119 lines
5.5 KiB
C
119 lines
5.5 KiB
C
|
#ifndef IGL_FAST_WINDING_NUMBER
|
||
|
#define IGL_FAST_WINDING_NUMBER
|
||
|
#include "igl_inline.h"
|
||
|
#include <Eigen/Core>
|
||
|
#include <vector>
|
||
|
namespace igl
|
||
|
{
|
||
|
// Generate the precomputation for the fast winding number for point data
|
||
|
// [Barill et. al 2018].
|
||
|
//
|
||
|
// Given a set of 3D points P, with normals N, areas A, along with octree
|
||
|
// data, and an expansion order, we define a taylor series expansion at each
|
||
|
// octree cell.
|
||
|
//
|
||
|
// The octree data is designed to come from igl::octree, and the areas
|
||
|
// (if not obtained at scan time), may be calculated using
|
||
|
// igl::copyleft::cgal::point_areas.
|
||
|
//
|
||
|
// Inputs:
|
||
|
// P #P by 3 list of point locations
|
||
|
// N #P by 3 list of point normals
|
||
|
// A #P by 1 list of point areas
|
||
|
// point_indices a vector of vectors, where the ith entry is a vector of
|
||
|
// the indices into P that are the ith octree cell's points
|
||
|
// CH #OctreeCells by 8, where the ith row is the indices of
|
||
|
// the ith octree cell's children
|
||
|
// expansion_order the order of the taylor expansion. We support 0,1,2.
|
||
|
// Outputs:
|
||
|
// CM #OctreeCells by 3 list of each cell's center of mass
|
||
|
// R #OctreeCells by 1 list of each cell's maximum distance of any point
|
||
|
// to the center of mass
|
||
|
// EC #OctreeCells by #TaylorCoefficients list of expansion coefficients.
|
||
|
// (Note that #TaylorCoefficients = ∑_{i=1}^{expansion_order} 3^i)
|
||
|
//
|
||
|
template <typename DerivedP, typename DerivedA, typename DerivedN,
|
||
|
typename Index, typename DerivedCH, typename DerivedCM, typename DerivedR,
|
||
|
typename DerivedEC>
|
||
|
IGL_INLINE void fast_winding_number(const Eigen::MatrixBase<DerivedP>& P,
|
||
|
const Eigen::MatrixBase<DerivedN>& N,
|
||
|
const Eigen::MatrixBase<DerivedA>& A,
|
||
|
const std::vector<std::vector<Index> > & point_indices,
|
||
|
const Eigen::MatrixBase<DerivedCH>& CH,
|
||
|
const int expansion_order,
|
||
|
Eigen::PlainObjectBase<DerivedCM>& CM,
|
||
|
Eigen::PlainObjectBase<DerivedR>& R,
|
||
|
Eigen::PlainObjectBase<DerivedEC>& EC);
|
||
|
|
||
|
// Evaluate the fast winding number for point data, having already done the
|
||
|
// the precomputation
|
||
|
//
|
||
|
// Inputs:
|
||
|
// P #P by 3 list of point locations
|
||
|
// N #P by 3 list of point normals
|
||
|
// A #P by 1 list of point areas
|
||
|
// point_indices a vector of vectors, where the ith entry is a vector of
|
||
|
// the indices into P that are the ith octree cell's points
|
||
|
// CH #OctreeCells by 8, where the ith row is the indices of
|
||
|
// the ith octree cell's children
|
||
|
// CM #OctreeCells by 3 list of each cell's center of mass
|
||
|
// R #OctreeCells by 1 list of each cell's maximum distance of any point
|
||
|
// to the center of mass
|
||
|
// EC #OctreeCells by #TaylorCoefficients list of expansion coefficients.
|
||
|
// (Note that #TaylorCoefficients = ∑_{i=1}^{expansion_order} 3^i)
|
||
|
// Q #Q by 3 list of query points for the winding number
|
||
|
// beta This is a Barnes-Hut style accuracy term that separates near feild
|
||
|
// from far field. The higher the beta, the more accurate and slower
|
||
|
// the evaluation. We reccommend using a beta value of 2. Note that
|
||
|
// for a beta value ≤ 0, we use the direct evaluation, rather than
|
||
|
// the fast approximation
|
||
|
// Outputs:
|
||
|
// WN #Q by 1 list of windinng number values at each query point
|
||
|
//
|
||
|
template <typename DerivedP, typename DerivedA, typename DerivedN,
|
||
|
typename Index, typename DerivedCH, typename DerivedCM, typename DerivedR,
|
||
|
typename DerivedEC, typename DerivedQ, typename BetaType,
|
||
|
typename DerivedWN>
|
||
|
IGL_INLINE void fast_winding_number(const Eigen::MatrixBase<DerivedP>& P,
|
||
|
const Eigen::MatrixBase<DerivedN>& N,
|
||
|
const Eigen::MatrixBase<DerivedA>& A,
|
||
|
const std::vector<std::vector<Index> > & point_indices,
|
||
|
const Eigen::MatrixBase<DerivedCH>& CH,
|
||
|
const Eigen::MatrixBase<DerivedCM>& CM,
|
||
|
const Eigen::MatrixBase<DerivedR>& R,
|
||
|
const Eigen::MatrixBase<DerivedEC>& EC,
|
||
|
const Eigen::MatrixBase<DerivedQ>& Q,
|
||
|
const BetaType beta,
|
||
|
Eigen::PlainObjectBase<DerivedWN>& WN);
|
||
|
|
||
|
// Evaluate the fast winding number for point data, with default expansion
|
||
|
// order and beta (both are set to 2).
|
||
|
//
|
||
|
// This function performes the precomputation and evaluation all in one.
|
||
|
// If you need to acess the precomuptation for repeated evaluations, use the
|
||
|
// two functions designed for exposed precomputation (described above).
|
||
|
//
|
||
|
// Inputs:
|
||
|
// P #P by 3 list of point locations
|
||
|
// N #P by 3 list of point normals
|
||
|
// A #P by 1 list of point areas
|
||
|
// Q #Q by 3 list of query points for the winding number
|
||
|
// Outputs:
|
||
|
// WN #Q by 1 list of windinng number values at each query point
|
||
|
//
|
||
|
template <typename DerivedP, typename DerivedA, typename DerivedN,
|
||
|
typename DerivedQ, typename DerivedWN>
|
||
|
IGL_INLINE void fast_winding_number(const Eigen::MatrixBase<DerivedP>& P,
|
||
|
const Eigen::MatrixBase<DerivedN>& N,
|
||
|
const Eigen::MatrixBase<DerivedA>& A,
|
||
|
const Eigen::MatrixBase<DerivedQ>& Q,
|
||
|
Eigen::PlainObjectBase<DerivedWN>& WN
|
||
|
);
|
||
|
}
|
||
|
#ifndef IGL_STATIC_LIBRARY
|
||
|
# include "fast_winding_number.cpp"
|
||
|
#endif
|
||
|
|
||
|
#endif
|
||
|
|