;
temp.reserve(f.nEdges());
std::copy(f.ebegin() + j, f.eend(), std::back_inserter(temp));
std::copy(f.ebegin(), f.ebegin() + j, std::back_inserter(temp));
std::copy(temp.begin(), temp.end(), f.ebegin());
}
}
}
std::vector<face_t *> face_ptrs;
face_ptrs.reserve(faces.size());
for (size_t i = 0; i < faces.size(); ++i) face_ptrs.push_back(&faces[i]);
std::sort(face_ptrs.begin(), face_ptrs.end(), order_faces());
std::vector<face_t> sorted_faces;
sorted_faces.reserve(faces.size());
for (size_t i = 0; i < faces.size(); ++i) sorted_faces.push_back(*face_ptrs[i]);
std::swap(faces, sorted_faces);
}
}
}