dust3d/third_party/libigl/include/igl/principal_curvature.cpp

937 lines
26 KiB
C++
Raw Normal View History

// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Daniele Panozzo <daniele.panozzo@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "principal_curvature.h"
#include <iostream>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <queue>
#include <list>
#include <cmath>
#include <limits>
#include <Eigen/SparseCholesky>
// Lib IGL includes
#include <igl/adjacency_list.h>
#include <igl/per_face_normals.h>
#include <igl/per_vertex_normals.h>
#include <igl/avg_edge_length.h>
#include <igl/vertex_triangle_adjacency.h>
typedef enum
{
SPHERE_SEARCH,
K_RING_SEARCH
} searchType;
typedef enum
{
AVERAGE,
PROJ_PLANE
} normalType;
class CurvatureCalculator
{
public:
/* Row number i represents the i-th vertex, whose columns are:
curv[i][0] : K2
curv[i][1] : K1
curvDir[i][0] : PD1
curvDir[i][1] : PD2
*/
std::vector< std::vector<double> > curv;
std::vector< std::vector<Eigen::Vector3d> > curvDir;
bool curvatureComputed;
class Quadric
{
public:
IGL_INLINE Quadric ()
{
a() = b() = c() = d() = e() = 1.0;
}
IGL_INLINE Quadric(double av, double bv, double cv, double dv, double ev)
{
a() = av;
b() = bv;
c() = cv;
d() = dv;
e() = ev;
}
IGL_INLINE double& a() { return data[0];}
IGL_INLINE double& b() { return data[1];}
IGL_INLINE double& c() { return data[2];}
IGL_INLINE double& d() { return data[3];}
IGL_INLINE double& e() { return data[4];}
double data[5];
IGL_INLINE double evaluate(double u, double v)
{
return a()*u*u + b()*u*v + c()*v*v + d()*u + e()*v;
}
IGL_INLINE double du(double u, double v)
{
return 2.0*a()*u + b()*v + d();
}
IGL_INLINE double dv(double u, double v)
{
return 2.0*c()*v + b()*u + e();
}
IGL_INLINE double duv(double u, double v)
{
return b();
}
IGL_INLINE double duu(double u, double v)
{
return 2.0*a();
}
IGL_INLINE double dvv(double u, double v)
{
return 2.0*c();
}
IGL_INLINE static Quadric fit(const std::vector<Eigen::Vector3d> &VV)
{
assert(VV.size() >= 5);
if (VV.size() < 5)
{
std::cerr << "ASSERT FAILED! fit function requires at least 5 points: Only " << VV.size() << " were given." << std::endl;
exit(0);
}
Eigen::MatrixXd A(VV.size(),5);
Eigen::MatrixXd b(VV.size(),1);
Eigen::MatrixXd sol(5,1);
for(unsigned int c=0; c < VV.size(); ++c)
{
double u = VV[c][0];
double v = VV[c][1];
double n = VV[c][2];
A(c,0) = u*u;
A(c,1) = u*v;
A(c,2) = v*v;
A(c,3) = u;
A(c,4) = v;
b(c) = n;
}
sol=A.jacobiSvd(Eigen::ComputeThinU | Eigen::ComputeThinV).solve(b);
return Quadric(sol(0),sol(1),sol(2),sol(3),sol(4));
}
};
public:
Eigen::MatrixXd vertices;
// Face list of current mesh (#F x 3) or (#F x 4)
// The i-th row contains the indices of the vertices that forms the i-th face in ccw order
Eigen::MatrixXi faces;
std::vector<std::vector<int> > vertex_to_vertices;
std::vector<std::vector<int> > vertex_to_faces;
std::vector<std::vector<int> > vertex_to_faces_index;
Eigen::MatrixXd face_normals;
Eigen::MatrixXd vertex_normals;
/* Size of the neighborhood */
double sphereRadius;
int kRing;
bool localMode; /* Use local mode */
bool projectionPlaneCheck; /* Check collected vertices on tangent plane */
bool montecarlo;
unsigned int montecarloN;
searchType st; /* Use either a sphere search or a k-ring search */
normalType nt;
double lastRadius;
double scaledRadius;
std::string lastMeshName;
/* Benchmark related variables */
bool expStep; /* True if we want the radius to increase exponentially */
int step; /* If expStep==false, by how much rhe radius increases on every step */
int maxSize; /* The maximum limit of the radius in the benchmark */
IGL_INLINE CurvatureCalculator();
IGL_INLINE void init(const Eigen::MatrixXd& V, const Eigen::MatrixXi& F);
IGL_INLINE void finalEigenStuff(int, const std::vector<Eigen::Vector3d>&, Quadric&);
IGL_INLINE void fitQuadric(const Eigen::Vector3d&, const std::vector<Eigen::Vector3d>& ref, const std::vector<int>& , Quadric *);
IGL_INLINE void applyProjOnPlane(const Eigen::Vector3d&, const std::vector<int>&, std::vector<int>&);
IGL_INLINE void getSphere(const int, const double, std::vector<int>&, int min);
IGL_INLINE void getKRing(const int, const double,std::vector<int>&);
IGL_INLINE Eigen::Vector3d project(const Eigen::Vector3d&, const Eigen::Vector3d&, const Eigen::Vector3d&);
IGL_INLINE void computeReferenceFrame(int, const Eigen::Vector3d&, std::vector<Eigen::Vector3d>&);
IGL_INLINE void getAverageNormal(int, const std::vector<int>&, Eigen::Vector3d&);
IGL_INLINE void getProjPlane(int, const std::vector<int>&, Eigen::Vector3d&);
IGL_INLINE void applyMontecarlo(const std::vector<int>&,std::vector<int>*);
IGL_INLINE void computeCurvature();
IGL_INLINE void printCurvature(const std::string& outpath);
IGL_INLINE double getAverageEdge();
IGL_INLINE static int rotateForward (double *v0, double *v1, double *v2)
{
double t;
if (std::abs(*v2) >= std::abs(*v1) && std::abs(*v2) >= std::abs(*v0))
return 0;
t = *v0;
*v0 = *v2;
*v2 = *v1;
*v1 = t;
return 1 + rotateForward (v0, v1, v2);
}
IGL_INLINE static void rotateBackward (int nr, double *v0, double *v1, double *v2)
{
double t;
if (nr == 0)
return;
t = *v2;
*v2 = *v0;
*v0 = *v1;
*v1 = t;
rotateBackward (nr - 1, v0, v1, v2);
}
IGL_INLINE static Eigen::Vector3d chooseMax (Eigen::Vector3d n, Eigen::Vector3d abc, double ab)
{
int max_i;
double max_sp;
Eigen::Vector3d nt[8];
n.normalize ();
abc.normalize ();
max_sp = - std::numeric_limits<double>::max();
for (int i = 0; i < 4; ++i)
{
nt[i] = n;
if (ab > 0)
{
switch (i)
{
case 0:
break;
case 1:
nt[i][2] = -n[2];
break;
case 2:
nt[i][0] = -n[0];
nt[i][1] = -n[1];
break;
case 3:
nt[i][0] = -n[0];
nt[i][1] = -n[1];
nt[i][2] = -n[2];
break;
}
}
else
{
switch (i)
{
case 0:
nt[i][0] = -n[0];
break;
case 1:
nt[i][1] = -n[1];
break;
case 2:
nt[i][0] = -n[0];
nt[i][2] = -n[2];
break;
case 3:
nt[i][1] = -n[1];
nt[i][2] = -n[2];
break;
}
}
if (nt[i].dot(abc) > max_sp)
{
max_sp = nt[i].dot(abc);
max_i = i;
}
}
return nt[max_i];
}
};
class comparer
{
public:
IGL_INLINE bool operator() (const std::pair<int, double>& lhs, const std::pair<int, double>&rhs) const
{
return lhs.second>rhs.second;
}
};
IGL_INLINE CurvatureCalculator::CurvatureCalculator()
{
this->localMode=true;
this->projectionPlaneCheck=true;
this->sphereRadius=5;
this->st=SPHERE_SEARCH;
this->nt=AVERAGE;
this->montecarlo=false;
this->montecarloN=0;
this->kRing=3;
this->curvatureComputed=false;
this->expStep=true;
}
IGL_INLINE void CurvatureCalculator::init(const Eigen::MatrixXd& V, const Eigen::MatrixXi& F)
{
// Normalize vertices
vertices = V;
// vertices = vertices.array() - vertices.minCoeff();
// vertices = vertices.array() / vertices.maxCoeff();
// vertices = vertices.array() * (1.0/igl::avg_edge_length(V,F));
faces = F;
igl::adjacency_list(F, vertex_to_vertices);
igl::vertex_triangle_adjacency(V, F, vertex_to_faces, vertex_to_faces_index);
igl::per_face_normals(V, F, face_normals);
igl::per_vertex_normals(V, F, face_normals, vertex_normals);
}
IGL_INLINE void CurvatureCalculator::fitQuadric(const Eigen::Vector3d& v, const std::vector<Eigen::Vector3d>& ref, const std::vector<int>& vv, Quadric *q)
{
std::vector<Eigen::Vector3d> points;
points.reserve (vv.size());
for (unsigned int i = 0; i < vv.size(); ++i) {
Eigen::Vector3d cp = vertices.row(vv[i]);
// vtang non e` il v tangente!!!
Eigen::Vector3d vTang = cp - v;
double x = vTang.dot(ref[0]);
double y = vTang.dot(ref[1]);
double z = vTang.dot(ref[2]);
points.push_back(Eigen::Vector3d (x,y,z));
}
if (points.size() < 5)
{
std::cerr << "ASSERT FAILED! fit function requires at least 5 points: Only " << points.size() << " were given." << std::endl;
*q = Quadric(0,0,0,0,0);
}
else
{
*q = Quadric::fit (points);
}
}
IGL_INLINE void CurvatureCalculator::finalEigenStuff(int i, const std::vector<Eigen::Vector3d>& ref, Quadric& q)
{
const double a = q.a();
const double b = q.b();
const double c = q.c();
const double d = q.d();
const double e = q.e();
// if (fabs(a) < 10e-8 || fabs(b) < 10e-8)
// {
// std::cout << "Degenerate quadric: " << i << std::endl;
// }
double E = 1.0 + d*d;
double F = d*e;
double G = 1.0 + e*e;
Eigen::Vector3d n = Eigen::Vector3d(-d,-e,1.0).normalized();
double L = 2.0 * a * n[2];
double M = b * n[2];
double N = 2 * c * n[2];
// ----------------- Eigen stuff
Eigen::Matrix2d m;
m << L*G - M*F, M*E-L*F, M*E-L*F, N*E-M*F;
m = m / (E*G-F*F);
Eigen::SelfAdjointEigenSolver<Eigen::Matrix2d> eig(m);
Eigen::Vector2d c_val = eig.eigenvalues();
Eigen::Matrix2d c_vec = eig.eigenvectors();
// std::cerr << "c_val:" << c_val << std::endl;
// std::cerr << "c_vec:" << c_vec << std::endl;
// std::cerr << "c_vec:" << c_vec(0) << " " << c_vec(1) << std::endl;
c_val = -c_val;
Eigen::Vector3d v1, v2;
v1[0] = c_vec(0);
v1[1] = c_vec(1);
v1[2] = 0; //d * v1[0] + e * v1[1];
v2[0] = c_vec(2);
v2[1] = c_vec(3);
v2[2] = 0; //d * v2[0] + e * v2[1];
// v1 = v1.normalized();
// v2 = v2.normalized();
Eigen::Vector3d v1global = ref[0] * v1[0] + ref[1] * v1[1] + ref[2] * v1[2];
Eigen::Vector3d v2global = ref[0] * v2[0] + ref[1] * v2[1] + ref[2] * v2[2];
v1global.normalize();
v2global.normalize();
v1global *= c_val(0);
v2global *= c_val(1);
if (c_val[0] > c_val[1])
{
curv[i]=std::vector<double>(2);
curv[i][0]=c_val(1);
curv[i][1]=c_val(0);
curvDir[i]=std::vector<Eigen::Vector3d>(2);
curvDir[i][0]=v2global;
curvDir[i][1]=v1global;
}
else
{
curv[i]=std::vector<double>(2);
curv[i][0]=c_val(0);
curv[i][1]=c_val(1);
curvDir[i]=std::vector<Eigen::Vector3d>(2);
curvDir[i][0]=v1global;
curvDir[i][1]=v2global;
}
// ---- end Eigen stuff
}
IGL_INLINE void CurvatureCalculator::getKRing(const int start, const double r, std::vector<int>&vv)
{
int bufsize=vertices.rows();
vv.reserve(bufsize);
std::list<std::pair<int,int> > queue;
std::vector<bool> visited(bufsize, false);
queue.push_back(std::pair<int,int>(start,0));
visited[start]=true;
while (!queue.empty())
{
int toVisit=queue.front().first;
int distance=queue.front().second;
queue.pop_front();
vv.push_back(toVisit);
if (distance<(int)r)
{
for (unsigned int i=0; i<vertex_to_vertices[toVisit].size(); ++i)
{
int neighbor=vertex_to_vertices[toVisit][i];
if (!visited[neighbor])
{
queue.push_back(std::pair<int,int> (neighbor,distance+1));
visited[neighbor]=true;
}
}
}
}
}
IGL_INLINE void CurvatureCalculator::getSphere(const int start, const double r, std::vector<int> &vv, int min)
{
int bufsize=vertices.rows();
vv.reserve(bufsize);
std::list<int> queue;
std::vector<bool> visited(bufsize, false);
queue.push_back(start);
visited[start]=true;
Eigen::Vector3d me=vertices.row(start);
std::priority_queue<std::pair<int, double>, std::vector<std::pair<int, double> >, comparer > extra_candidates;
while (!queue.empty())
{
int toVisit=queue.front();
queue.pop_front();
vv.push_back(toVisit);
for (unsigned int i=0; i<vertex_to_vertices[toVisit].size(); ++i)
{
int neighbor=vertex_to_vertices[toVisit][i];
if (!visited[neighbor])
{
Eigen::Vector3d neigh=vertices.row(neighbor);
double distance=(me-neigh).norm();
if (distance<r)
queue.push_back(neighbor);
else if ((int)vv.size()<min)
extra_candidates.push(std::pair<int,double>(neighbor,distance));
visited[neighbor]=true;
}
}
}
while (!extra_candidates.empty() && (int)vv.size()<min)
{
std::pair<int, double> cand=extra_candidates.top();
extra_candidates.pop();
vv.push_back(cand.first);
for (unsigned int i=0; i<vertex_to_vertices[cand.first].size(); ++i)
{
int neighbor=vertex_to_vertices[cand.first][i];
if (!visited[neighbor])
{
Eigen::Vector3d neigh=vertices.row(neighbor);
double distance=(me-neigh).norm();
extra_candidates.push(std::pair<int,double>(neighbor,distance));
visited[neighbor]=true;
}
}
}
}
IGL_INLINE Eigen::Vector3d CurvatureCalculator::project(const Eigen::Vector3d& v, const Eigen::Vector3d& vp, const Eigen::Vector3d& ppn)
{
return (vp - (ppn * ((vp - v).dot(ppn))));
}
IGL_INLINE void CurvatureCalculator::computeReferenceFrame(int i, const Eigen::Vector3d& normal, std::vector<Eigen::Vector3d>& ref )
{
Eigen::Vector3d longest_v=Eigen::Vector3d(vertices.row(vertex_to_vertices[i][0]));
longest_v=(project(vertices.row(i),longest_v,normal)-Eigen::Vector3d(vertices.row(i))).normalized();
/* L'ultimo asse si ottiene come prodotto vettoriale tra i due
* calcolati */
Eigen::Vector3d y_axis=(normal.cross(longest_v)).normalized();
ref[0]=longest_v;
ref[1]=y_axis;
ref[2]=normal;
}
IGL_INLINE void CurvatureCalculator::getAverageNormal(int j, const std::vector<int>& vv, Eigen::Vector3d& normal)
{
normal=(vertex_normals.row(j)).normalized();
if (localMode)
return;
for (unsigned int i=0; i<vv.size(); ++i)
{
normal+=vertex_normals.row(vv[i]).normalized();
}
normal.normalize();
}
IGL_INLINE void CurvatureCalculator::getProjPlane(int j, const std::vector<int>& vv, Eigen::Vector3d& ppn)
{
int nr;
double a, b, c;
double nx, ny, nz;
double abcq;
a = b = c = 0;
if (localMode)
{
for (unsigned int i=0; i<vertex_to_faces.at(j).size(); ++i)
{
Eigen::Vector3d faceNormal=face_normals.row(vertex_to_faces.at(j).at(i));
a += faceNormal[0];
b += faceNormal[1];
c += faceNormal[2];
}
}
else
{
for (unsigned int i=0; i<vv.size(); ++i)
{
a+= vertex_normals.row(vv[i])[0];
b+= vertex_normals.row(vv[i])[1];
c+= vertex_normals.row(vv[i])[2];
}
}
nr = rotateForward (&a, &b, &c);
abcq = a*a + b*b + c*c;
nx = sqrt (a*a / abcq);
ny = sqrt (b*b / abcq);
nz = sqrt (1 - nx*nx - ny*ny);
rotateBackward (nr, &a, &b, &c);
rotateBackward (nr, &nx, &ny, &nz);
ppn = chooseMax (Eigen::Vector3d(nx, ny, nz), Eigen::Vector3d (a, b, c), a * b);
ppn.normalize();
}
IGL_INLINE double CurvatureCalculator::getAverageEdge()
{
double sum = 0;
int count = 0;
for (int i = 0; i<faces.rows(); ++i)
{
for (short unsigned j=0; j<3; ++j)
{
Eigen::Vector3d p1=vertices.row(faces.row(i)[j]);
Eigen::Vector3d p2=vertices.row(faces.row(i)[(j+1)%3]);
double l = (p1-p2).norm();
sum+=l;
++count;
}
}
return (sum/(double)count);
}
IGL_INLINE void CurvatureCalculator::applyProjOnPlane(const Eigen::Vector3d& ppn, const std::vector<int>& vin, std::vector<int> &vout)
{
for (std::vector<int>::const_iterator vpi = vin.begin(); vpi != vin.end(); ++vpi)
if (vertex_normals.row(*vpi) * ppn > 0.0)
vout.push_back(*vpi);
}
IGL_INLINE void CurvatureCalculator::applyMontecarlo(const std::vector<int>& vin, std::vector<int> *vout)
{
if (montecarloN >= vin.size ())
{
*vout = vin;
return;
}
float p = ((float) montecarloN) / (float) vin.size();
for (std::vector<int>::const_iterator vpi = vin.begin(); vpi != vin.end(); ++vpi)
{
float r;
if ((r = ((float)rand () / RAND_MAX)) < p)
{
vout->push_back(*vpi);
}
}
}
IGL_INLINE void CurvatureCalculator::computeCurvature()
{
//CHECK che esista la mesh
const size_t vertices_count=vertices.rows();
if (vertices_count ==0)
return;
curvDir=std::vector< std::vector<Eigen::Vector3d> >(vertices_count);
curv=std::vector<std::vector<double> >(vertices_count);
scaledRadius=getAverageEdge()*sphereRadius;
std::vector<int> vv;
std::vector<int> vvtmp;
Eigen::Vector3d normal;
//double time_spent;
//double searchtime=0, ref_time=0, fit_time=0, final_time=0;
for (size_t i=0; i<vertices_count; ++i)
{
vv.clear();
vvtmp.clear();
Eigen::Vector3d me=vertices.row(i);
switch (st)
{
case SPHERE_SEARCH:
getSphere(i,scaledRadius,vv,6);
break;
case K_RING_SEARCH:
getKRing(i,kRing,vv);
break;
default:
fprintf(stderr,"Error: search type not recognized");
return;
}
if (vv.size()<6)
{
//std::cerr << "Could not compute curvature of radius " << scaledRadius << std::endl;
continue;
}
if (projectionPlaneCheck)
{
vvtmp.reserve (vv.size ());
applyProjOnPlane (vertex_normals.row(i), vv, vvtmp);
if (vvtmp.size() >= 6 && vvtmp.size()<vv.size())
vv = vvtmp;
}
switch (nt)
{
case AVERAGE:
getAverageNormal(i,vv,normal);
break;
case PROJ_PLANE:
getProjPlane(i,vv,normal);
break;
default:
fprintf(stderr,"Error: normal type not recognized");
return;
}
if (vv.size()<6)
{
//std::cerr << "Could not compute curvature of radius " << scaledRadius << std::endl;
continue;
}
if (montecarlo)
{
if(montecarloN<6)
break;
vvtmp.reserve(vv.size());
applyMontecarlo(vv,&vvtmp);
vv=vvtmp;
}
if (vv.size()<6)
return;
std::vector<Eigen::Vector3d> ref(3);
computeReferenceFrame(i,normal,ref);
Quadric q;
fitQuadric (me, ref, vv, &q);
finalEigenStuff(i,ref,q);
}
lastRadius=sphereRadius;
curvatureComputed=true;
}
IGL_INLINE void CurvatureCalculator::printCurvature(const std::string& outpath)
{
using namespace std;
if (!curvatureComputed)
return;
std::ofstream of;
of.open(outpath.c_str());
if (!of)
{
fprintf(stderr, "Error: could not open output file %s\n", outpath.c_str());
return;
}
int vertices_count=vertices.rows();
of << vertices_count << endl;
for (int i=0; i<vertices_count; ++i)
{
of << curv[i][0] << " " << curv[i][1] << " " << curvDir[i][0][0] << " " << curvDir[i][0][1] << " " << curvDir[i][0][2] << " " <<
curvDir[i][1][0] << " " << curvDir[i][1][1] << " " << curvDir[i][1][2] << endl;
}
of.close();
}
template <
typename DerivedV,
typename DerivedF,
typename DerivedPD1,
typename DerivedPD2,
typename DerivedPV1,
typename DerivedPV2,
typename Index>
IGL_INLINE void igl::principal_curvature(
const Eigen::PlainObjectBase<DerivedV>& V,
const Eigen::PlainObjectBase<DerivedF>& F,
Eigen::PlainObjectBase<DerivedPD1>& PD1,
Eigen::PlainObjectBase<DerivedPD2>& PD2,
Eigen::PlainObjectBase<DerivedPV1>& PV1,
Eigen::PlainObjectBase<DerivedPV2>& PV2,
std::vector<Index>& bad_vertices,
unsigned radius,
bool useKring)
{
if (radius < 2)
{
radius = 2;
std::cout << "WARNING: igl::principal_curvature needs a radius >= 2, fixing it to 2." << std::endl;
}
// Preallocate memory
PD1.resize(V.rows(),3);
PD2.resize(V.rows(),3);
// Preallocate memory
PV1.resize(V.rows(),1);
PV2.resize(V.rows(),1);
// Precomputation
CurvatureCalculator cc;
cc.init(V.template cast<double>(),F.template cast<int>());
cc.sphereRadius = radius;
if (useKring)
{
cc.kRing = radius;
cc.st = K_RING_SEARCH;
}
// Compute
cc.computeCurvature();
// Copy it back
for (unsigned i=0; i<V.rows(); ++i)
{
if (!cc.curv[i].empty())
{
PD1.row(i) << cc.curvDir[i][0][0], cc.curvDir[i][0][1], cc.curvDir[i][0][2];
PD2.row(i) << cc.curvDir[i][1][0], cc.curvDir[i][1][1], cc.curvDir[i][1][2];
PD1.row(i).normalize();
PD2.row(i).normalize();
if (std::isnan(PD1(i,0)) || std::isnan(PD1(i,1)) || std::isnan(PD1(i,2)) || std::isnan(PD2(i,0)) || std::isnan(PD2(i,1)) || std::isnan(PD2(i,2)))
{
PD1.row(i) << 0,0,0;
PD2.row(i) << 0,0,0;
}
PV1(i) = cc.curv[i][0];
PV2(i) = cc.curv[i][1];
if (PD1.row(i) * PD2.row(i).transpose() > 10e-6)
{
bad_vertices.push_back((Index)i);
PD1.row(i) *= 0;
PD2.row(i) *= 0;
}
} else {
bad_vertices.push_back((Index)i);
PV1(i) = 0;
PV2(i) = 0;
PD1.row(i) << 0,0,0;
PD2.row(i) << 0,0,0;
}
}
}
template <
typename DerivedV,
typename DerivedF,
typename DerivedPD1,
typename DerivedPD2,
typename DerivedPV1,
typename DerivedPV2>
IGL_INLINE void igl::principal_curvature(
const Eigen::PlainObjectBase<DerivedV>& V,
const Eigen::PlainObjectBase<DerivedF>& F,
Eigen::PlainObjectBase<DerivedPD1>& PD1,
Eigen::PlainObjectBase<DerivedPD2>& PD2,
Eigen::PlainObjectBase<DerivedPV1>& PV1,
Eigen::PlainObjectBase<DerivedPV2>& PV2,
unsigned radius,
bool useKring)
{
if (radius < 2)
{
radius = 2;
std::cout << "WARNING: igl::principal_curvature needs a radius >= 2, fixing it to 2." << std::endl;
}
// Preallocate memory
PD1.resize(V.rows(),3);
PD2.resize(V.rows(),3);
// Preallocate memory
PV1.resize(V.rows(),1);
PV2.resize(V.rows(),1);
// Precomputation
CurvatureCalculator cc;
cc.init(V.template cast<double>(),F.template cast<int>());
cc.sphereRadius = radius;
if (useKring)
{
cc.kRing = radius;
cc.st = K_RING_SEARCH;
}
// Compute
cc.computeCurvature();
// Copy it back
for (unsigned i=0; i<V.rows(); ++i)
{
PD1.row(i) << cc.curvDir[i][0][0], cc.curvDir[i][0][1], cc.curvDir[i][0][2];
PD2.row(i) << cc.curvDir[i][1][0], cc.curvDir[i][1][1], cc.curvDir[i][1][2];
PD1.row(i).normalize();
PD2.row(i).normalize();
if (std::isnan(PD1(i,0)) || std::isnan(PD1(i,1)) || std::isnan(PD1(i,2)) || std::isnan(PD2(i,0)) || std::isnan(PD2(i,1)) || std::isnan(PD2(i,2)))
{
PD1.row(i) << 0,0,0;
PD2.row(i) << 0,0,0;
}
PV1(i) = cc.curv[i][0];
PV2(i) = cc.curv[i][1];
if (PD1.row(i) * PD2.row(i).transpose() > 10e-6)
{
std::cerr << "PRINCIPAL_CURVATURE: Something is wrong with vertex: " << i << std::endl;
PD1.row(i) *= 0;
PD2.row(i) *= 0;
}
}
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
// generated by autoexplicit.sh
template void igl::principal_curvature<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, unsigned int, bool);
template void igl::principal_curvature<Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<int, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 3, 0, -1, 3>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 3, 0, -1, 3> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, unsigned int, bool);
template void igl::principal_curvature<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, unsigned int, bool);
template void igl::principal_curvature<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, int>(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, std::vector<int, std::allocator<int> >&, unsigned int, bool);
#endif