dust3d/third_party/libigl/include/igl/active_set.cpp

371 lines
12 KiB
C++
Raw Normal View History

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "active_set.h"
#include "min_quad_with_fixed.h"
#include "slice.h"
#include "slice_into.h"
#include "cat.h"
//#include "matlab_format.h"
#include <iostream>
#include <limits>
#include <algorithm>
template <
typename AT,
typename DerivedB,
typename Derivedknown,
typename DerivedY,
typename AeqT,
typename DerivedBeq,
typename AieqT,
typename DerivedBieq,
typename Derivedlx,
typename Derivedux,
typename DerivedZ
>
IGL_INLINE igl::SolverStatus igl::active_set(
const Eigen::SparseMatrix<AT>& A,
const Eigen::PlainObjectBase<DerivedB> & B,
const Eigen::PlainObjectBase<Derivedknown> & known,
const Eigen::PlainObjectBase<DerivedY> & Y,
const Eigen::SparseMatrix<AeqT>& Aeq,
const Eigen::PlainObjectBase<DerivedBeq> & Beq,
const Eigen::SparseMatrix<AieqT>& Aieq,
const Eigen::PlainObjectBase<DerivedBieq> & Bieq,
const Eigen::PlainObjectBase<Derivedlx> & p_lx,
const Eigen::PlainObjectBase<Derivedux> & p_ux,
const igl::active_set_params & params,
Eigen::PlainObjectBase<DerivedZ> & Z
)
{
//#define ACTIVE_SET_CPP_DEBUG
#if defined(ACTIVE_SET_CPP_DEBUG) && !defined(_MSC_VER)
# warning "ACTIVE_SET_CPP_DEBUG"
#endif
using namespace Eigen;
using namespace std;
SolverStatus ret = SOLVER_STATUS_ERROR;
const int n = A.rows();
assert(n == A.cols() && "A must be square");
// Discard const qualifiers
//if(B.size() == 0)
//{
// B = DerivedB::Zero(n,1);
//}
assert(n == B.rows() && "B.rows() must match A.rows()");
assert(B.cols() == 1 && "B must be a column vector");
assert(Y.cols() == 1 && "Y must be a column vector");
assert((Aeq.size() == 0 && Beq.size() == 0) || Aeq.cols() == n);
assert((Aeq.size() == 0 && Beq.size() == 0) || Aeq.rows() == Beq.rows());
assert((Aeq.size() == 0 && Beq.size() == 0) || Beq.cols() == 1);
assert((Aieq.size() == 0 && Bieq.size() == 0) || Aieq.cols() == n);
assert((Aieq.size() == 0 && Bieq.size() == 0) || Aieq.rows() == Bieq.rows());
assert((Aieq.size() == 0 && Bieq.size() == 0) || Bieq.cols() == 1);
Eigen::Matrix<typename Derivedlx::Scalar,Eigen::Dynamic,1> lx;
Eigen::Matrix<typename Derivedux::Scalar,Eigen::Dynamic,1> ux;
if(p_lx.size() == 0)
{
lx = Derivedlx::Constant(
n,1,-numeric_limits<typename Derivedlx::Scalar>::max());
}else
{
lx = p_lx;
}
if(p_ux.size() == 0)
{
ux = Derivedux::Constant(
n,1,numeric_limits<typename Derivedux::Scalar>::max());
}else
{
ux = p_ux;
}
assert(lx.rows() == n && "lx must have n rows");
assert(ux.rows() == n && "ux must have n rows");
assert(ux.cols() == 1 && "lx must be a column vector");
assert(lx.cols() == 1 && "ux must be a column vector");
assert((ux.array()-lx.array()).minCoeff() > 0 && "ux(i) must be > lx(i)");
if(Z.size() != 0)
{
// Initial guess should have correct size
assert(Z.rows() == n && "Z must have n rows");
assert(Z.cols() == 1 && "Z must be a column vector");
}
assert(known.cols() == 1 && "known must be a column vector");
// Number of knowns
const int nk = known.size();
// Initialize active sets
typedef int BOOL;
#define TRUE 1
#define FALSE 0
Matrix<BOOL,Dynamic,1> as_lx = Matrix<BOOL,Dynamic,1>::Constant(n,1,FALSE);
Matrix<BOOL,Dynamic,1> as_ux = Matrix<BOOL,Dynamic,1>::Constant(n,1,FALSE);
Matrix<BOOL,Dynamic,1> as_ieq = Matrix<BOOL,Dynamic,1>::Constant(Aieq.rows(),1,FALSE);
// Keep track of previous Z for comparison
DerivedZ old_Z;
old_Z = DerivedZ::Constant(
n,1,numeric_limits<typename DerivedZ::Scalar>::max());
int iter = 0;
while(true)
{
#ifdef ACTIVE_SET_CPP_DEBUG
cout<<"Iteration: "<<iter<<":"<<endl;
cout<<" pre"<<endl;
#endif
// FIND BREACHES OF CONSTRAINTS
int new_as_lx = 0;
int new_as_ux = 0;
int new_as_ieq = 0;
if(Z.size() > 0)
{
for(int z = 0;z < n;z++)
{
if(Z(z) < lx(z))
{
new_as_lx += (as_lx(z)?0:1);
//new_as_lx++;
as_lx(z) = TRUE;
}
if(Z(z) > ux(z))
{
new_as_ux += (as_ux(z)?0:1);
//new_as_ux++;
as_ux(z) = TRUE;
}
}
if(Aieq.rows() > 0)
{
DerivedZ AieqZ;
AieqZ = Aieq*Z;
for(int a = 0;a<Aieq.rows();a++)
{
if(AieqZ(a) > Bieq(a))
{
new_as_ieq += (as_ieq(a)?0:1);
as_ieq(a) = TRUE;
}
}
}
#ifdef ACTIVE_SET_CPP_DEBUG
cout<<" new_as_lx: "<<new_as_lx<<endl;
cout<<" new_as_ux: "<<new_as_ux<<endl;
#endif
const double diff = (Z-old_Z).squaredNorm();
#ifdef ACTIVE_SET_CPP_DEBUG
cout<<"diff: "<<diff<<endl;
#endif
if(diff < params.solution_diff_threshold)
{
ret = SOLVER_STATUS_CONVERGED;
break;
}
old_Z = Z;
}
const int as_lx_count = std::count(as_lx.data(),as_lx.data()+n,TRUE);
const int as_ux_count = std::count(as_ux.data(),as_ux.data()+n,TRUE);
const int as_ieq_count =
std::count(as_ieq.data(),as_ieq.data()+as_ieq.size(),TRUE);
#ifndef NDEBUG
{
int count = 0;
for(int a = 0;a<as_ieq.size();a++)
{
if(as_ieq(a))
{
assert(as_ieq(a) == TRUE);
count++;
}
}
assert(as_ieq_count == count);
}
#endif
// PREPARE FIXED VALUES
Derivedknown known_i;
known_i.resize(nk + as_lx_count + as_ux_count,1);
DerivedY Y_i;
Y_i.resize(nk + as_lx_count + as_ux_count,1);
{
known_i.block(0,0,known.rows(),known.cols()) = known;
Y_i.block(0,0,Y.rows(),Y.cols()) = Y;
int k = nk;
// Then all lx
for(int z = 0;z < n;z++)
{
if(as_lx(z))
{
known_i(k) = z;
Y_i(k) = lx(z);
k++;
}
}
// Finally all ux
for(int z = 0;z < n;z++)
{
if(as_ux(z))
{
known_i(k) = z;
Y_i(k) = ux(z);
k++;
}
}
assert(k==Y_i.size());
assert(k==known_i.size());
}
//cout<<matlab_format((known_i.array()+1).eval(),"known_i")<<endl;
// PREPARE EQUALITY CONSTRAINTS
VectorXi as_ieq_list(as_ieq_count,1);
// Gather active constraints and resp. rhss
DerivedBeq Beq_i;
Beq_i.resize(Beq.rows()+as_ieq_count,1);
Beq_i.head(Beq.rows()) = Beq;
{
int k =0;
for(int a=0;a<as_ieq.size();a++)
{
if(as_ieq(a))
{
assert(k<as_ieq_list.size());
as_ieq_list(k)=a;
Beq_i(Beq.rows()+k,0) = Bieq(k,0);
k++;
}
}
assert(k == as_ieq_count);
}
// extract active constraint rows
SparseMatrix<AeqT> Aeq_i,Aieq_i;
slice(Aieq,as_ieq_list,1,Aieq_i);
// Append to equality constraints
cat(1,Aeq,Aieq_i,Aeq_i);
min_quad_with_fixed_data<AT> data;
#ifndef NDEBUG
{
// NO DUPES!
Matrix<BOOL,Dynamic,1> fixed = Matrix<BOOL,Dynamic,1>::Constant(n,1,FALSE);
for(int k = 0;k<known_i.size();k++)
{
assert(!fixed[known_i(k)]);
fixed[known_i(k)] = TRUE;
}
}
#endif
DerivedZ sol;
if(known_i.size() == A.rows())
{
// Everything's fixed?
#ifdef ACTIVE_SET_CPP_DEBUG
cout<<" everything's fixed."<<endl;
#endif
Z.resize(A.rows(),Y_i.cols());
slice_into(Y_i,known_i,1,Z);
sol.resize(0,Y_i.cols());
assert(Aeq_i.rows() == 0 && "All fixed but linearly constrained");
}else
{
#ifdef ACTIVE_SET_CPP_DEBUG
cout<<" min_quad_with_fixed_precompute"<<endl;
#endif
if(!min_quad_with_fixed_precompute(A,known_i,Aeq_i,params.Auu_pd,data))
{
cerr<<"Error: min_quad_with_fixed precomputation failed."<<endl;
if(iter > 0 && Aeq_i.rows() > Aeq.rows())
{
cerr<<" *Are you sure rows of [Aeq;Aieq] are linearly independent?*"<<
endl;
}
ret = SOLVER_STATUS_ERROR;
break;
}
#ifdef ACTIVE_SET_CPP_DEBUG
cout<<" min_quad_with_fixed_solve"<<endl;
#endif
if(!min_quad_with_fixed_solve(data,B,Y_i,Beq_i,Z,sol))
{
cerr<<"Error: min_quad_with_fixed solve failed."<<endl;
ret = SOLVER_STATUS_ERROR;
break;
}
//cout<<matlab_format((Aeq*Z-Beq).eval(),"cr")<<endl;
//cout<<matlab_format(Z,"Z")<<endl;
#ifdef ACTIVE_SET_CPP_DEBUG
cout<<" post"<<endl;
#endif
// Computing Lagrange multipliers needs to be adjusted slightly if A is not symmetric
assert(data.Auu_sym);
}
// Compute Lagrange multiplier values for known_i
SparseMatrix<AT> Ak;
// Slow
slice(A,known_i,1,Ak);
DerivedB Bk;
slice(B,known_i,Bk);
MatrixXd Lambda_known_i = -(0.5*Ak*Z + 0.5*Bk);
// reverse the lambda values for lx
Lambda_known_i.block(nk,0,as_lx_count,1) =
(-1*Lambda_known_i.block(nk,0,as_lx_count,1)).eval();
// Extract Lagrange multipliers for Aieq_i (always at back of sol)
VectorXd Lambda_Aieq_i(Aieq_i.rows(),1);
for(int l = 0;l<Aieq_i.rows();l++)
{
Lambda_Aieq_i(Aieq_i.rows()-1-l) = sol(sol.rows()-1-l);
}
// Remove from active set
for(int l = 0;l<as_lx_count;l++)
{
if(Lambda_known_i(nk + l) < params.inactive_threshold)
{
as_lx(known_i(nk + l)) = FALSE;
}
}
for(int u = 0;u<as_ux_count;u++)
{
if(Lambda_known_i(nk + as_lx_count + u) <
params.inactive_threshold)
{
as_ux(known_i(nk + as_lx_count + u)) = FALSE;
}
}
for(int a = 0;a<as_ieq_count;a++)
{
if(Lambda_Aieq_i(a) < params.inactive_threshold)
{
as_ieq(as_ieq_list(a)) = FALSE;
}
}
iter++;
//cout<<iter<<endl;
if(params.max_iter>0 && iter>=params.max_iter)
{
ret = SOLVER_STATUS_MAX_ITER;
break;
}
}
return ret;
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
template igl::SolverStatus igl::active_set<double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, igl::active_set_params const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&);
template igl::SolverStatus igl::active_set<double, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, double, Eigen::Matrix<double, -1, 1, 0, -1, 1>, double, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> > const&, Eigen::SparseMatrix<double, 0, int> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, igl::active_set_params const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&);
#endif