371 lines
12 KiB
C++
371 lines
12 KiB
C++
|
// This file is part of libigl, a simple c++ geometry processing library.
|
||
|
//
|
||
|
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
#include "active_set.h"
|
||
|
#include "min_quad_with_fixed.h"
|
||
|
#include "slice.h"
|
||
|
#include "slice_into.h"
|
||
|
#include "cat.h"
|
||
|
//#include "matlab_format.h"
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <limits>
|
||
|
#include <algorithm>
|
||
|
|
||
|
template <
|
||
|
typename AT,
|
||
|
typename DerivedB,
|
||
|
typename Derivedknown,
|
||
|
typename DerivedY,
|
||
|
typename AeqT,
|
||
|
typename DerivedBeq,
|
||
|
typename AieqT,
|
||
|
typename DerivedBieq,
|
||
|
typename Derivedlx,
|
||
|
typename Derivedux,
|
||
|
typename DerivedZ
|
||
|
>
|
||
|
IGL_INLINE igl::SolverStatus igl::active_set(
|
||
|
const Eigen::SparseMatrix<AT>& A,
|
||
|
const Eigen::PlainObjectBase<DerivedB> & B,
|
||
|
const Eigen::PlainObjectBase<Derivedknown> & known,
|
||
|
const Eigen::PlainObjectBase<DerivedY> & Y,
|
||
|
const Eigen::SparseMatrix<AeqT>& Aeq,
|
||
|
const Eigen::PlainObjectBase<DerivedBeq> & Beq,
|
||
|
const Eigen::SparseMatrix<AieqT>& Aieq,
|
||
|
const Eigen::PlainObjectBase<DerivedBieq> & Bieq,
|
||
|
const Eigen::PlainObjectBase<Derivedlx> & p_lx,
|
||
|
const Eigen::PlainObjectBase<Derivedux> & p_ux,
|
||
|
const igl::active_set_params & params,
|
||
|
Eigen::PlainObjectBase<DerivedZ> & Z
|
||
|
)
|
||
|
{
|
||
|
//#define ACTIVE_SET_CPP_DEBUG
|
||
|
#if defined(ACTIVE_SET_CPP_DEBUG) && !defined(_MSC_VER)
|
||
|
# warning "ACTIVE_SET_CPP_DEBUG"
|
||
|
#endif
|
||
|
using namespace Eigen;
|
||
|
using namespace std;
|
||
|
SolverStatus ret = SOLVER_STATUS_ERROR;
|
||
|
const int n = A.rows();
|
||
|
assert(n == A.cols() && "A must be square");
|
||
|
// Discard const qualifiers
|
||
|
//if(B.size() == 0)
|
||
|
//{
|
||
|
// B = DerivedB::Zero(n,1);
|
||
|
//}
|
||
|
assert(n == B.rows() && "B.rows() must match A.rows()");
|
||
|
assert(B.cols() == 1 && "B must be a column vector");
|
||
|
assert(Y.cols() == 1 && "Y must be a column vector");
|
||
|
assert((Aeq.size() == 0 && Beq.size() == 0) || Aeq.cols() == n);
|
||
|
assert((Aeq.size() == 0 && Beq.size() == 0) || Aeq.rows() == Beq.rows());
|
||
|
assert((Aeq.size() == 0 && Beq.size() == 0) || Beq.cols() == 1);
|
||
|
assert((Aieq.size() == 0 && Bieq.size() == 0) || Aieq.cols() == n);
|
||
|
assert((Aieq.size() == 0 && Bieq.size() == 0) || Aieq.rows() == Bieq.rows());
|
||
|
assert((Aieq.size() == 0 && Bieq.size() == 0) || Bieq.cols() == 1);
|
||
|
Eigen::Matrix<typename Derivedlx::Scalar,Eigen::Dynamic,1> lx;
|
||
|
Eigen::Matrix<typename Derivedux::Scalar,Eigen::Dynamic,1> ux;
|
||
|
if(p_lx.size() == 0)
|
||
|
{
|
||
|
lx = Derivedlx::Constant(
|
||
|
n,1,-numeric_limits<typename Derivedlx::Scalar>::max());
|
||
|
}else
|
||
|
{
|
||
|
lx = p_lx;
|
||
|
}
|
||
|
if(p_ux.size() == 0)
|
||
|
{
|
||
|
ux = Derivedux::Constant(
|
||
|
n,1,numeric_limits<typename Derivedux::Scalar>::max());
|
||
|
}else
|
||
|
{
|
||
|
ux = p_ux;
|
||
|
}
|
||
|
assert(lx.rows() == n && "lx must have n rows");
|
||
|
assert(ux.rows() == n && "ux must have n rows");
|
||
|
assert(ux.cols() == 1 && "lx must be a column vector");
|
||
|
assert(lx.cols() == 1 && "ux must be a column vector");
|
||
|
assert((ux.array()-lx.array()).minCoeff() > 0 && "ux(i) must be > lx(i)");
|
||
|
if(Z.size() != 0)
|
||
|
{
|
||
|
// Initial guess should have correct size
|
||
|
assert(Z.rows() == n && "Z must have n rows");
|
||
|
assert(Z.cols() == 1 && "Z must be a column vector");
|
||
|
}
|
||
|
assert(known.cols() == 1 && "known must be a column vector");
|
||
|
// Number of knowns
|
||
|
const int nk = known.size();
|
||
|
|
||
|
// Initialize active sets
|
||
|
typedef int BOOL;
|
||
|
#define TRUE 1
|
||
|
#define FALSE 0
|
||
|
Matrix<BOOL,Dynamic,1> as_lx = Matrix<BOOL,Dynamic,1>::Constant(n,1,FALSE);
|
||
|
Matrix<BOOL,Dynamic,1> as_ux = Matrix<BOOL,Dynamic,1>::Constant(n,1,FALSE);
|
||
|
Matrix<BOOL,Dynamic,1> as_ieq = Matrix<BOOL,Dynamic,1>::Constant(Aieq.rows(),1,FALSE);
|
||
|
|
||
|
// Keep track of previous Z for comparison
|
||
|
DerivedZ old_Z;
|
||
|
old_Z = DerivedZ::Constant(
|
||
|
n,1,numeric_limits<typename DerivedZ::Scalar>::max());
|
||
|
|
||
|
int iter = 0;
|
||
|
while(true)
|
||
|
{
|
||
|
#ifdef ACTIVE_SET_CPP_DEBUG
|
||
|
cout<<"Iteration: "<<iter<<":"<<endl;
|
||
|
cout<<" pre"<<endl;
|
||
|
#endif
|
||
|
// FIND BREACHES OF CONSTRAINTS
|
||
|
int new_as_lx = 0;
|
||
|
int new_as_ux = 0;
|
||
|
int new_as_ieq = 0;
|
||
|
if(Z.size() > 0)
|
||
|
{
|
||
|
for(int z = 0;z < n;z++)
|
||
|
{
|
||
|
if(Z(z) < lx(z))
|
||
|
{
|
||
|
new_as_lx += (as_lx(z)?0:1);
|
||
|
//new_as_lx++;
|
||
|
as_lx(z) = TRUE;
|
||
|
}
|
||
|
if(Z(z) > ux(z))
|
||
|
{
|
||
|
new_as_ux += (as_ux(z)?0:1);
|
||
|
//new_as_ux++;
|
||
|
as_ux(z) = TRUE;
|
||
|
}
|
||
|
}
|
||
|
if(Aieq.rows() > 0)
|
||
|
{
|
||
|
DerivedZ AieqZ;
|
||
|
AieqZ = Aieq*Z;
|
||
|
for(int a = 0;a<Aieq.rows();a++)
|
||
|
{
|
||
|
if(AieqZ(a) > Bieq(a))
|
||
|
{
|
||
|
new_as_ieq += (as_ieq(a)?0:1);
|
||
|
as_ieq(a) = TRUE;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#ifdef ACTIVE_SET_CPP_DEBUG
|
||
|
cout<<" new_as_lx: "<<new_as_lx<<endl;
|
||
|
cout<<" new_as_ux: "<<new_as_ux<<endl;
|
||
|
#endif
|
||
|
const double diff = (Z-old_Z).squaredNorm();
|
||
|
#ifdef ACTIVE_SET_CPP_DEBUG
|
||
|
cout<<"diff: "<<diff<<endl;
|
||
|
#endif
|
||
|
if(diff < params.solution_diff_threshold)
|
||
|
{
|
||
|
ret = SOLVER_STATUS_CONVERGED;
|
||
|
break;
|
||
|
}
|
||
|
old_Z = Z;
|
||
|
}
|
||
|
|
||
|
const int as_lx_count = std::count(as_lx.data(),as_lx.data()+n,TRUE);
|
||
|
const int as_ux_count = std::count(as_ux.data(),as_ux.data()+n,TRUE);
|
||
|
const int as_ieq_count =
|
||
|
std::count(as_ieq.data(),as_ieq.data()+as_ieq.size(),TRUE);
|
||
|
#ifndef NDEBUG
|
||
|
{
|
||
|
int count = 0;
|
||
|
for(int a = 0;a<as_ieq.size();a++)
|
||
|
{
|
||
|
if(as_ieq(a))
|
||
|
{
|
||
|
assert(as_ieq(a) == TRUE);
|
||
|
count++;
|
||
|
}
|
||
|
}
|
||
|
assert(as_ieq_count == count);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
// PREPARE FIXED VALUES
|
||
|
Derivedknown known_i;
|
||
|
known_i.resize(nk + as_lx_count + as_ux_count,1);
|
||
|
DerivedY Y_i;
|
||
|
Y_i.resize(nk + as_lx_count + as_ux_count,1);
|
||
|
{
|
||
|
known_i.block(0,0,known.rows(),known.cols()) = known;
|
||
|
Y_i.block(0,0,Y.rows(),Y.cols()) = Y;
|
||
|
int k = nk;
|
||
|
// Then all lx
|
||
|
for(int z = 0;z < n;z++)
|
||
|
{
|
||
|
if(as_lx(z))
|
||
|
{
|
||
|
known_i(k) = z;
|
||
|
Y_i(k) = lx(z);
|
||
|
k++;
|
||
|
}
|
||
|
}
|
||
|
// Finally all ux
|
||
|
for(int z = 0;z < n;z++)
|
||
|
{
|
||
|
if(as_ux(z))
|
||
|
{
|
||
|
known_i(k) = z;
|
||
|
Y_i(k) = ux(z);
|
||
|
k++;
|
||
|
}
|
||
|
}
|
||
|
assert(k==Y_i.size());
|
||
|
assert(k==known_i.size());
|
||
|
}
|
||
|
//cout<<matlab_format((known_i.array()+1).eval(),"known_i")<<endl;
|
||
|
// PREPARE EQUALITY CONSTRAINTS
|
||
|
VectorXi as_ieq_list(as_ieq_count,1);
|
||
|
// Gather active constraints and resp. rhss
|
||
|
DerivedBeq Beq_i;
|
||
|
Beq_i.resize(Beq.rows()+as_ieq_count,1);
|
||
|
Beq_i.head(Beq.rows()) = Beq;
|
||
|
{
|
||
|
int k =0;
|
||
|
for(int a=0;a<as_ieq.size();a++)
|
||
|
{
|
||
|
if(as_ieq(a))
|
||
|
{
|
||
|
assert(k<as_ieq_list.size());
|
||
|
as_ieq_list(k)=a;
|
||
|
Beq_i(Beq.rows()+k,0) = Bieq(k,0);
|
||
|
k++;
|
||
|
}
|
||
|
}
|
||
|
assert(k == as_ieq_count);
|
||
|
}
|
||
|
// extract active constraint rows
|
||
|
SparseMatrix<AeqT> Aeq_i,Aieq_i;
|
||
|
slice(Aieq,as_ieq_list,1,Aieq_i);
|
||
|
// Append to equality constraints
|
||
|
cat(1,Aeq,Aieq_i,Aeq_i);
|
||
|
|
||
|
|
||
|
min_quad_with_fixed_data<AT> data;
|
||
|
#ifndef NDEBUG
|
||
|
{
|
||
|
// NO DUPES!
|
||
|
Matrix<BOOL,Dynamic,1> fixed = Matrix<BOOL,Dynamic,1>::Constant(n,1,FALSE);
|
||
|
for(int k = 0;k<known_i.size();k++)
|
||
|
{
|
||
|
assert(!fixed[known_i(k)]);
|
||
|
fixed[known_i(k)] = TRUE;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
DerivedZ sol;
|
||
|
if(known_i.size() == A.rows())
|
||
|
{
|
||
|
// Everything's fixed?
|
||
|
#ifdef ACTIVE_SET_CPP_DEBUG
|
||
|
cout<<" everything's fixed."<<endl;
|
||
|
#endif
|
||
|
Z.resize(A.rows(),Y_i.cols());
|
||
|
slice_into(Y_i,known_i,1,Z);
|
||
|
sol.resize(0,Y_i.cols());
|
||
|
assert(Aeq_i.rows() == 0 && "All fixed but linearly constrained");
|
||
|
}else
|
||
|
{
|
||
|
#ifdef ACTIVE_SET_CPP_DEBUG
|
||
|
cout<<" min_quad_with_fixed_precompute"<<endl;
|
||
|
#endif
|
||
|
if(!min_quad_with_fixed_precompute(A,known_i,Aeq_i,params.Auu_pd,data))
|
||
|
{
|
||
|
cerr<<"Error: min_quad_with_fixed precomputation failed."<<endl;
|
||
|
if(iter > 0 && Aeq_i.rows() > Aeq.rows())
|
||
|
{
|
||
|
cerr<<" *Are you sure rows of [Aeq;Aieq] are linearly independent?*"<<
|
||
|
endl;
|
||
|
}
|
||
|
ret = SOLVER_STATUS_ERROR;
|
||
|
break;
|
||
|
}
|
||
|
#ifdef ACTIVE_SET_CPP_DEBUG
|
||
|
cout<<" min_quad_with_fixed_solve"<<endl;
|
||
|
#endif
|
||
|
if(!min_quad_with_fixed_solve(data,B,Y_i,Beq_i,Z,sol))
|
||
|
{
|
||
|
cerr<<"Error: min_quad_with_fixed solve failed."<<endl;
|
||
|
ret = SOLVER_STATUS_ERROR;
|
||
|
break;
|
||
|
}
|
||
|
//cout<<matlab_format((Aeq*Z-Beq).eval(),"cr")<<endl;
|
||
|
//cout<<matlab_format(Z,"Z")<<endl;
|
||
|
#ifdef ACTIVE_SET_CPP_DEBUG
|
||
|
cout<<" post"<<endl;
|
||
|
#endif
|
||
|
// Computing Lagrange multipliers needs to be adjusted slightly if A is not symmetric
|
||
|
assert(data.Auu_sym);
|
||
|
}
|
||
|
|
||
|
// Compute Lagrange multiplier values for known_i
|
||
|
SparseMatrix<AT> Ak;
|
||
|
// Slow
|
||
|
slice(A,known_i,1,Ak);
|
||
|
DerivedB Bk;
|
||
|
slice(B,known_i,Bk);
|
||
|
MatrixXd Lambda_known_i = -(0.5*Ak*Z + 0.5*Bk);
|
||
|
// reverse the lambda values for lx
|
||
|
Lambda_known_i.block(nk,0,as_lx_count,1) =
|
||
|
(-1*Lambda_known_i.block(nk,0,as_lx_count,1)).eval();
|
||
|
|
||
|
// Extract Lagrange multipliers for Aieq_i (always at back of sol)
|
||
|
VectorXd Lambda_Aieq_i(Aieq_i.rows(),1);
|
||
|
for(int l = 0;l<Aieq_i.rows();l++)
|
||
|
{
|
||
|
Lambda_Aieq_i(Aieq_i.rows()-1-l) = sol(sol.rows()-1-l);
|
||
|
}
|
||
|
|
||
|
// Remove from active set
|
||
|
for(int l = 0;l<as_lx_count;l++)
|
||
|
{
|
||
|
if(Lambda_known_i(nk + l) < params.inactive_threshold)
|
||
|
{
|
||
|
as_lx(known_i(nk + l)) = FALSE;
|
||
|
}
|
||
|
}
|
||
|
for(int u = 0;u<as_ux_count;u++)
|
||
|
{
|
||
|
if(Lambda_known_i(nk + as_lx_count + u) <
|
||
|
params.inactive_threshold)
|
||
|
{
|
||
|
as_ux(known_i(nk + as_lx_count + u)) = FALSE;
|
||
|
}
|
||
|
}
|
||
|
for(int a = 0;a<as_ieq_count;a++)
|
||
|
{
|
||
|
if(Lambda_Aieq_i(a) < params.inactive_threshold)
|
||
|
{
|
||
|
as_ieq(as_ieq_list(a)) = FALSE;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
iter++;
|
||
|
//cout<<iter<<endl;
|
||
|
if(params.max_iter>0 && iter>=params.max_iter)
|
||
|
{
|
||
|
ret = SOLVER_STATUS_MAX_ITER;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef IGL_STATIC_LIBRARY
|
||
|
// Explicit template instantiation
|
||
|
template igl::SolverStatus igl::active_set<double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, igl::active_set_params const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
|
||
|
template igl::SolverStatus igl::active_set<double, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, double, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, igl::active_set_params const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
|
||
|
#endif
|