146 lines
5.4 KiB
C
146 lines
5.4 KiB
C
|
// This file is part of libigl, a simple c++ geometry processing library.
|
||
|
//
|
||
|
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla Public License
|
||
|
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
|
||
|
// obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
#ifndef IGL_MOSEK_MOSEK_QUADPROG_H
|
||
|
#define IGL_MOSEK_MOSEK_QUADPROG_H
|
||
|
#include "../igl_inline.h"
|
||
|
#include <vector>
|
||
|
#include <map>
|
||
|
#include <mosek.h>
|
||
|
|
||
|
|
||
|
#define EIGEN_YES_I_KNOW_SPARSE_MODULE_IS_NOT_STABLE_YET
|
||
|
#include <Eigen/Dense>
|
||
|
#include <Eigen/Sparse>
|
||
|
|
||
|
namespace igl
|
||
|
{
|
||
|
namespace mosek
|
||
|
{
|
||
|
struct MosekData
|
||
|
{
|
||
|
// Integer parameters
|
||
|
std::map<MSKiparame,int> intparam;
|
||
|
// Double parameters
|
||
|
std::map<MSKdparame,double> douparam;
|
||
|
// Default values
|
||
|
IGL_INLINE MosekData();
|
||
|
};
|
||
|
// Solve a convex quadratic optimization problem with linear and constant
|
||
|
// bounds, that is:
|
||
|
//
|
||
|
// Minimize: ½ * xT * Q⁰ * x + cT * x + cf
|
||
|
//
|
||
|
// Subject to: lc ≤ Ax ≤ uc
|
||
|
// lx ≤ x ≤ ux
|
||
|
//
|
||
|
// where we are trying to find the optimal vector of values x.
|
||
|
//
|
||
|
// Note: Q⁰ must be symmetric and the ½ is a convention of MOSEK
|
||
|
//
|
||
|
// Note: Because of how MOSEK accepts different parts of the system, Q
|
||
|
// should be stored in IJV (aka Coordinate) format and should only include
|
||
|
// entries in the lower triangle. A should be stored in Column compressed
|
||
|
// (aka Harwell Boeing) format. As described:
|
||
|
// http://netlib.org/linalg/html_templates/node92.html
|
||
|
// or
|
||
|
// http://en.wikipedia.org/wiki/Sparse_matrix
|
||
|
// #Compressed_sparse_column_.28CSC_or_CCS.29
|
||
|
//
|
||
|
//
|
||
|
// Templates:
|
||
|
// Index type for index variables
|
||
|
// Scalar type for floating point variables (gets cast to double?)
|
||
|
// Input:
|
||
|
// n number of variables, i.e. size of x
|
||
|
// Qi vector of qnnz row indices of non-zeros in LOWER TRIANGLE ONLY of
|
||
|
// Q⁰
|
||
|
// Qj vector of qnnz column indices of non-zeros in LOWER TRIANGLE ONLY
|
||
|
// of Q⁰
|
||
|
// Qv vector of qnnz values of non-zeros in LOWER TRIANGLE ONLY of Q⁰,
|
||
|
// such that:
|
||
|
//
|
||
|
// Q⁰(Qi[k],Qj[k]) = Qv[k] for k ∈ [0,Qnnz-1], where Qnnz is the
|
||
|
//
|
||
|
// number of non-zeros in Q⁰
|
||
|
// c (optional) vector of n values of c, transpose of coefficient row
|
||
|
// vector of linear terms, EMPTY means c == 0
|
||
|
// cf (ignored) value of constant term in objective, 0 means cf == 0, so
|
||
|
// optional only in the sense that it is mandatory
|
||
|
// m number of constraints, therefore also number of rows in linear
|
||
|
// constraint coefficient matrix A, and in linear constraint bound
|
||
|
// vectors lc and uc
|
||
|
// Av vector of non-zero values of A, in column compressed order
|
||
|
// Ari vector of row indices corresponding to non-zero values of A,
|
||
|
// Acp vector of indices into Ari and Av of the first entry for each
|
||
|
// column of A, size(Acp) = (# columns of A) + 1 = n + 1
|
||
|
// lc vector of m linear constraint lower bounds
|
||
|
// uc vector of m linear constraint upper bounds
|
||
|
// lx vector of n constant lower bounds
|
||
|
// ux vector of n constant upper bounds
|
||
|
// Output:
|
||
|
// x vector of size n to hold output of optimization
|
||
|
// Return:
|
||
|
// true only if optimization was successful with no errors
|
||
|
//
|
||
|
// Note: All indices are 0-based
|
||
|
//
|
||
|
template <typename Index, typename Scalar>
|
||
|
IGL_INLINE bool mosek_quadprog(
|
||
|
const Index n,
|
||
|
/* mosek won't allow this to be const*/ std::vector<Index> & Qi,
|
||
|
/* mosek won't allow this to be const*/ std::vector<Index> & Qj,
|
||
|
/* mosek won't allow this to be const*/ std::vector<Scalar> & Qv,
|
||
|
const std::vector<Scalar> & c,
|
||
|
const Scalar cf,
|
||
|
const Index m,
|
||
|
/* mosek won't allow this to be const*/ std::vector<Scalar> & Av,
|
||
|
/* mosek won't allow this to be const*/ std::vector<Index> & Ari,
|
||
|
const std::vector<Index> & Acp,
|
||
|
const std::vector<Scalar> & lc,
|
||
|
const std::vector<Scalar> & uc,
|
||
|
const std::vector<Scalar> & lx,
|
||
|
const std::vector<Scalar> & ux,
|
||
|
MosekData & mosek_data,
|
||
|
std::vector<Scalar> & x);
|
||
|
// Wrapper with Eigen elements
|
||
|
//
|
||
|
// Inputs:
|
||
|
// Q n by n square quadratic coefficients matrix **only lower triangle
|
||
|
// is used**.
|
||
|
// c n-long vector of linear coefficients
|
||
|
// cf constant coefficient
|
||
|
// A m by n square linear coefficienst matrix of inequality constraints
|
||
|
// lc m-long vector of lower bounds for linear inequality constraints
|
||
|
// uc m-long vector of upper bounds for linear inequality constraints
|
||
|
// lx n-long vector of lower bounds
|
||
|
// ux n-long vector of upper bounds
|
||
|
// mosek_data parameters struct
|
||
|
// Outputs:
|
||
|
// x n-long solution vector
|
||
|
// Returns true only if optimization finishes without error
|
||
|
//
|
||
|
IGL_INLINE bool mosek_quadprog(
|
||
|
const Eigen::SparseMatrix<double> & Q,
|
||
|
const Eigen::VectorXd & c,
|
||
|
const double cf,
|
||
|
const Eigen::SparseMatrix<double> & A,
|
||
|
const Eigen::VectorXd & lc,
|
||
|
const Eigen::VectorXd & uc,
|
||
|
const Eigen::VectorXd & lx,
|
||
|
const Eigen::VectorXd & ux,
|
||
|
MosekData & mosek_data,
|
||
|
Eigen::VectorXd & x);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifndef IGL_STATIC_LIBRARY
|
||
|
# include "mosek_quadprog.cpp"
|
||
|
#endif
|
||
|
|
||
|
#endif
|